يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"keyword:Saddle Point Theorem"', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2059256; zbl:Zbl 1080.34532; reference:[1] H. Brezis and L. Nirenberg: Remarks on finding critical points.Comm. Pure. Appl. Math. 44 (1991), 939–963. MR 1127041, 10.1002/cpa.3160440808; reference:[2] K. C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. MR 0614246, 10.1016/0022-247X(81)90095-0; reference:[3] F. H. Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590; reference:[4] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume I: Theory.Kluwer, Dordrecht, 1997. MR 1485775; reference:[5] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer, Dordrecht, 1997. MR 1741926; reference:[6] N. Kourogenis and N. S. Papageorgiou: Nonsmooth critical point theory and nonlinear elliptic equations at resonance.J. Austral. Math. Soc. (Series A) 69 (2000), 245–271. MR 1775181, 10.1017/S1446788700002202; reference:[7] N. Kourogenis and N. S. Papageorgiou: Periodic solutions for quasilinear differential equations with discontinuous nonlinearities.Acta. Sci. Math. (Szeged) 65 (1999), 529–542. MR 1737269; reference:[8] G. Lebourg: Valeur moyenne pour gradient généralisé.CRAS Paris 281 (1975), 795–797. Zbl 0317.46034, MR 0388097; reference:[9] J. Mawhin and M. Willem: Critical Point Theory and Hamiltonian Systems.Springer-Verlag, Berlin, 1989. MR 0982267; reference:[10] Z. Naniewicz and P. Panagiotopoulos: Mathematical Theory of Hemivariational Inequalities and Applications.Marcel Dekker, New York, 1994. MR 1304257; reference:[11] P. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No.45.AMS, Providence, 1986. MR 0845785; reference:[12] C. L. Tang: Periodic solutions for nonautonomous second order systems with sublinear nonlinearity.Proc. AMS 126 (1998), 3263–3270. Zbl 0902.34036, MR 1476396; reference:[13] C. L. Tang: Existence and multiplicity of periodic solutions for nonautonomous second order systems.Nonlin. Anal. 32 (1998), 299–304. Zbl 0949.34032, MR 1610641, 10.1016/S0362-546X(97)00493-8; reference:[14] J. P. Aubin and H. Frankowska: Set-Valued Analysis.Birkhäuser-Verlag, Boston, 1990. MR 1048347

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1921589; zbl:Zbl 1090.34035; reference:[1] Boccardo L., Drábek P., Giachetti D., Kučera M.: Generalization of Fredholm alternative for nonlinear differential operators.Nonlinear Anal. 10 (1986), 1083–1103. MR 0857742; reference:[2] Chang K. C.: Variational methods for non-differentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. Zbl 0487.49027, MR 0614246; reference:[3] Clarke F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. Zbl 0582.49001, MR 0709590; reference:[4] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems.J. Math. Anal. Appl. 198 (1996), 35–48. MR 1373525; reference:[5] De Coster C.: On pairs of positive solutions for the one dimensional $p$-Laplacian.Nonlinear Anal. 23 (1994), 669–681. MR 1297285; reference:[6] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(%7Cu^{\prime }%7C^{p-2}u^{\prime })^{\prime }+f(t,u)=0,\;u(0)=u(T)=0$.J. Differential Equations 80 (1989), 1–13. Zbl 0708.34019, MR 1003248; reference:[7] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ode.Nonlinear Anal. 18 (1992), 79–92. MR 1138643; reference:[8] Drábek P., Invernizzi S.: On the periodic bvp for the forced Duffing equation with jumping nonlinearity.Nonlinear Anal. 10 (1986), 643–650. Zbl 0616.34010, MR 0849954; reference:[9] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and assymetric nonlinearities.Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. MR 1310080; reference:[10] Fabry C., Mawhin J., Nkashama M.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 18 (1986), 173–180. Zbl 0586.34038, MR 0818822; reference:[11] Guo Z.: Boundary value problems of a class of quasilinear ordinary differential equations.Differential Integral Equations 6 (1993), 705–719. Zbl 0784.34018, MR 1202567; reference:[12] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol I: Theory.Kluwer, The Netherlands, 1997. MR 1485775; reference:[13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis. Vol II: Applications.Kluwer, The Netherlands, 2000. MR 1741926; reference:[14] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian-like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038; reference:[15] Papageorgiou N. S., Yannakakis N.: Nonlinear boundary value problems.Proc. Indian Acad. Sci. Math. Sci. 109 (1999), 211–230. Zbl 0952.34035, MR 1687731; reference:[16] Szulkin A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. H. Poincarè Non Linèaire 3 (1986), 77–109. Zbl 0612.58011, MR 0837231; reference:[17] Tang C.-L.: Existence and multiplicity of periodic solutions for nonautonomous second order systems.Nonlinear Anal. 32 (1998), 299–304. Zbl 0949.34032, MR 1610641; reference:[18] Zhang M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian.Nonlinear Anal. 29 (1997), 41–51. Zbl 0876.35039, MR 1447568; reference:[19] Mawhin J. M., Willem M.: Critical Point Theory and Hamiltonian Systems.Springer, Berlin (1989). Zbl 0676.58017, MR 0982267

