-
1Academic Journal
المؤلفون: Ghumashyan, Heghine, Guričan, Jaroslav
مصطلحات موضوعية: keyword:group, keyword:diassociative IP loop, keyword:Moufang loop, keyword:finite embeddability property, keyword:local embeddability, msc:05B15, msc:05C25, msc:20E25, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR4387465; zbl:Zbl 07547238; reference:[1] Baumslag, G., Solitar, D.: Some two-generator one-relator non-Hopfian groups.Bull. Am. Math. Soc. 68 (1962), 199-201. Zbl 0108.02702, MR 0142635, 10.1090/S0002-9904-1962-10745-9; reference:[2] Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups.Springer Monographs in Mathematics. Springer, Berlin (2010). Zbl 1218.37004, MR 2683112, 10.1007/978-3-642-14034-1; reference:[3] Collins, B., Dykema, K. J.: Free products of sofic groups with amalgamation over monotileably amenable groups.Münster J. Math. 4 (2011), 101-118. Zbl 1242.43003, MR 2869256; reference:[4] Drápal, A.: A simplified proof of Moufang's theorem.Proc. Am. Math. Soc. 139 (2011), 93-98. Zbl 1215.20059, MR 2729073, 10.1090/S0002-9939-2010-10501-4; reference:[5] Glebsky, L. Y., Gordon, Y. I.: On approximation of amenable groups by finite quasigroups.J. Math. Sci. 140 (2007), 369-375. Zbl 1159.43300, MR 2183215, 10.1007/s10958-007-0446-1; reference:[6] Henkin, L.: Two concepts from the theory of models.J. Symb. Log. 21 (1956), 28-32. Zbl 0071.00701, MR 0075895, 10.2307/2268482; reference:[7] Higman, G., Neumann, B. H., Neumann, H.: Embedding theorems for groups.J. Lond. Math. Soc. 24 (1949), 247-254. Zbl 0034.30101, MR 0032641, 10.1112/jlms/s1-24.4.247; reference:[8] Lyndon, R. C., Schupp, P. E.: Combinatorial Group Theory.Classics in Mathematics. Springer, Berlin (2001). Zbl 0997.20037, MR 1812024, 10.1007/978-3-642-61896-3; reference:[9] Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations.Dover Books on Mathematics. Dover Publications, Mineola (2004). Zbl 1130.20307, MR 2109550; reference:[10] Mal'tsev, A. I.: On a general method for obtaining local theorems in group theory.Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak. 1 (1941), 3-9 Russian. MR 0075939; reference:[11] Mal'tsev, A. I.: On homomorphisms onto finite groups.Twelve Papers in Algebra American Mathematical Society Translations: Series 2, 119. American Mathematical Society (1983), 67-79. Zbl 0511.20026, 10.1090/trans2/119; reference:[12] Meskin, S.: Nonresidually finite one-relator groups.Trans. Am. Math. Soc. 164 (1972), 105-114. Zbl 0245.20028, MR 285589, 10.2307/1995962; reference:[13] Pflugfelder, H. O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics 7. Heldermann Verlag, Berlin (1990). Zbl 0715.20043, MR 1125767; reference:[14] Vershik, A. M., Gordon, E. I.: Groups that are locally embeddable in the class of finite groups.St. Petersbg. Math. J. 9 (1998), 49-67. Zbl 0898.20016, MR 1458419; reference:[15] Vodička, M., Zlatoš, P.: The finite embeddability property for IP loops and local embeddability of groups into finite IP loops.Ars Math. Contemp. 17 (2019), 535-554. Zbl 1442.20040, MR 4041359, 10.26493/1855-3974.1884.5cb; reference:[16] Weiss, B.: Monotileable amenable groups.Topology, Ergodic Theory, Real Algebraic Geometry: Rokhlin's Memorial American Mathematical Society Translations: Series 2, 202. American Mathematical Society (2001), 257-262. Zbl 0982.22004, MR 1819193, 10.1090/trans2/202/18; reference:[17] Ziman, M.: Extensions of Latin subsquares and local embeddability of groups and group algebras.Quasigroups Relat. Syst. 11 (2004), 115-125. Zbl 1060.20057, MR 2064165
