-
1Academic Journal
المؤلفون: Hager, Anthony W.
مصطلحات موضوعية: keyword:Riesz space, keyword:$\sigma$-property, keyword:bounding number, keyword:$P$-space, keyword:paracompact, keyword:locally compact, msc:03E17, msc:06F20, msc:46A40, msc:54A25, msc:54C30, msc:54D20, msc:54D45, msc:54G10
وصف الملف: application/pdf
Relation: mr:MR3513446; zbl:Zbl 06604503; reference:[BGHTZ09] Ball R., Gochev V., Hager A., Todorčević S., Zoble S.: Topological group criterion for $C(X)$ in compact-open-like topologies I.Topology Appl. 156 (2009), 710–720. Zbl 1166.54007, MR 2492956; reference:[BJ86] Blass A., Jech T.: On the Egoroff property of pointwise convergent sequences of functions.Proc. Amer. Math. Society 90 (1986), 524–526. Zbl 0601.54004, MR 0857955, 10.1090/S0002-9939-1986-0857955-3; reference:[D74] Dodds, Theresa K.Y. Chow: Egoroff properties and the order topology in Riesz spaces.Trans. Amer. Math. Soc. 187 (1974), 365–375. MR 0336282, 10.1090/S0002-9947-1974-0336282-3; reference:[D84] van Douwen E.: The integers and topology.in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–1676. Zbl 0561.54004, MR 0776622; reference:[E89] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[GJ60] Gillman L., Jerison M.: Rings of Continuous Functions.The University Series in Higher Mathematics, Van Nostrand, Princeton, N.J.-Toronto-London-New York, 1960. Zbl 0327.46040, MR 0116199; reference:[HM15] Hager A., van Mill J.: Egoroff, $\sigma$, and convergence properties in some archimedean vector lattices.Studia Math. 231 (2015), 269–285. MR 3471054; reference:[HR16] Hager A., Raphael R.: The countable lifting property for Riesz space surjections.Indag. Math., 27 (2016), 75–84. MR 3437737, 10.1016/j.indag.2015.07.005; reference:[H68] Holbrook J.: Seminorms and the Egoroff property in Riesz spaces.Trans. Amer. Math. Soc. 132 (1968), 67–77. Zbl 0169.14802, MR 0228979, 10.1090/S0002-9947-1968-0228979-8; reference:[J80] Jech T.: On a problem of L. Nachbin.Proc. Amer. Math. Soc. 79 (1980), 341–342. Zbl 0441.04002, MR 0565368, 10.1090/S0002-9939-1980-0565368-1; reference:[J02] Jech T.: Set Theory.third millennium edition, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513; reference:[LZ71] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces.Vol. I, North-Holland Mathematical Library, North-Holland, Amsterdam-London, 1971. Zbl 0231.46014, MR 0511676
-
2Academic Journal
المؤلفون: Chil, Elmiloud, Mokaddem, Mohamed, Hassen, Bourokba
مصطلحات موضوعية: keyword:orthosymmetric multilinear map, keyword:homogeneous polynomial, keyword:Riesz space, msc:06F25, msc:46A40
وصف الملف: application/pdf
Relation: mr:MR3390278; zbl:Zbl 06486995; reference:[1] Aliprantis C.D., Burkinshaw O.: Positive Operators.Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133; reference:[2] Ben Amor F.: On orthosymmetric bilinear maps.Positivity 14 (2010), 123–134. Zbl 1204.06010, MR 2596468, 10.1007/s11117-009-0009-4; reference:[3] Benyamini Y., Lassalle S., Llavona J.L.G.: Homogeneous orthogonally additive polynomials on Banach lattices.Bull. London Math. Soc. 38 (2006), no. 3, 459–469. Zbl 1110.46033, MR 2239041, 10.1112/S0024609306018364; reference:[4] Beukers F., Huijsmans C.B.: Calculus in f-algebras.J. Austral. Math. Soc. Ser. A 37 (1984), no. 1, 110–116. Zbl 0555.06014, MR 0742249, 10.1017/S1446788700021790; reference:[5] Boulabiar K.: On products in lattice-ordered algebras.J. Austral. Math. Soc. 75 (2003), no. 1, 1435–1442. Zbl 1044.06010, MR 1984624, 