-
1Academic Journal
المؤلفون: Tkachuk, Vladimir V.
مصطلحات موضوعية: keyword:Lindelöf space, keyword:scattered space, keyword:$\sigma$-product, keyword:function space, keyword:$P$-space, keyword:exponentially separable space, keyword:product, keyword:functionally countable space, keyword:weakly exponentially separable space, msc:54C35, msc:54D65, msc:54G10, msc:54G12
وصف الملف: application/pdf
Relation: mr:MR4542797; zbl:Zbl 07655808; reference:[1] Engelking R.: General Topology.Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977. Zbl 0684.54001, MR 0500780; reference:[2] Galvin F.: Problem 6444.Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434. MR 1540672; reference:[3] Gruenhage G., Tkachuk V. V., Wilson R. G.: Domination by small sets versus density.Topology Appl. 282 (2020), 107306, 10 pages. MR 4116835, 10.1016/j.topol.2020.107306; reference:[4] Juhász I., van Mill J.: Countably compact spaces all countable subsets of which are scattered.Comment. Math. Univ. Carolin. 22 (1981), no. 4, 851–855. MR 0647031; reference:[5] Levy R., Matveev M.: Functional separability.Comment. Math. Univ. Carolin. 51 (2010), no. 4, 705–711. Zbl 1224.54063, MR 2858271; reference:[6] Moore J. T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5; reference:[7] Pelczyński A., Semadeni Z.: Spaces of continuous functions. III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211–222. MR 0107806, 10.4064/sm-18-2-211-222; reference:[8] Rudin W.: Continuous functions on compact spaces without perfect subsets.Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl 0077.31103, MR 0085475, 10.1090/S0002-9939-1957-0085475-7; reference:[9] Tkachuk V. V.: A $C_p$-Theory Problem Book. Topological and Function Spaces.Problem Books in Mathematics, Springer, New York, 2011. MR 3024898; reference:[10] Tkachuk V. V.: A $C_p$-Theory Problem Book. Special Features of Function Spaces.Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753; reference:[11] Tkachuk V. V.: A $C_p$-Theory Problem Book. Compactness in Function Spaces.Problem Books in Mathematics, Springer, Cham, 2015. MR 3364185; reference:[12] Tkachuk V. V.: A nice subclass of functionally countable spaces.Comment. Math. Univ. Carolin. 59 (2018), no. 3, 399–409. MR 3861562; reference:[13] Tkachuk V. V.: Exponential domination in function spaces.Comment. Math. Univ. Carolin. 61 (2020), no. 3, 397–408. MR 4186115; reference:[14] Tkachuk V. V.: Some applications of discrete selectivity and Banakh property in function spaces.Eur. J. Math. 6 (2020), no. 1, 88–97. MR 4071459, 10.1007/s40879-019-00342-7; reference:[15] Tkachuk V. V.: Some applications of exponentially separable spaces.Quaest. Math. 43 (2020), no. 10, 1391–1403. MR 4175405, 10.2989/16073606.2019.1623934; reference:[16] Tkachuk V. V.: The extent of a weakly exponentially separable space can be arbitrarily large.Houston J. Math. 46 (2020), no. 3, 809–819. MR 4229084; reference:[17] Vaughan J. E.: Countably compact and sequentially compact spaces.Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984, pages 569–602. Zbl 0562.54031, MR 0776631
-
2Academic Journal
المؤلفون: Olfati, Alireza
