-
1Academic Journal
المؤلفون: Mehatari, Ranjit, Kannan, M. Rajesh
مصطلحات موضوعية: keyword:adjacency matrix, keyword:Laplacian matrix, keyword:normalized adjacency matrix, keyword:spectral radius, keyword:algebraic connectivity, keyword:Randić index, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4226479; zbl:07332714; reference:[1] Banerjee, A., Mehatari, R.: An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices.Linear Algebra Appl. 505 (2016), 85-96. Zbl 1338.15069, MR 3506485, 10.1016/j.laa.2016.04.023; reference:[2] Bollobás, B., Erdös, P.: Graphs of extremal weights.Ars Comb. 50 (1998), 225-233. Zbl 0963.05068, MR 1670561; reference:[3] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications.American Elsevier, New York (1976). Zbl 1226.05083, MR 0411988; reference:[4] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy.MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. Zbl 1265.05113, MR 2677585; reference:[5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, Berlin (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6; reference:[6] Butler, S., Chung, F.: Spectral graph theory.Handbook of Linear Algebra L. Hogben Discrete Mathematics and its Applications. CRC Press, Boca Raton (2014), Article ID 47. Zbl 1284.15001, MR 3013937; reference:[7] Cavers, M. S.: The normalized Laplacian matrix and general Randić index of graphs: Ph.D. Thesis.University of Regina, Regina (2010). MR 3078627; reference:[8] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics 92. American Mathematical Society, Providence (1997). Zbl 0867.05046, MR 1421568; reference:[9] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.Pure and Applied Mathematics 87. Academic Press, New York (1980). Zbl 0458.05042, MR 0572262; reference:[10] Das, K. C.: A sharp upper bound for the number of spanning trees of a graph.Graphs Comb. 23 (2007), 625-632. Zbl 1139.05032, MR 2365415, 10.1007/s00373-007-0758-4; reference:[11] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168; reference:[12] Li, J., Guo, J-M., Shiu, W. C.: Bounds on normalized Laplacian eigenvalues of graphs.J. Inequal. Appl. 316 (2014), Article ID 316, 8 pages. Zbl 1332.05090, MR 3344113, 10.1186/1029-242X-2014-316; reference:[13] Marsli, R., Hall, F. J.: On bounding the eigenvalues of matrices with constant row-sums.Linear Multilinear Algebra 67 (2019), 672-684. Zbl 1412.15020, MR 3914323, 10.1080/03081087.2018.1430736; reference:[14] Randić, M.: Characterization of molecular branching.J. Am. Chem. Soc. 97 (1975), 6609-6615. 10.1021/ja00856a001; reference:[15] Rojo, O., Soto, R. L.: A new upper bound on the largest normalized Laplacian eigenvalue.Oper. Matrices 7 (2013), 323-332. Zbl 1283.05168, MR 3099188, 10.7153/oam-07-19; reference:[16] Stanić, Z.: Inequalities for Graph Eigenvalues.London Mathematical Society Lecture Note Series 423. Cambridge University Press, Cambridge (2015). Zbl 1368.05001, MR 3469535, 10.1017/CBO9781316341308; reference:[17] Varga, R. S.: Geršgorin and His Circles.Springer Series in Computational Mathematics 36. Springer, Berlin (2004). Zbl 1057.15023, MR 2093409, 10.1007/978-3-642-17798-9; reference:[18] Wolkowicz, H., Styan, G. P. H.: Bounds for eigenvalues using traces.Linear Algebra Appl. 29 (1980), 471-506. Zbl 0435.15015, MR 0562777, 10.1016/0024-3795(80)90258-X
-
2Academic Journal
المؤلفون: Stanić, Zoran
