يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"keyword:Lipschitz map"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Godefroy, Gilles

    وصف الملف: application/pdf

    Relation: mr:MR4143704; zbl:Zbl 07286000; reference:[1] Borel-Mathurin L.: Approximation properties and non-linear geometry of Banach spaces.Houston J. Math. 38 (2012), no. 4, 1135–1148. MR 3019026; reference:[2] Casazza P.: Approximation Properties.Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, pages 271–316. MR 1863695, 10.1016/S1874-5849(01)80009-7; reference:[3] Cho C.-M., Johnson W. B.: A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an $M$-ideal in $L(X)$.Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470. MR 0774004; reference:[4] Godefroy G.: A survey on Lipschitz-free Banach spaces.Comment. Math. 55 (2015), no. 2, 89–118. MR 3518958; reference:[5] Godefroy G.: Extensions of Lipschitz functions and Grothendieck's bounded approximation property.North-West. Eur. J. Math. 1 (2015), 1–6. MR 3417417; reference:[6] Godefroy G., Kalton N. J.: Lipschitz-free Banach spaces.Studia Math. 159 (2003), no. 1, 121–141. MR 2030906, 10.4064/sm159-1-6; reference:[7] Godefroy G., Lancien G., Zizler V.: The non-linear geometry of Banach spaces after Nigel Kalton.Rocky Mountain J. Math. 44 (2014), no. 5, 1529–1584. MR 3295641, 10.1216/RMJ-2014-44-5-1529; reference:[8] Godefroy G., Ozawa N.: Free Banach spaces and the approximation properties.Proc. Amer. Math. Soc. 142 (2014), no. 5, 1681–1687. MR 3168474, 10.1090/S0002-9939-2014-11933-2; reference:[9] Jiménez-Vargas A., Sepulcre J. M., Villegas-Vallecillos M.: Lipschitz compact operators.J. Math. Anal. Appl. 415 (2014), no. 2, 889–901. MR 3178297, 10.1016/j.jmaa.2014.02.012; reference:[10] Kalton N. J.: Spaces of Lipschitz and Hölder functions and their applications.Collect. Math. 55 (2004), no. 2, 171–217. MR 2068975; reference:[11] Kalton N. J.: The uniform structure of Banach spaces.Math. Ann. 354 (2012), no. 4, 1247–1288. MR 2992997, 10.1007/s00208-011-0743-3; reference:[12] Oja E.: On bounded approximation properties of Banach spaces.Banach algebras 2009, Banach Center Publ., 91, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pages 219–231. MR 2777497; reference:[13] Pernecka E., Smith R. J.: The metric approximation property and Lipschitz-free spaces over subsets of $\mathbb{R}^n$.J. Approx. Theory 199 (2015), 29–44. MR 3389905, 10.1016/j.jat.2015.06.003; reference:[14] Thele R. L.: Some results on the radial projection in Banach spaces.Proc. Amer. Math. Soc. 42 (1974), 483–486. MR 0328550, 10.1090/S0002-9939-1974-0328550-1; reference:[15] Willis G.: The compact approximation property does not imply the approximation property.Studia Math. 103 (1992), no. 1, 99–108. MR 1184105, 10.4064/sm-103-1-99-108

  2. 2
    Academic Journal

    المؤلفون: Sánchez Pérez, Enrique A.