-
2Academic Journal
المؤلفون: Drápal, Aleš
مصطلحات موضوعية: keyword:dihedral group, keyword:Moufang loop, keyword:cyclic extension, keyword:semidirect product, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR3583301; zbl:Zbl 1374.20069; reference:[1] Chein O.: Moufang loops of small order, I.Trans. Amer. Math. Soc. 188 (1974), 31–51. Zbl 0286.20088, MR 0330336, 10.1090/S0002-9947-1974-0330336-3; reference:[2] Chein O.: Moufang loops of small order.Mem. Amer. Math. Soc. 13 (1978), no. 197. Zbl 0378.20053, MR 0466391; reference:[3] Drápal A.: On extensions of Moufang loops by a cyclic factor that is coprime to three.Comm. Algebra, (in print) http://dx.doi.org/10.1080/00927872.2016.1233202. 10.1080/00927872.2016.1233202; reference:[4] Gagola S.M., III: Cyclic extensions of Moufang loops induced by semi-automorphisms.J. Algebra Appl. 13 (2014), no. 4, Article ID 1350128. Zbl 1296.20028, MR 3153863, 10.1142/S0219498813501284; reference:[5] Gagola S.hM., III: Describing cyclic extensions of Bol loops.Quasigroups and Related Systems 23 (2015), 31–39. Zbl 1328.20084, MR 3353111; reference:[6] Goodaire E.R., May S., Raman M.: The Moufang Loops of Order Less Than 64.Nova Science Publishers, Inc., Commack, NY, 1999. Zbl 0964.20043, MR 1689624
-
3Academic Journal
المؤلفون: Gagola III, Stephen
مصطلحات موضوعية: keyword:F-quasigroup, keyword:NK-loop, keyword:Moufang loop, msc:20E10, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR3017836; zbl:Zbl 1257.20068; reference:[1] Belousov V.D.: About one quasigroup class.Uchenye Zapiski Beltskogo Gospedinstituta im. A. Russo, \bf 5 \rm (1960), 29–44 (in Russian).; reference:[2] Bol G.: Gewebe und Gruppen.Math. Ann. 114 (1937), no. 1, 414–431. Zbl 0016.22603, MR 1513147, 10.1007/BF01594185; reference:[3] Bruck R.H.: A Survey of Binary Systems.Springer, New York, 1971. Zbl 0141.01401, MR 0093552; reference:[4] Gagola S.M. III: A Moufang loop's commutant.Proc. Cambridge Phil. Soc. 152 (2012), no. 2, 193–206. MR 2887872; reference:[5] Gagola S.M. III: The number of Sylow $p$-subloops in finite Moufang loops.Comm. Algebra 38 (2010), no. 4, 1436–1448. MR 2656586, 10.1080/00927870902950647; reference:[6] Kepka T., Bénéteau L., Lacaze J.: Small finite trimedial quasigroups.Comm. Algebra 14 (1986), no. 6, 1067–1090. Zbl 0606.20061, MR 0837271, 10.1080/00927878608823353; reference:[7] Kepka T., Kinyon M.K., Phillips J.D.: F-quasigroups and generalized modules.Comment. Math. Univ. Carolin. 49 (2008), no. 2, 249–257. MR 2426889; reference:[8] Kepka T., Kinyon M.K., Phillips J.D.: The structure of F-quasigroups.J. Algebra 317 (2007), no. 2, 435–461. Zbl 1133.20051, MR 2362925, 10.1016/j.jalgebra.2007.05.007; reference:[9] Kepka T., Němec P.: Commutative Moufang loops and distributive groupoids of small orders.Czechoslovak Math. J. 31 (106) (1981), no. 4, 633–669. Zbl 0573.20065, MR 0631607; reference:[10] Murdoch D.C.: Quasi-groups which satisfy certain generalized associative laws.Amer. J. Math. 61 (1939), 509–522. Zbl 0020.34702, MR 1507391, 10.2307/2371517; reference:[11] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
-
4Academic Journal
المؤلفون: Kepka, Tomáš, Kinyon, Michael K., Phillips, J. D.