مصطلحات موضوعية: keyword:main angle, keyword:signed graph, keyword:adjacency matrix, keyword:Laplacian matrix, keyword:Gram matrix, msc:05C22, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR4181798; zbl:07285981; reference:[1] Cardoso, D. M., Sciriha, I., Zerafa, C.: Main eigenvalues and $(\kappa, \tau)$-regular sets.Linear Algebra Appl. 432 (2010), 2399-2408. Zbl 1217.05136, MR 2599869, 10.1016/j.laa.2009.07.039; reference:[2] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.J. A. Barth Verlag, Heidelberg (1995). Zbl 0824.05046, MR 1324340; reference:[3] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518; reference:[4] Deng, H., Huang, H.: On the main signless Laplacian eigenvalues of a graph.Electron. J. Linear Algebra 26 (2013), 381-393. Zbl 1282.05109, MR 3084649, 10.13001/1081-3810.1659; reference:[5] Doob, M.: A geometric interpretation of the least eigenvalue of a line graph.Combinatorial Mathematics and its Applications R. C. Bose, T. A. Dowling University of North Carolina, Chapel Hill (1970), 126-135. Zbl 0209.55403, MR 0268060; reference:[6] Haynsworth, E. V.: Applications of a theorem on partitioned matrices.J. Res. Natl. Bur. Stand., Sec. B 63 (1959), 73-78. Zbl 0090.24104, MR 0109432, 10.6028/jres.063B.009; reference:[7] Hou, Y., Tang, Z., Shiu, W. C.: Some results on graphs with exactly two main eigenvalues.Appl. Math. Lett. 25 (2012), 1274-1278. Zbl 1248.05112, MR 2947393, 10.1016/j.aml.2011.11.025; reference:[8] Hou, Y., Zhou, H.: Trees with exactly two main eigenvalues.J. Nat. Sci. Hunan Norm. Univ. 28 (2005), 1-3 Chinese. Zbl 1109.05071, MR 2240441; reference:[9] Petersdorf, M., Sachs, H.: Über Spektrum, Automorphismengruppe und Teiler eines Graphen.Wiss. Z. Tech. Hochsch. Ilmenau 15 (1969), 123-128 German. Zbl 0199.27504, MR 0269552; reference:[10] Rowlinson, P.: The main eigenvalues of a graph: A survey.Appl. Anal. Discrete Math. 1 (2007), 445-471. Zbl 1199.05241, MR 2355287, 10.2298/AADM0702445R; reference:[11] Stanić, Z.: Inequalities for Graph Eigenvalues.London Mathematical Society Lecture Note Series 423, Cambridge University Press, Cambridge (2015). Zbl 1368.05001, MR 3469535, 10.1017/CBO9781316341308; reference:[12] Stanić, Z.: Bounding the largest eigenvalue of signed graphs.Linear Algebra Appl. 573 (2019), 80-89. Zbl 1411.05109, MR 3933292, 10.1016/j.laa.2019.03.011; reference:[13] Zaslavsky, T.: Matrices in the theory of signed simple graphs.Advances in Discrete Mathematics and Applications B. D. Acharya, G. O. H. Katona, J. Nešetřil Ramanujan Mathematical Society Lecture Notes Series 13, Ramanujan Mathematical Society, Mysore (2010), 207-229. Zbl 1231.05120, MR 2766941
-
3Academic Journal
مصطلحات موضوعية: keyword:tree, keyword:Laplacian matrix, keyword:inertia, keyword:Haynsworth formula, msc:05C50, msc:15B48
وصف الملف: application/pdf
Relation: mr:MR4160783; zbl:07285947; reference:[1] Balaji, R., Bapat, R. B.: Block distance matrices.Electron. J. Linear Algebra 16 (2007), 435-443. Zbl 1148.15016, MR 2365897, 10.13001/1081-3810.1213; reference:[2] Bapat, R. B.: Determinant of the distance matrix of a tree with matrix weights.Linear Algebra Appl. 416 (2006), 2-7. Zbl 1108.15006, MR 2232916, 10.1016/j.laa.2005.02.022; reference:[3] Bapat, R., Kirkland, S. J., Neumann, M.: On distance matrices and Laplacians.Linear Algebra Appl. 401 (2005), 193-209. Zbl 1064.05097, MR 2133282, 10.1016/j.laa.2004.05.011; reference:[4] Fiedler, M.: Matrices and Graphs in Geometry.Encyclopedia of Mathematics and Its Applications 139. Cambridge University Press, Cambridge (2011). Zbl 1225.51017, MR 2761077, 10.1017/CBO9780511973611; reference:[5] Fiedler, M., Markham, T. L.: Completing a matrix when certain entries of its inverse are specified.Linear Algebra Appl. 74 (1986), 225-237. Zbl 0592.15002, MR 0822149, 10.1016/0024-3795(86)90125-4
-
4Academic Journal
مصطلحات موضوعية: keyword:ordering algorithm, keyword:reverse Cuthill-McKee algorithm, keyword:graph partitioning, keyword:Laplacian matrix, msc:05C50, msc:15B36
وصف الملف: application/pdf
