-
1Academic Journal
المؤلفون: Väth, Martin
مصطلحات موضوعية: keyword:reaction-diffusion system, keyword:Signorini condition, keyword:unilateral obstacle, keyword:instability, keyword:asymptotic stability, keyword:parabolic obstacle equation, msc:34D20, msc:35B35, msc:35K51, msc:35K57, msc:35K86, msc:35K87, msc:47H05, msc:47H11, msc:47J20, msc:47J35
وصف الملف: application/pdf
Relation: mr:MR3238834; zbl:Zbl 06362253; reference:[1] Drábek, P., Kučera, M., Míková, M.: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czech. Math. J. 35 (1985), 639-660. Zbl 0604.35042, MR 0809047; reference:[2] Eisner, J., Kučera, M., Väth, M.: Bifurcation points for a reaction-diffusion system with two inequalities.J. Math. Anal. Appl. 365 (2010), 176-194. Zbl 1185.35074, MR 2585089, 10.1016/j.jmaa.2009.10.037; reference:[3] Henry, D.: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics 840 Springer, Berlin (1981). Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647; reference:[4] Kim, I.-S., Väth, M.: The Krasnosel'skii-Quittner formula and instability of a reaction-diffusion system with unilateral obstacles.Submitted to Dyn. Partial Differ. Equ. 20 pages.; reference:[5] Kučera, M., Väth, M.: Bifurcation for a reaction-diffusion system with unilateral and {Neumann} boundary conditions.J. Differ. Equations 252 (2012), 2951-2982. Zbl 1237.35013, MR 2871789, 10.1016/j.jde.2011.10.016; reference:[6] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems.Bifurcation Theory and Applications in Scientific Disciplines (Papers, Conf., New York, 1977) O. Gurel, O. E. Rössler Ann. New York Acad. Sci. 316 (1979), 490-510. Zbl 0437.92027, MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x; reference:[7] Turing, A. M.: The chemical basis of morphogenesis.Phil. Trans. R. Soc. London Ser. B 237 (1952), 37-72. 10.1098/rstb.1952.0012; reference:[8] Väth, M.: Ideal Spaces.Lecture Notes in Mathematics 1664 Springer, Berlin (1997). Zbl 0896.46018, MR 1463946, 10.1007/BFb0093548; reference:[9] Väth, M.: Continuity and differentiability of multivalued superposition operators with atoms and parameters. I.Z. Anal. Anwend. 31 (2012), 93-124. Zbl 1237.47065, MR 2899873, 10.4171/ZAA/1450; reference:[10] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation.Graduate Texts in Mathematics 120 Springer, Berlin (1989). Zbl 0692.46022, MR 1014685, 10.1007/978-1-4612-1015-3