مصطلحات موضوعية: keyword:F-quasigroup, keyword:Moufang loop, keyword:generalized modules, msc:16Y99, msc:17A30, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR2682480; zbl:Zbl 1211.20062; reference:[1] Belousov V.D., Florja I.A.: On left-distributive quasigroups.Bul. Akad. Štiince RSS Moldoven 1965 (1965), no. 7, 3–13. MR 0194541; reference:[2] Bruck R.H.: A Survey of Binary Systems.Springer, 1971. Zbl 0141.01401, MR 0093552; reference:[3] Golovko I.A.: F-quasigroups with idempotent elements.Mat. Issled. 4 (1969), vyp. 2 (12), 137–143. Zbl 0235.20065, MR 0274632; reference:[4] Kepka T.: F-quasigroups isotopic to Moufang loops.Czechoslovak Math. J. 29(104) (1979), no. 1, 62–83. Zbl 0444.20067, MR 0518141; reference:[5] Kepka T., Kinyon M.K., Phillips J.D.: The structure of F-quasigroups.math.GR/0510298. Zbl 1133.20051; reference:[6] Kepka T., Kinyon M.K., Phillips J.D.: F-quasigroups and generalized modules.math.GR/0512244.; reference:[7] Murdoch D.C.: Quasi-groups which satisfy certain generalized associative laws.Amer. J. Math. 61 (1939), 509–522. Zbl 0020.34702, MR 1507391, 10.2307/2371517; reference:[8] Pflugfelder H.: Quasigroups and Loops: Introduction.Sigma Series in Pure Math. 8, Helderman, Berlin, 1990. Zbl 0715.20043, MR 1125767; reference:[9] Sabinina L.L.: On the theory of $F$-quasigroups.in Webs and Quasigroups, pp. 127–130, Kalinin. Gos. Univ., Kalinin, 1988. Zbl 0681.20044, MR 0949717
-
5Academic Journal
المؤلفون: Hall, J. I.
مصطلحات موضوعية: keyword:Bol loop, keyword:Moufang loop, keyword:autotopism group, keyword:group with triality, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR2682477; zbl:Zbl 1211.20059; reference:[1] Bruck R.H.: A Survey of Binary Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Springer, Berlin-Göttingen-Heidelberg, 1958. Zbl 0141.01401, MR 0093552; reference:[2] Doro S.: Simple Moufang loops.Math. Proc. Cambridge Philos. Soc. 83 (1978), 377–392. Zbl 0381.20054, MR 0492031, 10.1017/S0305004100054669; reference:[3] Grishkov A.N., Zavarnitsine A.V.: Groups with triality.J. Algebra Appl. 5 (2006), 441–463. Zbl 1110.20023, MR 2239539, 10.1142/S021949880600182X; reference:[4] Hall J.I.: Moufang loops and groups with triality are essentially the same thing.submitted.; reference:[5] Mikheev P.O.: Enveloping groups of Moufang loops.Uspekhi Mat. Nauk 48 (1993), 191–192; translation in Russian Math. Surveys 48 (1993), 195–196. Zbl 0806.20059, MR 1239875; reference:[6] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
-
6Academic Journal
المؤلفون: Giuliani, Maria de Lourdes M., Johnson, Kenneth W.
مصطلحات موضوعية: keyword:Moufang loop, keyword:Prover9, msc:20-04, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR2682474; zbl:Zbl 1211.20058; reference:[1] Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I.: Rings That Are Nearly Associative.Pure and Applied Mathematics, 104, Academic Press, New York-London, 1982. Zbl 0487.17001, MR 0668355; reference:[2] Johnson K.W., Vojtěchovský P.: Right division in groups, Dedekind-Frobenius group matrices, and Ward quasigroups.Abh. Math. Sem. Univ. Hamburg 75 (2005), 121–136. MR 2187582, 10.1007/BF02942039; reference:[3] McCune W.W.: Prover$9$, automated reasoning software, and Mace$4$, finite model builder.Argonne National Laboratory, 2005, http://www.prover9.org.