مصطلحات موضوعية: keyword:$P$-space, keyword:rings of integer-valued continuous functions, keyword:functionally countable subalgebra, keyword:atomic ideal, keyword:socle, msc:54C40
وصف الملف: application/pdf
Relation: mr:MR4303551; zbl:Zbl 07396222; reference:[1] Alling N. L.: Rings of continuous integer-valued functions and nonstandard arithmetic.Trans. Amer. Math. Soc. 118 (1965), 498–525. MR 0184960, 10.1090/S0002-9947-1965-0184960-6; reference:[2] Azarpanah F., Karamzadeh O. A. S., Keshtkar Z., Olfati A. R.: On maximal ideals of $C_c(X)$ and the uniformity of its localizations.Rocky Mountain J. Math. 48 (2018), no. 2, 345–384. MR 3809150, 10.1216/RMJ-2018-48-2-345; reference:[3] Azarpanah F., Karamzadeh O. A. S., Rahmati S.: $C(X)$ vs. $C(X)$ modulo its socle.Colloq. Math. 111 (2008), no. 2, 315–336. MR 2365803, 10.4064/cm111-2-9; reference:[4] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, 43, Springer, New York, 1976. Zbl 0327.46040, MR 0407579; reference:[5] Karamzadeh O. A. S., Rostami M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), no. 1, 179–184. Zbl 0524.54013, MR 0766552; reference:[6] Martinez J.: $C(X, \mathbb{Z})$ revisited.Adv. Math. 99 (1993), no. 2, 152–161. MR 1219582, 10.1006/aima.1993.1022; reference:[7] Momtahan E., Motamedi M.: A study on dimensions of modules.Bull. Iranian. Math. Soc. 43 (2017), no. 5, 1227–1235. MR 3730636; reference:[8] Mozaffarikhah A., Momtahan E., Olfati A. R., Safaeeyan S.: $p$-semisimple modules and type submodules.J. Algebra Appl. 19 (2020), no. 4, 2050078, 22 pages. MR 4098942, 10.1142/S0219498820500784; reference:[9] Olfati A. R.: Homomorphisms from $C(X, \mathbb{Z})$ into a ring of continuous functions.Algebra Universalis 79 (2018), no. 2, Paper No. 34, 26 pages. MR 3788813, 10.1007/s00012-018-0509-9; reference:[10] Pierce R. S.: Rings of integer-valued continuous functions.Trans. Amer. Math. Soc. 100 (1961), 371–394. Zbl 0196.15401, MR 0131438, 10.1090/S0002-9947-1961-0131438-8
-
3Academic Journal
المؤلفون: Arhangel'skii, Alexander V.
مصطلحات موضوعية: keyword:Lindelöf $p$-group, keyword:homogeneous space, keyword:Lindelöf $\Sigma $-space, keyword:dyadic compactum, keyword:countable tightness, keyword:$\sigma $-compact, keyword:$cdc$-group, keyword:$p$-space, msc:54A25, msc:54B05
وصف الملف: application/pdf
Relation: mr:MR4061356; zbl:Zbl 07177883; reference:[1] Arhangel'skiĭ A. V.: A class of spaces which contains all metric and all locally compact spaces.Mat. Sb. (N.S.) 67(109) (1965), 55–88 (Russian); English translation in Amer. Math. Soc. Transl. 92 (1970), 1–39. MR 0190889; reference:[2] Arhangel'skii A. V.: The power of bicompacta with first axiom of countability.Dokl. Akad. Nauk SSSR 187 (1969), 967–970 (Russian); English translation in Soviet Math. Dokl. 10 (1969), 951–955. MR 0251695; reference:[3] Arhangel'skiĭ A. V.: Topological homogeneity. Topological groups and their continuous images.Uspekhi Mat. Nauk 42 (1987), no. 2(254), 69–105 (Russian); English translation in Russian Math. Surveys 42 (1987), 83–131. MR 0898622; reference:[4] Arhangel'skiĭ A. V.: Topological Function Spaces.Mathematics and Its Applications (Soviet Series), 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1144519, 10.1007/978-94-011-2598-7_4; reference:[5] Arhangel'skii