-
1Academic Journal
المؤلفون: Yin, Lulu, Liu, Hongwei, Yang, Jun
مصطلحات موضوعية: keyword:equilibrium problem, keyword:strongly pseudomonotone bifunctions, keyword:Lipschitz-type condition, keyword:variational inequality, keyword:error bound, msc:47J25, msc:49J40, msc:65K10, msc:65K15, msc:90C25, msc:90C33, msc:90C48, msc:91B50
وصف الملف: application/pdf
Relation: mr:MR4409307; zbl:Zbl 07547196; reference:[1] Bauschke, H. H., Combettes, P. L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). Zbl 1218.47001, MR 2798533, 10.1007/978-1-4419-9467-7; reference:[2] Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Nonlinear Programming Techniques for Equilibria.EURO Advanced Tutorials on Operational Research. Springer, Cham (2019). Zbl 06954058, MR 3838394, 10.1007/978-3-030-00205-3; reference:[3] Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems.Math. Stud. 63 (1994), 123-145. Zbl 0888.49007, MR 1292380; reference:[4] Daniele, P., Giannessi, F., (eds.), A. Maugeri: Equilibrium Problems and Variational Models.Nonconvex Optimization and Its Applications 68. Kluwer, Dordrecht (2003). Zbl 1030.00031, MR 2042582, 10.1007/978-1-4613-0239-1; reference:[5] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Vol. 1.Springer Series in Operations Research. Springer, New York (2003). Zbl 1062.90001, MR 1955648, 10.1007/b97543; reference:[6] Fan, K.: A minimax inequality and applications.Inequalities. III Academic Press, New York (1972), 103-113. Zbl 0302.49019, MR 0341029; reference:[7] am, S. D. Fl\accent23, Antipin, A. S.: Equilibrium programming using proximal-like algorithms.Math. Program. 78 (1997), 29-41. Zbl 0890.90150, MR 1454787, 10.1007/BF02614504; reference:[8] Hieu, D. V.: Halpern subgradient extragradient method extended to equilibrium problems.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111 (2017), 823-840. Zbl 1378.65136, MR 3661152, 10.1007/s13398-016-0328-9; reference:[9] Hieu, D. V.: Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems.Numer. Algorithms 77 (2018), 983-1001. Zbl 06860399, MR 3779075, 10.1007/s11075-017-0350-9; reference:[10] Hieu, D. V.: The convergence rate of a golden ratio algorithm for equilibrium problems.Available at https://arxiv.org/abs/1810.03564 (2018), 11 pages.; reference:[11] Hieu, D. V.: New inertial algorithm for a class of equilibrium problems.Numer Algorithms 80 (2019), 1413-1436. Zbl 07042055, MR 3927239, 10.1007/s11075-018-0532-0; reference:[12] Hieu, D. V., Cho, Y. J., Xiao, Y.-b.: Modified extragradient algorithms for solving equilibrium problems.Optimization 67 (2018), 2003-2029. Zbl 1416.90050, MR 3885897, 10.1080/02331934.2018.1505886; reference:[13] Hieu, D. V., Cho, Y. J., Xiao, Y.-b., Kumam, P.: Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces.Optimization 69 (2020), 2279-2304. Zbl 1459.65096, MR 4156869, 10.1080/02331934.2019.1683554; reference:[14] Hieu, D. V., Cho, Y. J., Xiao, Y.-b., Kumam, P.: Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces.Vietnam J. Math. 49 (2021), 1165-1183. Zbl 7425500, MR 4319545, 10.1007/s10013-020-00447-7; reference:[15] Hieu, D. V., Strodiot, J. J., Muu, L. D.: Modified golden ratio algorithms for solving equilibrium problems.Available at https://arxiv.org/abs/1907.04013 (2019), 14 pages.; reference:[16] Hieu, D. V., Strodiot, J. J., Muu, L. D.: An explicit extragradient algorithm for solving variational inequalities.J. Optim. Theory Appl. 185 (2020), 476-503. Zbl 07198926, MR 4096353, 10.1007/s10957-020-01661-6; reference:[17] Hieu, D. V., Thong, D. V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities.J. Glob. Optim. 70 (2018), 385-399. Zbl 1384.65041, MR 3761263, 10.1007/s10898-017-0564-3; reference:[18] Kim, D. S., Vuong, P. T., Khanh, P. D.: Qualitative properties of strongly pseudomonotone variational inequalities.Optim. Lett. 10 (2016), 1669-1679. Zbl 1392.90115, MR 3556951, 10.1007/s11590-015-0960-x; reference:[19] Konnov, I. V.: Combined Relaxation Methods for Variational Inequalities.Lecture Notes in Economics and Mathematical Systems 495. Springer, Berlin (2001). Zbl 0982.49009, MR 1795730, 10.1007/978-3-642-56886-2; reference:[20] Konnov, I. V.: Equilibrium Models and Variational Inequalities.Mathematics in Science and Engineering 210. Elsevier, Amsterdam (2007). Zbl 1140.91056, MR 2503647, 10.1016/s0076-5392(07)x8001-9; reference:[21] Korpelevich, G. M.: An extragradient method for finding saddle points and other problems.Ehkon. Mat. Metody Russian 12 (1976), 747-756. Zbl 0342.90044, MR 0451121; reference:[22] Malitsky, Y.: Golden ratio algorithms for variational inequalities.Math. Program. 184 (2020), 383-410. Zbl 07263698, MR 4037890, 10.1007/s10107-019-01416-w; reference:[23] Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives.Rev. Franç. Inform. Rech. Opér. French 4 (1970), 154-158. Zbl 0215.21103, MR 298899, 10.1051/m2an/197004R301541; reference:[24] Muu, L. D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria.Nonlinear Anal., Theory Methods Appl. 18 (1992), 1159-1166. Zbl 0773.90092, MR 1171603, 10.1016/0362-546X(92)90159-C; reference:[25] Muu, L. D., Quy, N. V.: On existence and solution methods for strongly pseudomonotone equilibrium problems.Vietnam J. Math. 43 (2015), 229-238. Zbl 1317.47058, MR 3349814, 10.1007/s10013-014-0115-x; reference:[26] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables.Computer Science and Applied Mathematics. Academic Press, New York (1970). Zbl 0241.65046, MR 0273810, 10.1016/c2013-0-11263-9; reference:[27] Rockafellar, R. T.: Monotone operators and the proximal point algorithm.SIAM J. Control Optim. 14 (1976), 877-898. Zbl 0358.90053, MR 0410483, 10.1137/0314056; reference:[28] Tran, D. Q., Dung, M. L., Nguyen, V. H.: Extragradient algorithms extended to equilibrium problems.Optimization 57 (2008), 749-776. Zbl 1152.90564, MR 2473940, 10.1080/02331930601122876; reference:[29] Vinh, N. T.: Golden ratio algorithms for solving equilibrium problems in Hilbert spaces.Available at https://arxiv.org/abs/1804.01829 (2018), 25 pages.; reference:[30] Yang, J., Liu, H.: A self-adaptive method for pseudomonotone equilibrium problems andvariational inequalities.Comput. Optim. Appl. 75 (2020), 423-440. Zbl 1432.49013, MR 4064596, 10.1007/s10589-019-00156-z