-
7Academic Journal
المؤلفون: Phillips, J. D., Vojtěchovský, Petr
مصطلحات موضوعية: keyword:inverse property loop, keyword:Bol loop, keyword:Moufang loop, keyword:C-loop, keyword:equational basis, keyword:magma with inverses, msc:03C05, msc:20A05, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR2426892; zbl:Zbl 1192.20058; reference:[1] Bates G.E., Kiokemeister F.: A note on homomorphic mappings of quasigroups into multiplicative systems.Bull. Amer. Math. Soc. 54 (1948), 1180-1185. Zbl 0034.29801, MR 0027768, 10.1090/S0002-9904-1948-09146-7; reference:[2] Bruck R.H.: A Survey of Binary Systems, third printing, corrected.Ergebnisse der Mathematik und ihrer Grenzgebiete, New Series 20, Springer, Berlin, 1971. MR 0093552; reference:[3] Colbourn C.J., Rosa A.: Triple Systems.Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl 1030.05017, MR 1843379; reference:[4] Conway J.H.: A simple construction for the Fischer-Griess monster group.Invent. Math. 79 (1985), 513-540. Zbl 0564.20010, MR 0782233, 10.1007/BF01388521; reference:[5] Dénes J., Keedwell A.D.: Latin Squares and their Applications.Akadémiai Kiadó, Budapest, 1974. MR 0351850; reference:[6] Doro S.: Simple Moufang loops.Math. Proc. Cambridge Philos. Soc. 83 (1978), 377-392. Zbl 0381.20054, MR 0492031, 10.1017/S0305004100054669; reference:[7] Evans T.: Homomorphisms of non-associative systems.J. London Math. Soc. 24 (1949), 254-260. MR 0032664, 10.1112/jlms/s1-24.4.254; reference:[8] Fenyves F.: Extra loops II. On loops with identities of Bol-Moufang type.Publ. Math. Debrecen 16 (1969), 187-192. MR 0262409; reference:[9] Hall M.: The Theory of Groups.The Macmillan Co., New York, 1959. Zbl 0919.20001, MR 0103215; reference:[10] Goodaire E.G., Jespers E., Polcino Milies C.: Alternative Loop Rings.North-Holland Mathematics Studies 184, North-Holland Publishing Co., Amsterdam, 1996. Zbl 0878.17029, MR 1433590; reference:[11] Kiechle H.: Theory of K-loops.Lecture Notes in Mathematics 1778, Springer, Berlin, 2002. Zbl 0997.20059, MR 1899153, 10.1007/b83276; reference:[12] Kinyon M.K., Phillips J.D., Vojtěchovský P.: C-loops: Extensions and constructions.J. Algebra Appl. 6 (2007), 1 1-20. Zbl 1129.20043, MR 2302693, 10.1142/S0219498807001990; reference:[13] Kunen K.: Quasigroups, loops, and associative laws.J. Algebra 185 (1996), 1 194-204. Zbl 0860.20053, MR 1409983, 10.1006/jabr.1996.0321; reference:[14] Mann H.B.: On certain systems which are almost groups.Bull. Amer. Math. Soc. 50 (1944), 879-881. Zbl 0063.03769, MR 0011313, 10.1090/S0002-9904-1944-08256-6; reference:[15] McCune W.W.: Prover9 and Mace, download at http://www.prover9.org.; reference:[16] Nagy G.P.: A class of proper simple Bol loops.submitted, available at arXiv:math/0703919.; reference:[17] Ormes N., Vojtěchovský P.: Powers and alternative laws.Comment. Math. Univ. Carolin. 48 1 (2007), 25-40. Zbl 1174.20343, MR 2338827; reference:[18] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767; reference:[19] Pflugfelder H.O: Historical notes on loop theory.Comment. Math. Univ. Carolin. 41 2 (2000), 359-370. Zbl 1037.01010, MR 1780877; reference:[20] Phillips J.D., Vojtěchovský P.: C-loops: An introduction.Publ. Math. Debrecen 2006 1-2 115-137. MR 2213546; reference:[21] Phillips J.D., Vojtěchovský P.: The varieties of loops of Bol-Moufang type.Algebra Universalis 54 (2005), 3 259-271. Zbl 1102.20054, MR 2219409, 10.1007/s00012-005-1941-1; reference:[22] Phillips J.D., Vojtěchovský P.: The varieties of quasigroups of Bol-Moufang type: An equational reasoning approach.J. Algebra 293 (2005), 17-33. Zbl 1101.20046, MR 2173964, 10.1016/j.jalgebra.2005.07.011; reference:[23] : Problem 10888.American Mathematical Monthly 110, no. 4 (April 2003), 347. 