A. V., van Mill J.: Topological homogeneity.Recent Progress in General Topology, III, Atlantis Press, Paris, 2014, 1–68. MR 3204728; reference:[6] Arhangel'skiĭ A. V., Ponomarev V. I.: Dyadic bicompacta.Dokl. Akad. Nauk SSSR 182 (1968), 993–996 (Russian); English translation in Soviet Math. Dokl. 9 (1968), 1220–1224. MR 0235518; reference:[7] Arhangel'skii A., Tkachenko M.: Topological Groups and Related Structures.Atlantis Studies in Mathematics, 1, Atlantis Press, Paris, World Scientific Publishing, Hackensack, 2008. MR 2433295; reference:[8] Čoban M. M.: Topological structure of subsets of topological groups and their quotient spaces.Topological Structures and Algebraic Systems, Mat. Issled. Vyp. 44 (1977), 117–163, 181 (Russian). MR 0492040; reference:[9] Engelking R.: General Topology.Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warsaw, 1977. Zbl 0684.54001, MR 0500780; reference:[10] Nagami K.: $\Sigma $-spaces.Fund. Math. 65 (1969), 169–192. Zbl 0181.50701, MR 0257963; reference:[11] Rančin D. V.: Tightness, sequentiality, and closed coverings.Dokl. Akad. Nauk SSSR 232 (1977), no. 5, 1015–1018 (Russian); English translation in Soviet Math. Dokl. 18 (1977), no. 1, 196–200. MR 0436074
-
4Academic Journal
المؤلفون: Badie, Mehdi
مصطلحات موضوعية: keyword:rings of continuous functions, keyword:comaximal graph, keyword:radius, keyword:girth, keyword:dominating number, keyword:clique number, keyword:zero cellularity, keyword:$P$-space, keyword:almost $P$-space, keyword:connected space, keyword:regular ring, msc:54C40
وصف الملف: application/pdf
Relation: mr:MR3554516; zbl:Zbl 06674886; reference:[1] Afkhami M., Barati Z., Khashyarmanesh K.: When the comaximal and zero-divisor graphs are ring graphs and outerplanar.Rocky Mountain J. Math. 44 (2014), no. 6, 1745–1761. MR 3310946, 10.1216/RMJ-2014-44-6-1745; reference:[2] Afkhami M., Khashyarmanesh K.: On the cozero-divisor graphs and comaximal graphs of commutative rings.J. Algebra Appl. 12 (2013), no. 3, 1250173, 9pp. Zbl 1262.05075, MR 3007910, 10.1142/S0219498812501733; reference:[3] Akbari S., Habibi M., Majidinya A., Manaviyat R.: A note on comaximal graph of non-commutative rings.Algebr. Represent. Theory 16 (2013), no. 2, 303–307. Zbl 1263.05042, MR 3035995, 10.1007/s10468-011-9309-z; reference:[4] Akbari S., Maimani H.R., Yassemi S.: When a zero-divisor graph is planar or a complete r-partite graph.J. Algebra 270 (2003), no. 1, 169–180. Zbl 1032.13014, MR 2016655, 10.1016/S0021-8693(03)00370-3; reference:[5] Amini A., Amini B., Momtahan E., Shirdareh Haghighi M.H.: On a graph of ideals.Acta Math. Hungar. 134 (2011), no. 3, 369–384. Zbl 1299.05153, MR 2886213, 10.1007/s10474-011-0121-3; reference:[6] Anderson D.F., Mulay S.B.: On the diameter and girth of a zero-divisor graph.J. Pure Appl. Algebra 210 (2007), no. 2, 543–550. Zbl 1119.13005, MR 2320017, 10.1016/j.jpaa.2006.10.007; reference:[7] Anderson D.D., Naseer M.: Beck's coloring of a commutative ring.J. Algebra 159 (1993), no. 2, 500–514. Zbl 0798.05067, MR 1231228, 10.1006/jabr.1993.1171; reference:[8] Anderson D.F., Badawi A.: On the zero-divisor graph of a ring.Comm. Algebra 36 (2008), no. 8, 3073–3092. Zbl 1152.13001, MR 2440301; reference:[9] Anderson D.F., Levy R., Shapiro J.