Relation: mr:MR3556856; zbl:Zbl 06644022; reference:[1] Benzi, M., Szyld, D. B., Duin, A. C. N. van: Orderings for incomplete factorization preconditioning of nonsymmetric problems.SIAM J. Sci. Comput. 20 (1999), 1652-1670. MR 1694677, 10.1137/S1064827597326845; reference:[2] Boley, D., Ranjan, G., Zhang, Z.-L.: Commute times for a directed graph using an asymmetric Laplacian.Linear Algebra Appl. 435 (2011), 224-242. Zbl 1226.05125, MR 2782776; reference:[3] Bolten, M., Friedhoff, S., Frommer, A., Heming, M., Kahl, K.: Algebraic multigrid methods for Laplacians of graphs.Linear Algebra Appl. 434 (2011), 2225-2243. Zbl 1217.65063, MR 2776793; reference:[4] Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices.Proc. 24th Nat. Conf. of the ACM, ACM Publ P-69, Association for Computing Machinery, New York, 1969 157-172 doi:10.1145/800195.805928. 10.1145/800195.805928; reference:[5] Abreu, N. M. M. de: Old and new results on algebraic connectivity of graphs.Linear Algebra Appl. 423, (2007), 53-73. Zbl 1115.05056, MR 2312323, 10.1016/j.laa.2006.08.017; reference:[6] Corso, G. M. Del, Romani, F.: Heuristic spectral techniques for the reduction of bandwidth and work-bound of sparse matrices.Numer. Algorithms 28 (2001), 117-136. MR 1887751, 10.1023/A:1014082430392; reference:[7] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168; reference:[8] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.Czech. Math. J. 25 (1975), 619-633. Zbl 0437.15004, MR 0387321, 10.21136/CMJ.1975.101357; reference:[9] Fortunato, S.: Community detection in graphs.Phys. Rep. 486 (2010), 75-174. MR 2580414, 10.1016/j.physrep.2009.11.002; reference:[10] George, J. A.: Computer Implementation of the Finite Element Method.Doctoral Dissertation, Stanford University, Stanford (1971).; reference:[11] George, A., Liu, J. W.-H.: Computer Solution of Large Sparse Positive Definite Systems.Prentice-Hall Series in Computational Mathematics Prentice-Hall, Englewood Cliffs (1981). Zbl 0516.65010, MR 0646786; reference:[12] Gilbert, J. R., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: Design and implementation.SIAM J. Matrix Anal. Appl. 13 (1992), 333-356. Zbl 0752.65037, MR 1146669, 10.1137/0613024; reference:[13] Gross, J. L., Yellen, J., eds.: Handbook of Graph Theory.Discrete Mathematics and Its Applications CRC Press, Boca Raton (2004). MR 2035186; reference:[14] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (1985). Zbl 0576.15001, MR 0832183; reference:[15] Jungnickel, D.: Graphs, Networks and Algorithms.Algorithms and Computation in Mathematics 5 Springer, Berlin (2008). Zbl 1126.68058, MR 2363884, 10.1007/978-3-540-72780-4_11; reference:[16] Juvan, M., Mohar, B.: Laplace eigenvalues and bandwidth-type invariants of graphs.J. Graph Theory, 17 (1993), 393-407. Zbl 0785.05077, MR 1220999, 10.1002/jgt.3190170313; reference:[17] Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction.BIT 37 (1997), 559-590. Zbl 0891.65043, MR 1483674, 10.1007/BF02510240; reference:[18] Liu, W-H., Sherman, A. H.: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices.SIAM J. Numer. Anal. 13 (1976), 198-213. MR 0501813, 10.1137/0713020; reference:[19] Mohar, B.: The Laplacian spectrum of graphs.Graph theory, Combinatorics, and Applications Vol. 2. Proc. Sixth Quadrennial International Conf. on the Theory and Applications of Graphs, Kalamazoo, Michigan, 1988 Y. Alavi et all John Wiley & Sons, New York (1991), 871-898. Zbl 0840.05059, MR 1170831; reference:[20] Molitierno, J. J.: The spectral radius of submatrices of Laplacian matrices for graphs with cut vertices.Linear Algebra Appl. 428 (2008), 1987-1999. Zbl 1137.05045, MR 2401634; reference:[21] Mueller, C., Martin, B., Lumsdaine, A.: A comparison of vertex ordering algorithms for large graph visualization.Visualization Asia-Pacific Symposium on Visualization 2007, Sydney, Australia (2007), 141-148 doi:10.1109/APVIS.2007.329289. 