يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"keyword:Hilbert algebra"', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Gaitán, Hernando

    وصف الملف: application/pdf

    Relation: mr:MR3695466; zbl:Zbl 06770145; reference:[1] Berman, J., Blok, W. J.: Algebras defined from ordered sets and the varieties they generate.Order 23 (2006), 65-88. Zbl 1096.08002, MR 2258461, 10.1007/s11083-006-9032-2; reference:[2] Celani, S. A.: A note on homomorphisms of Hilbert algebras.Int. J. Math. Math. Sci. 29 (2002), 55-61. Zbl 0993.03089, MR 1892332, 10.1155/S0161171202011134; reference:[3] Celani, S. A., Cabrer, L. M.: Duality for finite Hilbert algebras.Discrete Math. 305 (2005), 74-99. Zbl 1084.03050, MR 2186683, 10.1016/j.disc.2005.09.002; reference:[4] Celani, S. A., Cabrer, L. M., Montangie, D.: Representation and duality for Hilbert algebras.Cent. Eur. J. Math. 7 (2009), 463-478. Zbl 1184.03064, MR 2534466, 10.2478/s11533-009-0032-5; reference:[5] Celani, S. A., Montangie, D.: Hilbert algebras with supremum.Algebra Univers. 67 (2012), 237-255. Zbl 1254.03117, MR 2910125, 10.1007/s00012-012-0178-z; reference:[6] Diego, A.: Sur les algèbres de Hilbert.Collection de logique mathématique. Ser. A, vol. 21. Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966). Zbl 0144.00105, MR 0199086; reference:[7] Gaitán, H.: Congruences and closure endomorphisms of Hilbert algebras.Commun. Algebra 43 (2015), 1135-1145. Zbl 1320.03090, MR 3298124, 10.1080/00927872.2013.865039; reference:[8] Idziak, P. M.: Lattice operations in BCK-algebras.Math. Jap. 29 (1984), 839-846. Zbl 0555.03030, MR 0803438; reference:[9] Iseki, K., Tanaka, S.: An introduction to the theory of BCK-algebras.Math. Jap. 23 (1978), 1-26. Zbl 0385.03051, MR 0500283; reference:[10] Kondo, M.: Hilbert algebras are dual isomorphic to positive implicative BCK-algebras.Math. Jap. 49 (1999), 265-268. Zbl 0930.06017, MR 1687626

  2. 2
    Academic Journal

    المؤلفون: Cīrulis, Jānis

    وصف الملف: application/pdf

    Relation: mr:MR3058872; zbl:Zbl 06204929; reference:[1] Cīrulis, J.: Multipliers in implicative algebras. Bull. Sect. Log. (Łódź) 15 (1986), 152–158. Zbl 0634.03067, MR 0907610; reference:[2] Cīrulis, J.: Multipliers, closure endomorphisms and quasi-decompositions of a Hilbert algebra. In: Chajda et al., I. (eds) Contrib. Gen. Algebra Verlag Johannes Heyn, Klagenfurt, 2005, 25–34. Zbl 1082.03056, MR 2166943; reference:[3] Cīrulis, J.: Hilbert algebras as implicative partial semilattices. Centr. Eur. J. Math. 5 (2007), 264–279. Zbl 1125.03047, MR 2300273, 10.2478/s11533-007-0008-2; reference:[4] Curry, H. B.: Foundations of Mathematical logic. McGraw-Hill, New York, 1963. Zbl 0163.24209, MR 0148529; reference:[5] Diego, A.: Sur les algèbres de Hilbert. Gauthier-Villars; Nauwelaerts, Paris; Louvain, 1966. Zbl 0144.00105, MR 0199086; reference:[6] Henkin, L.: An algebraic characterization of quantifiers. Fund. Math. 37 (1950), 63–74. Zbl 0041.34804, MR 0040234; reference:[7] Horn, A.: The separation theorem of intuitionistic propositional calculus. Journ. Symb. Logic 27 (1962), 391–399. MR 0171706, 10.2307/2964545; reference:[8] Huang, W., Liu, F.: On the adjoint semigroups of $p$-separable BCI-algebras. Semigroup Forum 58 (1999), 317–322. Zbl 0928.06012, MR 1678492, 10.1007/BF03325431; reference:[9] Huang, W., Wang, D.: Adjoint semigroups of BCI-algebras. Southeast Asian Bull. Math. 19 (1995), 95–98. Zbl 0859.06016, MR 1366413; reference:[10] Iseki, K., Tanaka, S.: An introduction in the theory of BCK-algebras. Math. Japon. 23 (1978), 1–26. MR 0500283; reference:[11] Karp, C. R.: Set representation theorems in implicative models. Amer. Math. Monthly 61 (1954), 523–523 (abstract).; reference:[12] Karp, C. R.: Languages with expressions of infinite length. Univ. South. California, 1964 (Ph.D. thesis). Zbl 0127.00901, MR 0176910; reference:[13] Kondo, M.: Relationship between ideals of BCI-algebras and order ideals of its adjoint semigroup. Int. J. Math. 28 (2001), 535–543. Zbl 1007.06014, MR 1895299, 10.1155/S0161171201010985; reference:[14] Marsden, E. L.: Compatible elements in implicational models. J. Philos. Log. 1 (1972), 195–200. MR 0476504, 10.1007/BF00650494; reference:[15] Schmidt, J.: Quasi-decompositions, exact sequences, and triple sums of semigroups I. General theory. II Applications. In:Contrib. Universal Algebra Colloq. Math. Soc. Janos Bolyai (Szeged) 17 North-Holland, Amsterdam, 1977, 365–428. MR 0472657; reference:[16] Tsinakis, C.: Brouwerian semilattices determined by their endomorphism semigroups. Houston J. Math. 5 (1979), 427–436. Zbl 0431.06003, MR 0559982; reference:[17] Tsirulis, Ya. P.: Notes on closure endomorphisms of implicative semilattices. Latvijskij Mat. Ezhegodnik 30 (1986), 136–149 (in Russian). MR 0878277

  3. 3
    Academic Journal

    المؤلفون: Halaš, Radomír

    وصف الملف: application/pdf

    Relation: mr:MR1942638; zbl:Zbl 1008.03039; reference:[1] Abott J. C.: Semi-Boolean algebras.Matem. Vestnik 4 (1967), 177–198.; reference:[2] Chajda I.: The lattice of deductive systems on Hilbert algebras.Southeast Asian Bull. Math (to appear). Zbl 1010.03054, MR 2046584; reference:[3] Chajda I., Halaš R.: Annihilators in Hilbert algebras.Mult.-Valued Log (to appear). MR 1957649; reference:[4] Chajda I., Halaš R.: Congruences and ideals in Hilbert algebras.Kyungpook Mathem. J. 39 (1999), 429–432. MR 1728116; reference:[5] Diego A.: Sur algébres de Hilbert.Collect. Logique Math. Ser. A 21 (1967), 177–198.; reference:[6] Jun Y. B.: Commutative Hilbert algebras.Soochow J. Math. 22 (1996), 477–484. Zbl 0864.03042, MR 1426553