10.1017/S1446788700003451; reference:[6] Bu Q., Buskes G.: Polynomials on Banach lattices and positive tensor products.J. Math. Anal. Appl. 388 (2012), 845–862. MR 2869792, 10.1016/j.jmaa.2011.10.001; reference:[7] Buskes G., van Rooij A.: Almost $f$-algebras: commutativity and the Cauchy-Schwarz inequality.Positivity 4 (2000), no. 3, 227–231. Zbl 0987.46002, MR 1797125, 10.1023/A:1009826510957; reference:[8] Carando D., Lassalle S., Zalduendo I.: Orthogonally additive polynomials over C(K) are measures – a short proof.Integral Equations Operator Theory, 56 (2006), no. 4, 597–602. Zbl 1122.46025, MR 2284718, 10.1007/s00020-006-1439-z; reference:[9] Carando D., Lassalle S., Zalduendo I.: Orthogonally additive holomorphic functions of bounded type over $C(K)$.Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 609–618. Zbl 1217.46028, MR 2720240, 10.1017/S0013091509000248; reference:[10] Chil E.: Order bounded orthosymmetric bilinear operator.Czechoslovak Math. J. 61 (2011), no. 4, 873–880. Zbl 1249.06048, MR 2886242, 10.1007/s10587-011-0052-8; reference:[11] Chil E., Meyer M., Mokaddem M.: On orthosymmetric multilinear maps.Positivity (preprint).; reference:[12] de Pagter B.: $f$-algebras and Orthomorphisms.thesis, Leiden, 1981.; reference:[13] Ibort A., Linares P., Llavona J.G.: On the representation of orthogonally additive polynomials in $\ell_{p}$.Publ. RIMS Kyoto Univ. 45 (2009), 519–524. Zbl 1247.46037, MR 2510510, 10.2977/prims/1241553128; reference:[14] Jaramillo J.A., Prieto A., Zalduendo I.: Orthogonally additive holomorphic functions on open subsets of C(K).Rev. Mat. Complut. 25 (2012), no. 1, 31–41. Zbl 1279.46027, MR 2876915, 10.1007/s13163-010-0055-2; reference:[15] Luxemburg W.A., Zaanen A.C.: Riesz Spaces I.North-Holland, Amsterdam, 1971.; reference:[16] Meyer-Nieberg P.: Banach Lattices.Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093; reference:[17] Palazuelos C., Peralta A.M., Villanueva I.: Orthogonally additive polynomials on $C^{*}$-algebras.Quart. J. Math. 59 (2008), 363–374. Zbl 1159.46035, MR 2444066, 10.1093/qmath/ham042; reference:[18] Perez-García D., Villanueva I.: Orthogonally additive polynomials on space of continuous functions.J. Math. Anal. Appl. 306 (2005), no. 1, 97–105. MR 2132891, 10.1016/j.jmaa.2004.12.036; reference:[19] Sundaresan K.: Geometry of spaces of homogeneous polynomials on Banach lattices.Applied geometry and discrete mathematics, 571–586, DIMACS Series in Discrete Mathematics and Theoretical computer Science no. 4, Amer. Math. Soc., Providence, RI, 1991. Zbl 0745.46028, MR 1116377
-
3Academic Journal
المؤلفون: Kawasaki, Toshiharu
مصطلحات موضوعية: keyword:derivative, keyword:Denjoy integral, keyword:Henstock-Kurzweil integral, keyword:fundamental theorem of calculus, keyword:vector lattice, keyword:Riesz space, msc:26A39, msc:46B42, msc:46G05, msc:46G10, msc:46G12
وصف الملف: application/pdf
Relation: mr:MR2532373; zbl:Zbl 1224.46083; reference:[1] Birkhoff, G.: Lattice Theory.Amer. Math. Soc. (1940). Zbl 0063.00402, MR 0001959; reference:[2] Boccuto, A.: Differential and integral calculus in Riesz spaces.Tatra Mt. Math. Publ. 14 (1998), 293-323. MR 1651221; reference:[3] Cristescu, R.: Ordered Vector Spaces and Linear Operators.Abacus Press (1976). Zbl 0322.46010, MR 0467238; reference:[4] Izumi, S.: An abstract integral (X).Proc. Imp. Acad. Japan 18 (1942), 543-547. Zbl 0061.09909, MR 0021080, 10.3792/pia/1195573784; reference:[5] Izumi, S., Sunouchi, G., Orihara, M., Kasahara, M.: Theory of Denjoy integral, I--II.Japanese Proc. Physico-Mathematical Soc. Japan 17 (1943), 102-120, 321-353.; reference:[6] Kawasaki, T.: Order derivative of operators in vector lattices.Math. Japonica 46 (1997), 79-84. Zbl 0907.46038, MR 1466119; reference:[7] Kawasaki, T.: On Newton integration in vector spaces.Math. Japonica 46 (1997), 85-90. Zbl 0913.46004, MR 1466120; reference:[8] Kawasaki, T.: Order Lebesgue integration in vector lattices.Math. Japonica 48 (1998), 13-17. Zbl 0921.46041, MR 1644310; reference:[9] Kawasaki, T.: Approximately order derivatives in vector lattices.Math. Japonica 49 (1999), 229-239. Zbl 0937.47041, MR 1687642; reference:[10] Kawasaki, T.: Order derivative and order Newton integral of operators in vector lattices.Far East J. Math. Sci. 1 (1999), 903-926. Zbl 1069.46507, MR 1734826; reference:[11] Kawasaki, T.: Uniquely determinedness of the approximately order derivative.Sci. Math. Japonicae Online 7 (2002), 333-336 Sci. Math. Japonicae 57 (2003), 365-371. Zbl 1039.46036, MR 1959995; reference:[12] Kubota, Y.: Theory of the Integral.Japanese Maki (1977).; reference:[13] Lee, P. Y.: Lanzhou Lectures on Henstock Integration.World Scientific (1989). Zbl 0699.26004, MR 1050957; reference:[14] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces.North-Holland (1971). Zbl 0231.46014; reference:[15] McGill, P.: Integration in vector lattices.J. London Math. Soc. 11 (1975), 347-360. Zbl 0309.28003, MR 0393414, 10.1112/jlms/s2-11.3.347; reference:[16] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering.Kluwer (1997). MR 1489521; reference:[17] Romanovski, P.: Intégrale de Denjoy dans les espaces abstraits.Recueil Mathématique (Mat. Sbornik) N. S. 9 (1941), 67-120. Zbl 0026.00302, MR 0004292; reference:[18] Schaefer, H. H.: Banach Lattices and Positive Operators.Springer-Verlag (1974). Zbl 0296.47023, MR 0423039; reference:[19] Vulikh, B. Z.: Introduction to the Theory of Partially Orderd Spaces.Wolters-Noordhoff (1967). MR 0224522
-
4Academic Journal
المؤلفون: Kawasaki, Toshiharu
مصطلحات موضوعية: keyword:derivative, keyword:Denjoy integral, keyword:Henstock-Kurzweil integral, keyword:fundamental theorem of calculus, keyword:vector lattice, keyword:Riesz space, msc:26A39, msc:46B42, msc:46G05, msc:46G10, msc:46G12
وصف الملف: application/pdf
Relation: mr:MR2532374; zbl:Zbl 1224.46084; reference:[1] Birkhoff, G.: Lattice Theory.Amer. Math. Soc. (1940). Zbl 0063.00402, MR 0001959; reference:[2] Boccuto, A.: Differential and integral calculus in Riesz spaces.Tatra Mt. Math. Publ. 14 (1998), 293-323. MR 1651221; reference:[3] Cristescu, R.: Ordered Vector Spaces and Linear Operators.Abacus Press (1976). Zbl 0322.46010, MR 0467238; reference:[4] Izumi, S.: An abstract integral (X).Proc. Imp. Acad. Japan 18 (1942), 543-547. Zbl 0061.09909, MR 0021080, 10.3792/pia/1195573784; reference:[5] Izumi, S., Sunouchi, G., Orihara, M., Kasahara, M.: Theory of Denjoy integral, I--II.Japanese Proc. Physico-Mathematical Soc. Japan 17 (1943), 102-120, 321-353.; reference:[6] Kawasaki, T.: Order derivative of operators in vector lattices.Math. Japonica 46 (1997), 79-84. Zbl 0907.46038, MR 1466119; reference:[7] Kawasaki, T.: On Newton integration in vector spaces.Math. Japonica 46 (1997), 85-90. Zbl 0913.46004, MR 1466120; reference:[8] Kawasaki, T.: Order Lebesgue integration in vector lattices.Math. Japonica 48 (1998), 13-17. Zbl 0921.46041, MR 1644310; reference:[9] Kawasaki, T.: Approximately order derivatives in vector lattices.Math. Japonica 49 (1999), 229-239. Zbl 0937.47041, MR 1687642; reference:[10] Kawasaki, T.: Order derivative and order Newton integral of operators in vector lattices.Far East J. Math. Sci. 1 (1999), 903-926. Zbl 1069.46507, MR 1734826; reference:[11] Kawasaki, T.: Uniquely determinedness of the approximately order derivative.Sci. Math. Japonicae Online 7 (2002), 333-336 Sci. Math. Japonicae 57 (2003), 365-371. Zbl 1039.46036, MR 1959995; reference:[12] Kawasaki, T.: Denjoy integral and Henstock-Kurzweil integral in vector lattices, I.(to appear). MR 2532373; reference:[13] Kubota, Y.: Theory of the Integral.Japanese Maki (1977).; reference:[14] Lee, P. Y.: Lanzhou Lectures on Henstock Integration.World Scientific (1989). Zbl 0699.26004, MR 1050957; reference:[15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces.North-Holland (1971). Zbl 0231.46014; reference:[16] McGill, P.: Integration in vector lattices.J. London Math. Soc. 11 (1975), 347-360. Zbl 0309.28003, MR 0393414, 10.1112/jlms/s2-11.3.347; reference:[17] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering.Kluwer (1997). MR 1489521; reference:[18] Romanovski, P.: Intégrale de Denjoy dans les espaces abstraits.Recueil Mathématique (Mat. Sbornik) N.S. 9 (1941), 67-120. Zbl 0026.00302, MR 0004292; reference:[19] Schaefer, H. H.: Banach Lattices and Positive Operators.Springer-Verlag (1974). Zbl 0296.47023, MR 0423039; reference:[20] Vulikh, B. Z.: Introduction to the Theory of Partially Orderd Spaces.Wolters-Noordhoff (1967). MR 0224522
-
5Academic Journal
المؤلفون: Amor, Fethi Ben
مصطلحات موضوعية: keyword:continuous functions spaces, keyword:disjointness preserving operator, keyword:Lamperti Riesz subspace, keyword:order bounded operator, keyword:orthomorphism, keyword:Radon-Nikod'ym, keyword:Riesz space, msc:06F20, msc:46A32, msc:46A40, msc:47B65
وصف الملف: application/pdf
Relation: mr:MR2375162; zbl:Zbl 1199.06071; reference:[1] Abramovich Y.A., Aliprantis C.D.: An Invitation to Operator Theory.Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. Zbl 1022.47001, MR 1921782; reference:[2] Abramovich Y.A., Aliprantis C.D.: Problems in Operators Theory.Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, 2002. MR 1921783; reference:[3] Abramovich Y.A., Kitover A.K.: Inverses of disjointness preserving operators.Memoirs Amer. Math. Soc. 143 (2000), 679. Zbl 0974.47032, MR 1639940; reference:[4] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, Orlando, 1985. Zbl 1098.47001, MR 0809372; reference:[5] Arendt W.: Spectral properties of Lamperti operators.Indiana Univ. Math. J. 32 (1983), 199-215. Zbl 0488.47016, MR 0690185; reference:[6] Ben Amor F., Boulabiar K.: On the modulus of disjointness preserving operators on complex vector lattices.Algebra Universalis 54 (2005), 185-193. Zbl 1107.47026, MR 2217635; reference:[7] Ben Amor F., Boulabiar K.: Maximal ideals of disjointness preserving operators.J. Math. Anal. Appl. 322 (2006), 599-609. MR 2250601; reference:[8] Bernau S.: Orthomorphisms of Archimedean vector lattices.Math. Proc. Cambridge Philos. Soc. 89 (1981), 119-128. Zbl 0463.46002, MR 0591978; reference:[9] Bigard A., Keimel K., Wolfenstein S.: Groupes et anneaux réticulés.Lectures Notes in Mathematics, 608, Springer, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653; reference:[10] Bigard A., Keimel K.: Sur les endomorphismes conservants les polaires d'un groupe réticulé