10.1109/APVIS.2007.329289; reference:[22] Nascimento, M. C. V., Carvalho, A. De: Spectral methods for graph clustering---a survay.Eur. J. Oper. Res. 211 (2011), 221-231. MR 2774401, 10.1016/j.ejor.2010.08.012; reference:[23] Newman, M. E. J.: Networks. An Introduction.Oxford University Press, Oxford (2010). Zbl 1195.94003, MR 2676073, 10.1093/acprof:oso/9780199206650.003.0001; reference:[24] Pothen, A., Simon, H. D., Liou, K. P.: Partitioning sparse matrices with eigenvector of graphs.SIAM J. Matrix Anal. Appl. 11 (1990), 430-452. MR 1054210, 10.1137/0611030; reference:[25] Rebollo, M., Carrascosa, C., Palomares, A., Pedroche, F.: Some examples of detection of connected components in undirected graphs by using the Laplacian matrix and the RCM algorithm.Int. J. Complex Systems in Science 2 (2012), 11-15.; reference:[26] Reid, J. K., Scott, J.A.: Reducing the total bandwidth of a sparse unsymmetric matrix.Siam J. Matrix Anal. Appl. 28 (2006), 805-821. Zbl 1123.65027, MR 2262982, 10.1137/050629938; reference:[27] Saad, Y.: Iterative Methods for Sparse Linear Systems.Society for Industrial and Applied Mathematics Philadelphia (2003). Zbl 1031.65046, MR 1990645; reference:[28] Schaeffer, S. E.: Graph clustering.Comput. Sci. Rev. 1 (2007), 27-64. Zbl 1302.68237, 10.1016/j.cosrev.2007.05.001; reference:[29] Tarjan, R.: Depth-first search and linear graph algorithms.SIAM J. Comput. 1 (1972), 146-160. Zbl 0251.05107, MR 0304178, 10.1137/0201010; reference:[30] Varga, R. S.: Matrix Iterative Analysis.Springer Series in Computational Mathematics 27 Springer, Berlin (2000). Zbl 0998.65505, MR 1753713, 10.1007/978-3-642-05156-2
-
5Academic Journal
المؤلفون: Goldberg, Felix
مصطلحات موضوعية: keyword:irregularity, keyword:Laplacian matrix, keyword:degree, keyword:Laplacian index, msc:05C07, msc:05C35, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR3360433; zbl:Zbl 06486953; reference:[1] Abdo, H., Cohen, N., Dimitrov, D.: Bounds and computation of irregularity of a graph.Preprint: http://arxiv.org/abs/1207.4804 (2012).; reference:[2] Albertson, M. O.: The irregularity of a graph.Ars Comb. 46 (1997), 219-225. Zbl 0933.05073, MR 1470801; reference:[3] Fath-Tabar, G. H.: Old and new Zagreb indices of graphs.MATCH Commun. Math. Comput. Chem. 65 (2011), 79-84. Zbl 1265.05146, MR 2797217; reference:[4] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.Czech. Math. J. 25 (1975), 619-633. Zbl 0437.15004, MR 0387321; reference:[5] Hansen, P., Mélot, H.: Variable neighborhood search for extremal graphs. IX: Bounding the irregularity of a graph.Graphs and Discovery S. Fajtolowicz et al. Proc. DIMACS working group, Piscataway, USA, 2001. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69, AMS Providence 253-264 (2005). Zbl 1095.05019, MR 2193452; reference:[6] Henning, M. A., Rautenbach, D.: On the irregularity of bipartite graphs.Discrete Math. 307 (2007), 1467-1472. Zbl 1126.05060, MR 2311120, 10.1016/j.disc.2006.09.038; reference:[7] Merris, R.: A note on Laplacian graph eigenvalues.Linear Algebra Appl. 285 (1998), 33-35. Zbl 0931.05053, MR 1653479; reference:[8] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613; reference:[9] Mohar, B.: Some applications of Laplace eigenvalues of graphs.Graph Symmetry: Algebraic Methods and Applications G. Hahn et al. Proc. NATO Adv. Study Inst., Montréal, Canada, 1996. NATO ASI Ser., Ser. C, Math. Phys. Sci. 497, Kluwer Academic Publishers Dordrecht (1997), 225-275. Zbl 0883.05096, MR 1468791; reference:[10] Zhou, B., Luo, W.: On irregularity of graphs.Ars Comb. 88 (2008), 55-64. Zbl 1224.05110, MR 2426406