10.2307/3647897; reference:[24] Robinson D.A.: Bol loops.Trans. Amer. Math. Soc. 123 (1966), 341-354. Zbl 0163.02001, MR 0194545, 10.1090/S0002-9947-1966-0194545-4; reference:[25] Schafer R.D.: An Introduction to Nonassociative Algebras.Pure and Applied Mathematics 22, Academic Press, New York-London, 1966. Zbl 0145.25601, MR 0210757; reference:[26] Sharma B.L.: Left loops which satisfy the left Bol identity.Proc. Amer. Math. Soc. 61 (1976), 2 189-195. MR 0422480, 10.1090/S0002-9939-1976-0422480-4; reference:[27] Sharma B.L.: Left loops which satisfy the left Bol identity II.Ann. Soc. Sci. Bruxelles Sér. I 91 (1977), 2 69-78. Zbl 0385.20044, MR 0444826; reference:[28] Springer T.A., Veldkamp F.D.: Octonions, Jordan Algebras and Exceptional Groups.Springer Monographs in Mathematics, Springer, Berlin, 2000. Zbl 1087.17001, MR 1763974; reference:[29] Smith W.D.: Inclusions among diassociativity-related loop properties.preprint.; reference:[30] Tits J., Weiss R.M.: Moufang polygons.Springer Monographs in Mathematics, Springer, Berlin, 2002. Zbl 1010.20017, MR 1938841; reference:[31] Ungar A.A.: Beyond Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces.Kluwer Academic Publishers, Dordrecht-Boston-London, 2001. MR 1978122
-
8Academic Journal
المؤلفون: Rajah, Andrew, Chong, Kam-Yoon
مصطلحات موضوعية: keyword:Moufang loop, keyword:order, keyword:nonassociative, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR2426894; zbl:Zbl 1192.20061; reference:[1] Bruck R.H.: A Survey of Binary Systems.Springer, New York, 1971. Zbl 0141.01401, MR 0093552; reference:[2] Chein O.: Moufang loops of small order I.Trans. Amer. Math. Soc. 188 2 (1974), 31-51. Zbl 0286.20088, MR 0330336, 10.1090/S0002-9947-1974-0330336-3; reference:[3] Chein O.: Moufang loops of small order.Memoirs Amer. Math. Soc. 13 197 (1978), 1-131. Zbl 0378.20053, MR 0466391; reference:[4] Chein O., Rajah A.: Possible orders of nonassociative Moufang loops.Comment. Math. Univ. Carolin. 41 2 (2000), 237-244. Zbl 1038.20045, MR 1780867; reference:[5] Glauberman G.: On loops of odd order II.J. Algebra 8 (1968), 393-414. Zbl 0155.03901, MR 0222198, 10.1016/0021-8693(68)90050-1; reference:[6] Grishkov A.N., Zavarnitsine A.V.: Lagrange's Theorem for Moufang loops.Math. Proc. Cambridge Philos. Soc. 139 (2005), 41-57. Zbl 1091.20039, MR 2155504, 10.1017/S0305004105008388; reference:[7] Herstein I.N.: Topics in Algebra.John Wiley & Sons, Inc., New York, 1975. Zbl 0122.01301, MR 0171801; reference:[8] Leong F., Rajah A.: On Moufang loops of odd order $pq^2$.J. Algebra 176 (1995), 265-270. MR 1345304, 10.1006/jabr.1995.1243; reference:[9] Leong F., Rajah A.: Moufang loops of odd order $p_1^2p_2^2\cdots p_m^2$.J. Algebra 181 (1996), 876-883. MR 1386583, 10.1006/jabr.1996.0150; reference:[10] Leong F., Rajah A.: Moufang loops of odd order $p^4q_1\cdots q_n$.J. Algebra 184 (1996), 561-569. Zbl 0860.20054, MR 1409228, 10.1006/jabr.1996.0274; reference:[11] Leong F., Rajah A.: Moufang loops of odd order $p^\alpha q_1^2\cdots q_n^2r_1\cdots r_m$.J. Algebra 190 (1997), 474-486. Zbl 0874.20046, MR 1441958; reference:[12] Leong F., Rajah A.: Split extension in Moufang loops.Publ. Math. Debrecen 52 1-2 (1998), 33-42. MR 1603303; reference:[13] Purtill M.: On Moufang loops of order the product of three odd primes.J. Algebra 112 (1988), 122-128. Zbl 0644.20040, MR 0921968, 10.1016/0021-8693(88)90136-6; reference:[14] Purtill M.: Corrigendum.J. Algebra 145 (1992), 262. Zbl 0742.20068, MR 1144674, 10.1016/0021-8693(92)90192-O; reference:[15] Rajah A.: Moufang loops of odd order $pq^3$.J. Algebra 235 (2001), 66-93. Zbl 0973.20062, MR 1807655, 10.1006/jabr.2000.8422
-
9Academic Journal
المؤلفون: Kepka, Tomáš, Kinyon, Michael K., Phillips, J. D.