Archimédien.Bull. Soc. Math. France 97 (1969), 381-398. MR 0262137; reference:[11] Conrad P.F., Diem J.E.: The Ring of polar preserving endomorphisms of an abelian lattice-ordered group.Illinois J. Math. 15 (1971), 222-240. Zbl 0213.04002, MR 0285462; reference:[12] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579; reference:[13] Huijsmans C.B., Luxemburg W.A.J.: An alternative proof of a Radon-Nikodým theorem for lattice homomorphisms.Acta. Appl. Math. 27 (1992), 67-71. Zbl 0807.47023, MR 1184878; reference:[14] Huijsmans C.B., de Pagter B.: Disjointness preserving and diffuse operators.Compositio Math. 79 (1991), 351-374. Zbl 0757.47023, MR 1121143; reference:[15] Luxemburg W.A.J.: Some aspects of the theory of Riesz spaces.Lecture Notes in Mathematics, 4, University of Arkansas, Fayetteville, 1979. Zbl 0431.46003, MR 0568706; reference:[16] Luxemburg W.A.J., Schep A.R.: A Radon-Nikodým type theorem for positive operators and a dual.Nederl. Akad. Wetensch. Indag. Math. 40 (1978), 357-375. Zbl 0389.47018, MR 0507829; reference:[17] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I.North-Holland, Amsterdam, 1971.; reference:[18] Meyer M.: Le stabilateur d'un espace vectoriel réticulé.C.R. Acad. Sci. Paris, Serie I 283 (1976), 249-250. MR 0433191; reference:[19] Meyer-Nieberg P.: Banach Lattices.Springer, Berlin-Heidelberg-New York, 1991. Zbl 0743.46015, MR 1128093; reference:[20] de Pagter B.: $f$-algebras and orthomorphisms.Thesis, Leiden, 1981.; reference:[21] de Pagter B.: A note on disjointness preserving operators.Proc. Amer. Math. Soc. 90 (1984), 543-549. Zbl 0541.47032, MR 0733403; reference:[22] de Pagter B., Schep A.R.: Band decomposition for disjointness preserving operators.Positivity 4 (2000), 259-288. Zbl 0991.47022, MR 1797129; reference:[23] van Putten B.: Disjunctive linear operators and partial multiplication in Riesz spaces.Thesis, Wageningen, 1980.; reference:[24] Wójtowicz M.: On a weak Freudenthal spectral theorem.Comment. Math. Univ. Carolin. 33 (1992), 631-643. MR 1240185; reference:[25] Zaanen A.C.: Riesz Spaces II.North-Holland, Amsterdam, 1983. Zbl 0519.46001, MR 0704021; reference:[26] Zaanen A.C.: Introduction to Operator Theory in Riesz Spaces.Springer, Berlin-Heidelberg-New York, 1997. Zbl 0878.47022, MR 1631533
-
6Academic Journal
المؤلفون: Candeloro, Domenico
مصطلحات موضوعية: keyword:convergence theorem, keyword:Riesz space, keyword:Lebesgue decomposition, msc:28B15, msc:46G10
وصف الملف: application/pdf
Relation: mr:MR1944310; zbl:Zbl 1265.46069; reference:[1] Boccuto A.: Vitali–Hahn–Saks and Nikodým theorems for means with values in Riesz spaces.Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 157–173 Zbl 0864.28003, MR 1405238; reference:[2] Boccuto A.: Dieudonné-type theorems for means with values in Riesz spaces.Tatra Mountains Math. Publ. 8 (1996), 29–42 Zbl 0918.28009, MR 1475257; reference:[3] Boccuto A., Candeloro D.: Uniform $s$-boundedness and convergence results for measures with values in complete l-groups.J. Math. Anal. Appl. 265 (2002), 170–194 Zbl 1006.28012, MR 1874264, 10.1006/jmaa.2001.7715; reference:[4] Boccuto A., Candeloro D.: Vitali and Schur-type theorems for Riesz-space-valued set functions.Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 85–103 Zbl 1096.28006, MR 1910780; reference:[5] Boccuto A., Candeloro D.: Dieudonné-type theorems for set functions with values in $(l)$-groups.Real Anal. Exchange, to appear Zbl 1067.28011, MR 1922663; reference:[6] Brooks J. K.: On the Vitali-Hahn-Saks and Nikodým theorems.Proc. Nat. Acad. Sci. U. S. A. 64 (1969), 468–471 Zbl 0188.35604, MR 0268343, 10.1073/pnas.64.2.468; reference:[7] Brooks J. K.: Equicontinuous sets of measures and applications to Vitali’s integral convergence theorem and control measures.Adv. in Math. 10 (1973), 165–171 Zbl 0249.28009, MR 0320268, 10.1016/0001-8708(73)90104-7; reference:[8] Brooks J. K.: On a theorem of Dieudonné.Adv. in Math. 36 (1980), 165–168 Zbl 0441.28006, MR 0574646, 10.1016/0001-8708(80)90014-6; reference:[9] Candeloro D., Letta G.: Sui teoremi di Vitali–Hahn–Saks e di Dieudonné.Rend. Accad. Naz. Sci. XL 9 (1985), 203–213 MR 0899250; reference:[10] Inglesias M. Congost: Medidas y probabilidades en estructuras ordenadas.Stochastica 5 (1981), 45–48 MR 0625841; reference:[11] Dieudonné J.: Sur la convergence des suites de mesures de Radon.An. Acad. Brasil. Cienc. 23 (1951), 21–38; 277–282 Zbl 0044.12004, MR 0042496; reference:[12] Nikodým O.: Sur les suites convergentes de fonctions parfaitement additives d’ensemble abstrait.Monatsc. Math. 40 (1933), 427–432 Zbl 0008.25003, MR 1550217, 10.1007/BF01708880; reference:[13] Luxemburg W. A. J., Zaanen A. C.: Riesz Spaces, I.North–Holland, Amsterdam 1971; reference:[14] Riečan B., Neubrunn T.: Integral, Measure and Ordering.Kluwer Academic Publishers / Ister Science, Bratislava 1997 Zbl 0916.28001, MR 1489521; reference:[15] Schmidt K.: Decompositions of vector measures in Riesz spaces and Banach lattices.Proc. Edinburgh Math. Soc. 29 (1986), 23–39 Zbl 0569.28011, MR 0829177
-
7Academic Journal
المؤلفون: Matkowski, Janusz, Merentes, Nelson
مصطلحات موضوعية: keyword:Riesz space, keyword:bounded p-variation, keyword:globally Lipschitzian composition operator, msc:26A16, msc:39B22, msc:46E15, msc:47H09, msc:47H30
وصف الملف: application/pdf
Relation: mr:MR1222285; zbl:Zbl 0785.47033; reference:[1] Knop, J.: On globally Lipschitzian operator in the space $\text{Lip} C^r[a,b]$.Fasculi Math. 21 (1990), 79-85. MR 1115522; reference:[2] Matkowska, A.: On characterization of Lipschitzian operators of substitution in the class of Hölder’s function.Zeszyty Naukowe Politechniki Lodzkiej, Matematyka. Z. 17 (1984), 81-85. MR 0790842; reference:[3] Matkowski, J.: Functional Equations and Nemyskij operators.Funkcialaj Ekvacioj 25 (1982), 127-132. MR 0694906; reference:[4] Matkowski, J.: Form of Lipschitzian operator of substitution in Banach space of differentiable functios.Zeszyty Naukowe Politechniki-Lódzkiej, Matematyka. Z. 17 (1984), 5-10. MR 0790835; reference:[5] Matkowski, J., Miś, J.: On a characterization of Lipschitzian operators of substitution in the space $BV[a,b]$.Math. Nach. 117 (1984), 155-159. MR 0755299; reference:[6] Merentes, N.: On a characterization of Lipschitzian operators of substitution in the space of bounded Riesz $\varphi $-variation.Ann. Univ. Sci. Budapest. Sect. Math. (to appear). Zbl 0808.47050, MR 1161510; reference:[7] Merentes, N.: On the concept of bounded $(p,2)$-variation of a function.Rend. Sem. Mat. Univ. Padova (submitted).; reference:[8] Riesz, F.: Untersuchungen über systeme intergrierbarer functionen.Mathematische Annalen 69 (1910), 1449-1497.; reference:[9] Roberts, A.W., Varberg, D.E.: Convex functions.Academic Press, New York and London, 1973. MR 0442824; reference:[10] Vallé Poussin, Ch.J. de.: Sur la convergence des formules d’interpolation entre ordinées equidistances.Bull. Acad. Sci. Belg. (1908), 319-410.