-
6Academic Journal
المؤلفون: Patra, Kamal Lochan, Sahoo, Binod Kumar
مصطلحات موضوعية: keyword:Laplacian matrix, keyword:Laplacian spectral radius, keyword:girth, keyword:unicyclic graph, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR3165504; zbl:Zbl 06373951; reference:[1] Fallat, S. M., Kirkland, S., Pati, S.: Minimizing algebraic connectivity over connected graphs with fixed girth.Discrete Math. 254 (2002), 115-142. Zbl 0995.05092, MR 1909864, 10.1016/S0012-365X(01)00355-7; reference:[2] Fallat, S. M., Kirkland, S., Pati, S.: Maximizing algebraic connectivity over unicyclic graphs.Linear Multilinear Algebra 51 (2003), 221-241. Zbl 1043.05074, MR 1995656, 10.1080/0308108031000069182; reference:[3] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007; reference:[4] Grone, R., Merris, R.: The Laplacian spectrum of a graph. II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653; reference:[5] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph.SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. Zbl 0733.05060, MR 1041245, 10.1137/0611016; reference:[6] Guo, J.-M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges.Linear Algebra Appl. 413 (2006), 59-71. Zbl 1082.05059, MR 2202092; reference:[7] Guo, J.-M.: The Laplacian spectral radius of a graph under perturbation.Comput. Math. Appl. 54 (2007), 709-720. Zbl 1155.05330, MR 2347934, 10.1016/j.camwa.2007.02.009; reference:[8] Horn, R. A., Johnson, C. R.: Matrix Analysis.Reprinted with corrections Cambridge University Press, Cambridge (1990). Zbl 0704.15002, MR 1084815; reference:[9] Lal, A. K., Patra, K. L.: Maximizing Laplacian spectral radius over trees with fixed diameter.Linear Multilinear Algebra 55 (2007), 457-461. Zbl 1124.05064, MR 2363546, 10.1080/03081080600618738; reference:[10] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613; reference:[11] Merris, R.: A survey of graph Laplacians.Linear Multilinear Algebra 39 (1995), 19-31. Zbl 0832.05081, MR 1374468, 10.1080/03081089508818377; reference:[12] Mohar, B.: The Laplacian spectrum of graphs.Alavi, Y. Graph Theory, Combinatorics and Applications, Kalamazoo, MI, 1988, Vol. 2 Wiley-Intersci. Publ. Wiley, New York 871-898 (1991). Zbl 0840.05059, MR 1170831
-
7Academic Journal
المؤلفون: Guo, Ji-Ming, Li, Jianxi, Shiu, Wai Chee
مصطلحات موضوعية: keyword:Laplacian matrix, keyword:signless Laplacian matrix, keyword:normalized Laplacian matrix, keyword:characteristic polynomial, msc:05C50
وصف الملف: application/pdf
Relation: mr:MR3125650; zbl:Zbl 06282106; reference:[1] Berge, C.: Principles of Combinatorics. Mathematics in Science and Engineering vol. 72.Academic Press New York (1971). MR 0270922; reference:[2] Butler, S.: A note about cospectral graphs for the adjacency and normalized Laplacian matrices.Linear Multilinear Algebra 58 (2010), 387-390. Zbl 1187.05046, MR 2663439, 10.1080/03081080902722741; reference:[3] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92.American Mathematical Society Providence (1997). MR 1421568; reference:[4] Grone, R., Merris, R.: Ordering trees by algebraic connectivity.Graphs Comb. 6 (1990), 229-237. Zbl 0735.05054, MR 1081197, 10.1007/BF01787574; reference:[5] Guo, J.: On the second largest Laplacian eigenvalue of trees.Linear Algebra Appl. 404 (2005), 251-261. Zbl 1066.05085, MR 2149662, 10.1016/j.laa.2005.02.031; reference:[6] Guo, J.-M.: On the Laplacian spectral radius of trees with fixed diameter.Linear Algebra Appl. 419 (2006), 618-629. Zbl 1118.05063, MR 2277992; reference:[7] Guo, J.