يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"keyword:Dunkl-Gabor transform"', وقت الاستعلام: 0.30s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Ghobber, Saifallah

    وصف الملف: application/pdf

    Relation: mr:MR3336037; zbl:Zbl 06433733; reference:[1] Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.Rev. Mat. Iberoam. 19 (2003), 23-55. MR 1993414, 10.4171/RMI/337; reference:[2] Jeu, M. F. E. de: The Dunkl transform.Invent. Math. 113 (1993), 147-162. Zbl 0789.33007, MR 1223227, 10.1007/BF01244305; reference:[3] Demange, B.: Uncertainty principles for the ambiguity function.J. Lond. Math. Soc., II. Ser. 72 (2005), 717-730. Zbl 1090.42004, MR 2190333, 10.1112/S0024610705006903; reference:[4] Donoho, D. L., Stark, P. B.: Uncertainty principles and signal recovery.SIAM J. Appl. Math. 49 (1989), 906-931. Zbl 0689.42001, MR 0997928, 10.1137/0149053; reference:[5] Dunkl, C. F.: Integral kernels with reflection group invariance.Can. J. Math. 43 (1991), 1213-1227. Zbl 0827.33010, MR 1145585, 10.4153/CJM-1991-069-8; reference:[6] Dunkl, C. F.: Differential-difference operators associated to reflection groups.Trans. Am. Math. Soc. 311 (1989), 16-183. Zbl 0652.33004, MR 0951883, 10.1090/S0002-9947-1989-0951883-8; reference:[7] Faris, W. G.: Inequalities and uncertainty principles.J. Math. Phys. 19 (1978), 461-466. MR 0484134, 10.1063/1.523667; reference:[8] Ghobber, S., Jaming, P.: Uncertainty principles for integral orperators.Stud. Math. 220 (2014), 197-220. MR 3173045, 10.4064/sm220-3-1; reference:[9] Gröchenig, K.: Uncertainty principles for time-frequency representations.Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel (2003), 11-30. Zbl 1039.42004, MR 1955930; reference:[10] Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis.Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. 28 Springer, Berlin (1994). MR 1303780; reference:[11] Hogan, J. A., Lakey, J. D.: Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling.Applied and Numerical Harmonic Analysis Birkhäuser, Boston (2005). Zbl 1079.42027, MR 2107799; reference:[12] Lapointe, L., Vinet, L.: Exact operator solution of the Calogero-Sutherland model.Commun. Math. Phys. 178 (1996), 425-452. Zbl 0859.35103, MR 1389912, 10.1007/BF02099456; reference:[13] Mejjaoli, H.: Practical inversion formulas for the Dunkl-Gabor transform on $\mathbb R^d$.Integral Transforms Spec. Funct. 23 (2012), 875-890. MR 2998902, 10.1080/10652469.2011.647015; reference:[14] Mejjaoli, H., Sraieb, N.: Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform.Mediterr. J. Math. 5 (2008), 443-466. Zbl 1181.26036, MR 2465571, 10.1007/s00009-008-0161-2; reference:[15] Polychronakos, A. P.: Exchange operator formalism for integrable systems of particles.Phys. Rev. Lett. 69 (1992), 703-705. Zbl 0968.37521, MR 1174716, 10.1103/PhysRevLett.69.703; reference:[16] Rösler, M.: An uncertainty principle for the Dunkl transform.Bull. Aust. Math. Soc. 59 (1999), 353-360. Zbl 0939.33012, MR 1698045, 10.1017/S0004972700033025; reference:[17] Rösler, M., Voit, M.: Markov processes related with Dunkl operators.Adv. Appl. Math. 21 (1998), 575-643. Zbl 0919.60072, MR 1652182, 10.1006/aama.1998.0609; reference:[18] Shimeno, N.: A note on the uncertainty principle for the Dunkl transform.J. Math. Sci., Tokyo 8 (2001), 33-42. Zbl 0976.33015, MR 1818904; reference:[19] Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform.Doc. Math., J. DMV (electronic) 5 (2000), 201-226. Zbl 0947.42024, MR 1758876