    وصف الملف: application/pdf

    Relation: mr:MR3407606; zbl:Zbl 06537693; reference:[1] Blasco, Ó., Pavlović, M.: Coefficient multipliers on Banach spaces of analytic functions.Rev. Mat. Iberoam. 27 (2011), 415-447. Zbl 1235.42004, MR 2848526, 10.4171/RMI/642; reference:[2] Calabuig, J. M., Delgado, O., Pérez, E. A. Sánchez: Generalized perfect spaces.Indag. Math., New Ser. 19 (2008), 359-378. MR 2513056, 10.1016/S0019-3577(09)00008-1; reference:[3] Defant, A., Floret, K.: Tensor Norms and Operator Ideals.North-Holland Mathematics Studies 176 North-Holland, Amsterdam (1993). Zbl 0774.46018, MR 1209438; reference:[4] Delgado, O., Pérez, E. A. Sánchez: Summability properties for multiplication operators on Banach function spaces.Integral Equations Oper. Theory 66 (2010), 197-214. MR 2595653, 10.1007/s00020-010-1741-7; reference:[5] Diestel, J., Uhl, J. J., Jr., \rm: Vector Measures.Mathematical Surveys 15 American Mathematical Society, Providence (1977). MR 0453964; reference:[6] Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E. A.: Spaces of {$p$}-integrable functions with respect to a vector measure.Positivity 10 (2006), 1-16. Zbl 1111.46018, MR 2223581, 10.1007/s11117-005-0016-z; reference:[7] Ferrando, I., Pérez, E. A. Sánchez: Tensor product representation of the (pre)dual of the {$L^p$}-space of a vector measure.J. Aust. Math. Soc. 87 (2009), 211-225. MR 2551119, 10.1017/S1446788709000196; reference:[8] Ferrando, I., Rodríguez, J.: The weak topology on $L^p$ of a vector measure.Topology Appl. 155 (2008), 1439-1444. Zbl 1151.28014, MR 2427417, 10.1016/j.topol.2007.12.014; reference:[9] Kolwicz, P., Leśnik, K., Maligranda, L.: Pointwise products of some Banach function spaces and factorization.J. Funct. Anal. 266 (2014), 616-659. Zbl 1308.46039, MR 3132723, 10.1016/j.jfa.2013.10.028; reference:[10] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II: Function Spaces.Ergebnisse der Mathematik und ihrer Grenzgebiete 97 Springer, Berlin (1979). Zbl 0403.46022, MR 0540367; reference:[11] Mastyło, M., Sánchez-Pérez, E. A.: Köthe dual of Banach lattices generated by vector measures.Monatsh. Math. 173 (2014), 541-557. Zbl 1305.46021, MR 3177946, 10.1007/s00605-013-0560-8; reference:[12] Okada, S., Ricker, W. J., Pérez, E. A. Sánchez: Optimal Domain and Integral Extension of Operators: Acting in Function Spaces.Operator Theory: Advances and Applications 180 Birkhäuser, Basel (2008). MR 2418751; reference:[13] Pérez, E. A. Sánchez: Factorization theorems for multiplication operators on Banach function spaces.Integral Equations Oper. Theory 80 (2014), 117-135. MR 3248477, 10.1007/s00020-014-2169-2; reference:[14] Pérez, E. A. Sánchez: Vector measure duality and tensor product representations of {$L_p$}-spaces of vector measures.Proc. Am. Math. Soc. 132 (2004), 3319-3326. MR 2073308, 10.1090/S0002-9939-04-07521-5; reference:[15] Pérez, E. A. Sánchez: Compactness arguments for spaces of {$p$}-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces.Ill. J. Math. 45 (2001), 907-923. MR 1879243, 10.1215/ijm/1258138159; reference:[16] Rueda, P., Pérez, E. A. Sánchez: Compactness in spaces of \mbox{$p$-integrable} functions with respect to a vector measure.Topol. Methods Nonlinear Anal. 45 (2015), 641-654. MR 3408839, 10.12775/TMNA.2015.030; reference:[17] Schep, A. R.: Products and factors of Banach function spaces.Positivity 14 (2010), 301-319. Zbl 1216.46028, MR 2657636, 10.1007/s11117-009-0019-2; reference:[18] Sukochev, F., Tomskova, A.: $(E,F)$-Schur multipliers and applications.Stud. Math. 216 (2013), 111-129. Zbl 1281.47023, MR 3085499, 10.4064/sm216-2-2