-M.: A conjecture on the algebraic connectivity of connected graphs with fixed girth.Discrete Math. 308 (2008), 5702-5711. Zbl 1189.05085, MR 2459389, 10.1016/j.disc.2007.10.044; reference:[8] Liu, Y., Liu, Y.: The ordering of unicyclic graphs with the smallest algebraic connectivity.Discrete Math. 309 (2009), 4315-4325. Zbl 1189.05087, MR 2519167, 10.1016/j.disc.2009.01.010; reference:[9] Schwenk, A. J.: Computing the characteristic polynomial of a graph.Graphs and Combinatorics. Proceedings of the Capital Conference on Graph Theory and Combinatorics at the George Washington University, June 18-22, 1973. Lecture Notes in Mathematics 406 R. A. Bari et al. Springer Berlin (1974), 153-172. Zbl 0308.05121, MR 0387126; reference:[10] Shao, J. Y., Guo, J. M., Shan, H. Y.: The ordering of trees and connected graphs by algebraic connectivity.Linear Algebra Appl. 428 (2008), 1421-1438. Zbl 1134.05063, MR 2388629; reference:[11] Yuan, X. Y., Shao, J. Y., Zhang, L.: The six classes of trees with the largest algebraic connectivity.Discrete Appl. Math. 156 (2008), 757-769. Zbl 1137.05047, MR 2397220, 10.1016/j.dam.2007.08.014; reference:[12] Zhang, X. D.: Ordering trees with algebraic connectivity and diameter.Linear Algebra Appl. 427 (2007), 301-312. Zbl 1125.05067, MR 2351361
-
8Academic Journal
المؤلفون: Tian, Gui-Xian, Huang, Ting-Zhu
مصطلحات موضوعية: keyword:graph, keyword:adjacency matrix, keyword:Laplacian matrix, keyword:spectral radius, keyword:bound, msc:05C50, msc:15A18
وصف الملف: application/pdf
Relation: mr:MR2990195; zbl:Zbl 1265.05418; reference:[1] Berman, A., Zhang, X.-D.: On the spectral radius of graphs with cut vertices.J. Combin. Theory, Ser. B 83 (2001), 233-240. Zbl 1023.05098, MR 1866719, 10.1006/jctb.2001.2052; reference:[2] Brankov, V., Hansen, P., Stevanović, D.: Automated cunjectures on upper bounds for the largest Laplacian eigenvalue of graphs.Linear Algebra Appl. 414 (2006), 407-424. MR 2213408; reference:[3] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Application.Deutscher Verlag der Wissenschaften Berlin (1980). Zbl 0458.05042, MR 0572262; reference:[4] Das, K. C., Kumar, P.: Some new bounds on the spectral radius of graphs.Discrete Math. 281 (2004), 149-161. Zbl 1042.05060, MR 2047763, 10.1016/j.disc.2003.08.005; reference:[5] Favaron, O., Mahéo, M., Saclé, J.-F.: Some eigenvalue properties in graphs (Conjectures of Graffiti---II).Discrete Math. 111 (1993), 197-220. Zbl 0785.05065, MR 1210097, 10.1016/0012-365X(93)90156-N; reference:[6] Hofmeister, M.: Spectral radius and degree sequence.Math. Nachr. 139 (1988), 37-44. Zbl 0695.05046, MR 0978106, 10.1002/mana.19881390105; reference:[7] Hong, Y., Zhang, X.-D.: Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees.Discrete Math. 296 (2005), 187-197. Zbl 1068.05044, MR 2154712, 10.1016/j.disc.2005.04.001; reference:[8] Liu, H., Lu, M.: Bounds for the Laplacian spectral radius of graphs.Linear Multilinear Algebra 58 (2010), 113-119. Zbl 1217.05148, MR 2641527, 10.1080/03081080802450021; reference:[9] Liu, H., Lu, M., Tian, F.: Some upper bounds for the energy of graphs.J. Math. Chem. 41 (2007), 45-57. Zbl 1110.92070, MR 2305216, 10.1007/s10910-006-9183-9; reference:[10] Nikiforov, V.: The energy of graphs and matrices.J. Math. Anal. Appl. 326 (2007), 1472-1475. Zbl 1113.15016, MR 2280998, 10.1016/j.jmaa.2006.03.072; reference:[11] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs.Linear Algebra Appl. 422 (2007), 755-770. Zbl 1113.05065, MR 2305155, 10.1016/j.laa.2006.12.003; reference:[12] Tian, G.-X., Huang, T.-Z., Zhou, B.: A note on sum of powers of the Laplacian eigenvalues of bipartite graphs.Linear Algebra Appl. 430 (2009), 2503-2510. Zbl 1165.05020, MR 2508309; reference:[13] Yu, A., Lu, M., Tian, F.: On the spectral radius of graphs.Linear Algebra Appl. 387 (2004), 41-49. Zbl 1041.05051, MR 2069267, 10.1016/j.laa.2004.01.020; reference:[14] Yu, A., Lu, M., Tian, F.: New upper bounds for the energy of graphs.MATCH Commun. Math. Comput. Chem. 53 (2005), 441-448. Zbl 1081.05067, MR 2134203; reference:[15] Zhou, B.: Energy of a graph.MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118. Zbl 1106.05068, MR 2063930