مصطلحات موضوعية: keyword:F-quasigroup, keyword:Moufang loop, keyword:generalized modules, msc:16Y99, msc:17A30, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR2426889; zbl:Zbl 1192.20055; reference:[1] Bruck R.H.: A Survey of Binary Systems.Springer, 1971. Zbl 0141.01401, MR 0093552; reference:[2] Bruck R.H., Paige L.: Loops in which every inner mapping is an automorphism.Ann. of Math. 63 (1956), 308-323. MR 0076779, 10.2307/1969612; reference:[3] Kepka T., Kinyon M.K., Phillips J.D.: The structure of F-quasigroups.J. Algebra 317 (2007), 435-461. Zbl 1133.20051, MR 2362925, 10.1016/j.jalgebra.2007.05.007; reference:[4] Moufang R.: Zur Struktur von Alternativkörpern.Math. Ann. 110 (1935), 416-430. MR 1512948, 10.1007/BF01448037; reference:[5] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Helderman, Berlin, 1990. Zbl 0715.20043, MR 1125767
-
10Academic Journal
المؤلفون: Paal, Eugen
مصطلحات موضوعية: keyword:Moufang loop, keyword:Mal'tsev algebra, keyword:generalized Maurer-Cartan equations, keyword:triality, msc:17D10, msc:20N05, msc:22A30
وصف الملف: application/pdf
Relation: mr:MR2075282; zbl:Zbl 1099.22004; reference:[1] Moufang R.: Zur Struktur von Alternativkörpern.Math. Ann. B110 (1935), 416-430. MR 1512948; reference:[2] Pflugfelder H.: Quasigroups and Loops: Introduction.Heldermann Verlag Berlin (1990). Zbl 0715.20043, MR 1125767; reference:[3] Mal'tsev A.I.: Analytic loops.Matem. Sb. 36 (1955), 569-576 (in Russian). MR 0069190; reference:[4] Paal E.: An Introduction to Moufang Symmetry.Preprint F-42 Institute of Physics, Tartu (1987 (in Russian)). MR 1241991; reference:[5] Loos O.: Über eine Beziehung zwischen Malcev-Algebren und Lie-Tripelsystemen.Pacific J. Math. 18 (1966), 553-562. Zbl 0145.04202, MR 0199236; reference:[6] Yamaguti K.: Note on Malcev algebras.Kumamoto J. Sci. A5 (1962), 203-207. Zbl 0166.04203, MR 0158911; reference:[7] Yamaguti Y.: On the theory of Malcev algebras.Kumamoto J. Sci. A6 (1963), 9-45. Zbl 0138.26203, MR 0167507; reference:[8] Schafer R.D.: An Introduction to Nonassociative Algebras.Academic Press New York (1966). Zbl 0145.25601, MR 0210757
-
11Academic Journal
المؤلفون: Chein, Orin, Rajah, Andrew
مصطلحات موضوعية: keyword:Moufang loop, keyword:order, keyword:nonassociative, msc:20N05
وصف الملف: application/pdf