  3. 3
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR1792971; zbl:Zbl 1079.35511; reference:[1] R. Adams: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957; reference:[2] W. F. Ames: Nonlinear Partial Differential Equations in Engineering.Academic Press, New York, 1965. Zbl 0176.39701, MR 0210342; reference:[3] A. Ambrosetti and P. H. Rabinowitz: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349–381. MR 0370183, 10.1016/0022-1236(73)90051-7; reference:[4] A. Anane and J. P. Gossez: Strongly nonlinear elliptic problems near resonance: a variational approach.Comm. Partial Differential Equations 15 (1990), 1141–1159. MR 1070239, 10.1080/03605309908820717; reference:[5] D. Arcoya and M. Calahorrano: Some discontinuous problems with a quasilinear operator.J. Math. Anal. Appl. 187 (1994), 1059–1072. MR 1298837, 10.1006/jmaa.1994.1406; reference:[6] L. Boccardo, P. Drábek, D. Giachetti and M. Kučera: Generalization of Fredholm alternative for nonlinear differential operators.Nonlinear Anal. TMA 10 (1986), 1083–1103. MR 0857742; reference:[7] K. C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102–129. MR 0614246, 10.1016/0022-247X(81)90095-0; reference:[8] D. Costa and C. Magalhaes: Existence results for perturbations of the p-Laplacian.Nonlinear Anal. TMA 24 (1995), 409–418. MR 1312776; reference:[9] C. De Coster: Pairs of positive solutions for the one-dimensional p-Laplacian.Nonlinear Anal. TMA 23 (1994), 669–681. Zbl 0813.34021, MR 1297285; reference:[10] M. Del Pino, M. Elgueta and R. Manasevich: A homotopic deformation along p of a Leray-Shauder degree result and existence for $(%7Cu^{\prime }%7C^{p-2}u^{\prime })^{\prime }+f(t,u) = 0$, $ u(0)=u(T)=0$, $p>1$.J. Differential Equations 80 (1989), 1–13. MR 1003248, 10.1016/0022-0396(89)90093-4; reference:[11] A. Friedman: Generalized heat transfer between solids and gases under nonlinear boundary conditions.J. Math. Mech. 8 (1959), 161–184. Zbl 0101.31102, MR 0102345; reference:[12] Z. Guo: Boundary value problems for a class of quasilinear ordinary differential equations.Differential Integral Equations 6 (1993), 705–719. MR 1202567; reference:[13] A. El. Hachimi, J.-P. Gossez: A note on a nonresonance condition for a quasilinear elliptic problem.Nonlinear Anal. TMA 22 (1994), 229–236. MR 1258959; reference:[14] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis Volume I: Theory.Kluwer Academic Publishers, Dordrecht, 1997. MR 1485775; reference:[15] A. Ioffe and V. Tichomirov: Theory of Extremal Problems.North Holland, Amsterdam, 1979. MR 0528295; reference:[16] N. Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems.J. Math. Soc. Japan 27 (1975), 121–149. Zbl 0292.35034, MR 0372419, 10.2969/jmsj/02710121; reference:[17] A. Kufner, O. John and S. Fučík: Function Spaces.Noordhoff, Leyden, The Netherlands, 1977. MR 0482102; reference:[18] P. Lindqvist: On the equation $\div (%7CDx%7C^{p-2}Dx)+ \lambda %7Cx%7C^{p-2}x = 0$.Proc. AMS vol. 109, 1991, pp. 157–164. MR 1007505; reference:[19] P. H. Rabinowitz: Some minimax theorems and applications to nonlinear partial differential equations.Nonlinear Analysis: A collection of papers of E. Rothe, L. Cesari, R. Kannan, H. F. Weinberger (eds.), Acad. Press, New York, 1978, pp. 161–177. Zbl 0466.58015, MR 0501092; reference:[20] P. H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations.CBMS, Regional Conference Series in Math, No 65, AMS, Providence, R. J., 1986. Zbl 0609.58002, MR 0845785; reference:[21] R. Showalter: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Math. Surveys, vol. 49, AMS, Providence, R. I., 1997. Zbl 0870.35004, MR 1422252; reference:[22] A. Szulkin: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems.Ann. Inst. H. Poincare Anal. Non Linéaire 3 (1986), 77–109. Zbl 0612.58011, MR 0837231, 10.1016/S0294-1449(16)30389-4; reference:[23] E. Zeidler: Nonlinear Functional Analysis and its Applications II.Springer Verlag, New York, 1990. Zbl 0684.47029, MR 0816732