-
9Academic Journal
المؤلفون: Liu, BoLian, Chen, Siyuan
مصطلحات موضوعية: keyword:$t$-tough graph, keyword:Laplacian matrix, keyword:adjacent matrix, keyword:eigenvalues, msc:05C50, msc:05C75, msc:15A18
وصف الملف: application/pdf
Relation: mr:MR2738970; zbl:Zbl 1224.05307; reference:[1] Brouwer, A. E.: Toughness and spectrum of a graph.Linear Algebra Appl. 226-228 (1995), 267-271. Zbl 0833.05048, MR 1344566; reference:[2] Brouwer, A. E., Haemers, W. H.: Eigenvalues and perfect matchings.Linear Algebra Appl. 395 (2005), 155-162. Zbl 1056.05097, MR 2112881; reference:[3] Chvátal, V.: New directions in Hamiltonian graph theory in New Directions in the Theory of Graphs.F. Harary Academic Press, New York (1973), 65-95. MR 0357221; reference:[4] Chvátal, V.: Tough graphs and hamiltonian circuits.Discrete Math. 306 (2006), 910-917. MR 0316301, 10.1016/j.disc.2006.03.011; reference:[5] Enomoto, H., Jackson, B., Katerinis, P.: Toughness and the existence of $k$-factors.Journal of Graph Theory 9 (1985), 87-95. Zbl 0598.05054, MR 0785651, 10.1002/jgt.3190090106; reference:[6] Haemers, W. H.: Interlacing eigenvalues and graphs.Linear Algebra Appl. 226-228 (1995), 593-616. Zbl 0831.05044, MR 1344588; reference:[7] Jung, H. A.: Note on Hamiltonian graphs, in Recent Advances in Graph Theory.M. Fiedler Academia, Prague (1975), 315-321. MR 0392692; reference:[8] Mohar, B.: A domain monotonicity theorem for graphs and hamiltonicity.Discrete Appl. Math. 36 (1992), 169-177. Zbl 0765.05071, MR 1165833, 10.1016/0166-218X(92)90230-8; reference:[9] Heuvel, J. Vanden: Hamilton cycles and eigenvalues of graphs.Linear Algebra Appl. 226-228 (1995), 723-730. MR 1344594
-
10Academic Journal
المؤلفون: Liu, Muhuo, Tan, Xuezhong, Liu, BoLian
مصطلحات موضوعية: keyword:Laplacian matrix, keyword:signless Laplacian matrix, keyword:spectral radius, msc:05C50, msc:05C75
وصف الملف: application/pdf
Relation: mr:MR2672419; zbl:Zbl 1224.05311; reference:[1] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs.Publ. Inst. Math. Beograd 39(53) (1986), 45-54. Zbl 0603.05028, MR 0869175; reference:[2] Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K.: A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph.Linear Algebra Appl. 429 (2008), 2770-2780. MR 2455532; reference:[3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications.VEB Deutscher Verlag der Wissenschaften Berlin (1980).; reference:[4] Cvetković, D. M., Rowlinson, P., Simić, S.: Eigenspaces of Graphs.Cambridge University Press Cambridge (1997), 56-60. MR 1440854; reference:[5] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs.Linear Algebra Appl. 423 (2007), 155-171. MR 2312332, 10.1016/j.laa.2007.01.009; reference:[6] Geng, X. Y., Li, S. C.: The spectral radius of tricyclic graphs with $n$ vertices and $k$ pendant vertices.Linear Algebra Appl. 428 (2008), 2639-2653. MR 2416577; reference:[7] Grossman, J. W., Kulkarni, D. M., Schochetman, I. E.: Algebraic graph theory without orientation.Linear Algebra Appl. 212-213 (1994), 289-307. Zbl 0817.05047, MR 1306983; reference:[8] Guo, J. M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges.Linear Algebra Appl. 413 (2006), 59-71. Zbl 1082.05059, MR 2202092; reference:[9] Guo, S. G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices.Linear Algebra Appl. 408 (2005), 78-85. Zbl 1073.05550, MR 2166856; reference:[10] Heuvel, J. van den: Hamilton cycles and eigenvalues of graphs.Linear Algebra Appl. 226-228 (1995), 723-730. MR 1344594; reference:[11] Li, J. S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph.Linear Algebra Appl. 285 (1998), 305-307. Zbl 0931.05052, MR 1653547; reference:[12] Li, Q., Feng, K.: On the largest eigenvalue of a graph.Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese. MR 0549045; reference:[13] Liu, B. L.: Combinatorial Matrix Theory.Science Press Beijing (2005), Chinese.; reference:[14] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613; reference:[15] Pan, Y. L.: Sharp upper bounds for the Laplacian graph eigenvalues.Linear Algebra Appl. 355 (2002), 287-295. Zbl 1015.05055, MR 1930150; reference:[16] Rojo, O., Soto, R., Rojo, H.: An always nontrivial upper bound for Laplacian graph eigenvalues.Linear Algebra Appl. 312 (2000), 155-159. Zbl 0958.05088, MR 1759329; reference:[17] Wu, B., Xiao, E., Hong, Y.: The spectral radius of trees on $k$ pendant vertices.Linear Algebra Appl. 395 (2005), 343-349. Zbl 1057.05057, MR 2112895; reference:[18] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences.Discrete Math. 308 (2008), 3143-3150. Zbl 1156.05038, MR 2423396, 10.1016/j.disc.2007.06.017
-
11Academic Journal
المؤلفون: Shi, Wei, Kang, Liying, Wu, Suichao
مصطلحات موضوعية: keyword:algebraic connectivity, keyword:Laplacian matrix, keyword:Laplacian spectral radius, keyword:signed domination, keyword:total domination, msc:05C50, msc:05C69, msc:15A18
وصف الملف: application/pdf
Relation: mr:MR2657951; zbl:Zbl 1224.05319; reference:[1] Archdeacon, D., Ellis-Monaghan, J., Fisher, D., Froncek, D., Lam, P. C. B., Seager, S., Wei, B., Yuster, R.: Some remarks on domination.J. Graph Theory 46 (2004), 207-210. Zbl 1041.05057, MR 2063370, 10.1002/jgt.20000; reference:[2] Cockayne, E. J., Dawes, R. M., Hedetniemi, S. T.: Total domination in graphs.Networks 10 (1980), 211-219. Zbl 0447.05039, MR 0584887, 10.1002/net.3230100304; reference:[3] Dunbar, J. E., Hedetniemi, S. T., Henning, M. A., Slater, P. J.: Signed domination number of a graph.In: Graph Theory, Combinatorics, and Applications, John Wiley & Sons (1995), 311-322. MR 1405819; reference:[4] Fallat, S. M., Kirkland, S., Pati, S.: On graphs with algebraic connectivity equal to minimum edge density.Linear Algebra Appl. 373 (2003), 31-50. Zbl 1026.05075, MR 2022276; reference:[5] Feng, L., Yu, G., Li, Q.: Minimizing the Laplacian eigenvalues for trees with given domination number.Linear Algebra Appl. 419 (2006), 648-655. Zbl 1110.05060, MR 2277995; reference:[6] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007; reference:[7] Grone, R., Merris, R.: The Laplacian spectrum of a graph (II).SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653; reference:[8] Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs.Marcel Dekker, New York (1998). Zbl 0890.05002, MR 1605684; reference:[9] Henning, M. A., Slater, P. J.: Inequality relation domination parameters in cube graph.Discrete Math. 158 (1996), 87-98. MR 1411112, 10.1016/0012-365X(96)00025-8; reference:[10] Henning, M. A.: Graphs with large total domination number.J. Graph Theory 35 (2000), 21-45. Zbl 0959.05089, MR 1775793, 10.1002/1097-0118(200009)35:13.0.CO;2-F; reference:[11] Lu, M., Liu, H., Tian, F.: Bounds of Laplacian spectrum of graphs based on the domination number.Linear Algebra Appl. 402 (2005), 390-396. Zbl 1063.05095, MR 2141097; reference:[12] Merris, R.: Laplacian matrices of graphs: a survey.Linear Algebra Appl. 197/198 (1998), 143-176. MR 1275613; reference:[13] Nikiforov, V.: Bounds on graph eigenvalues I.Linear Algebra Appl. 420 (2007), 667-671. Zbl 1109.05073, MR 2278241