Relation: mr:MR1780867; zbl:Zbl 1038.20045; reference:[1] Bol G.: Gewebe und Gruppen.Math. Ann. 114 (1937), 414-431. Zbl 0016.22603, MR 1513147; reference:[2] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245-354. (MR 8, p.134). Zbl 0061.02201, MR 0017288; reference:[3] Bruck R.H.: A Survey of Binary Systems.Ergeb. Math. Grenzgeb., vol. 20, Springer Verlag, 1968. (MR 20 # 76). Zbl 0141.01401, MR 0093552; reference:[4] Chein O.: Moufang loops of small order. I.Trans. Amer. Math. Soc. 188 (1974), 31-51. (MR 48 # 8673). Zbl 0286.20088, MR 0330336; reference:[5] Chein O.: Moufang loops of small order.Mem. Amer. Math. Soc. 197 , Vol 13, Issue 1 (1978), 1-131. (MR 57 # 6271). Zbl 0378.20053, MR 0466391; reference:[6] Chein O., Pflugfelder H.O.: The smallest Moufang loop.Archiv der Mathematik 22 (1971), 573-576. (MR 45 # 6966). Zbl 0241.20061, MR 0297914; reference:[7] Glauberman G.: On loops of odd order II.J. Algebra 8 (1968), 393-414. (MR 36 # 5250). Zbl 0155.03901, MR 0222198; reference:[8] Leong F.: Moufang loops of order $p^{4}$.Nanta Math. 7 (1974), 33-34. (MR 51 # 5826). MR 0369593; reference:[9] Leong F., Rajah A.: On Moufang loops of odd order $pq^{2}$.J. Algebra 176 (1995), 265-270. (MR 96i # 20082). MR 1345304; reference:[10] Leong F., Rajah A.: Moufang loops of odd order $p_{1}^{2}p_{2}^{2}.p_m^{2}$.J. Algebra 181 (1996), 876-883 (MR 97i # 20083). MR 1386583; reference:[11] Leong F., Rajah A.: Moufang loops of odd order $p^{4}q_{1}.q_n$.J. Algebra 184 (1996), 561-569. (MR 97k # 20118). Zbl 0860.20054, MR 1409228; reference:[12] Leong F., Rajah A.: Moufang loops of odd order $p^{\alpha }q_{1}^{2}.q_n^{2}r_{1}.r_m$.J. Algebra 190 (1997), 474-486. (MR 98b # 20115). Zbl 0874.20046, MR 1441958; reference:[13] Leong F., Teh P.E.: Moufang loops of orders $2pq$.Bull. of the Malaysian Math. Soc. 15 (1992), 27-29. (MR 93j # 20142). Zbl 0766.20025, MR 1196349; reference:[14] Leong F., Teh P.E.: Moufang loops of even order.J. Algebra 164 (1994), 409-414. (MR 95b # 20097). Zbl 0804.20050, MR 1271244; reference:[15] Leong F., Teh P.E., Lim V.K.: Moufang loops of odd order $p^mq_{1}.q_n$.J. Algebra 168 (1994), 348-352. (MR 95g # 20068). Zbl 0814.20054, MR 1289104; reference:[16] Purtill M.: On Moufang loops of order the product of three primes.J. Algebra 112 (1988), 122-128. (MR 89c # 20120). MR 0921968; reference:[17] Purtill M.: Corrigendum.J. Algebra 145 (1992), p.262. (MR 92j # 20066). Zbl 0742.20068, MR 1144674; reference:[18] Rajah A.: Which Moufang loops are associative.Doctoral Dissertation, University Sains Malaysia, 1996. Zbl 1006.20501; reference:[19] Rajah A., Jamal E.: Moufang loops of order $2m$.Publ. Math. Debrecen 55 (1999), 47-51. Zbl 0933.20053, MR 1708430; reference:[20] Scott W.R.: Group Theory.Prentice Hall, Englewood Cliffs, NJ, 1964. Zbl 0897.20029, MR 0167513; reference:[21] Wright C.R.B.: Nilpotency conditions for finite loops.Illinois J. Math. 9 (1965), 399-409. (MR 31 # 5918). Zbl 0135.03701, MR 0181691; reference:[22] Zorn M.: The theory of alternative rings.Hamb. Abhandl. 8 (1930), 123-147.