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras.J. Pure Appl. Algebra 180 (2003), no. 3, 221–241. Zbl 1076.13001, MR 1966657, 10.1016/S0022-4049(02)00250-5; reference:[10] Anderson D.F., Livingston P.S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), no. 2, 434–447. Zbl 1035.13004, MR 1700509, 10.1006/jabr.1998.7840; reference:[11] Atiyah M.F., Macdonald I.G.: Introduction to Commutative Algebra.Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. Zbl 0238.13001, MR 0242802; reference:[12] Azarpanah F., Motamedi M.: Zero-divisor graph of $C(X)$.Acta Math. Hungar. 108 (2005), no. 1–2, 25–36. Zbl 1092.54007, MR 2155237, 10.1007/s10474-005-0205-z; reference:[13] Beck I.: Coloring of commutative rings.J. Algebra 116 (1988), no. 1, 208–226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5; reference:[14] Biggs N.: Algebraic Graph Theory.Cambridge University Press, Cambridge, 1993. Zbl 0797.05032, MR 1271140; reference:[15] Bondy J.A., Murty U.S.R.: Graph Theory with Application.The Macmillan Press, New York, 1976. MR 0411988; reference:[16] Dheena P., Elavarasan B.: On comaximal graphs of near-rings.Kyungpook Math. J. 49 (2009), no. 2, 283–288. Zbl 1184.16048, MR 2554886, 10.5666/KMJ.2009.49.2.283; reference:[17] Engelking R.: General Topology.Heldermann-Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[18] Gillman L., Jerison M.: Rings of Continuous Functions.Transactions of the New York Academy of Sciences 27 (1964), no. 1 Series II, 5–6. Zbl 0327.46040, MR 0116199, 10.1111/j.2164-0947.1964.tb03479.x; reference:[19] Jinnah M.I., Mathew Sh.C.: When is the comaximal graph split?.Comm. Algebra 40 (2012), no. 7, 2400–2404. Zbl 1247.13007, MR 2948834, 10.1080/00927872.2011.591861; reference:[20] Levy R., Shapiro J.: The zero-divisor graph of von Neumann regular rings.Comm. Algebra 30 (2002), no. 2, 745–750. Zbl 1055.13007, MR 1883021, 10.1081/AGB-120013178; reference:[21] Maimani H.R., Salimi M., Sattari A., Yassemi S.: Comaximal graph of commutative rings.J. Algebra 319 (2008), no. 4, 1801–1808. Zbl 1141.13008, MR 2383067, 10.1016/j.jalgebra.2007.02.003; reference:[22] Maimani H.R., Pournaki M.R., Tehranian A., Yassemi S.: Graphs attached to rings revisited.Arab. J. Sci. Eng. 36 (2011), no. 6, 997–1011. MR 2845527, 10.1007/s13369-011-0096-y; reference:[23] Mehdi-Nezhad E., Rahimi A.M.: Dominating sets of the comaximal and ideal-based zero-divisor graphs of commutative rings.Quaest. Math. 38 (2015), 1–17. MR 3420663, 10.2989/16073606.2014.981713; reference:[24] Moconja S.M., Petrović Z.: On the structure of comaximal graphs of commutative rings with identity.Bull. Aust. Math. Soc. 83 (2011), no. 1, 11–21. Zbl 1222.13002, MR 2765410, 10.1017/S0004972710001875; reference:[25] Mulay Sh.B.: Cycles and symmetries of zero-divisors.Comm. Algebra 30 (2002), no. 7, 3533–3558. Zbl 1087.13500, MR 1915011, 10.1081/AGB-120004502; reference:[26] Petrovic Z.Z., Moconja S.M.: On graphs associated to rings.Novi Sad J. Math. 38 (2008), no. 3, 33–38. Zbl 1224.13001, MR 2598647; reference:[27] Sharma P.K., Bhatwadekar S.M.: A note on graphical representation of rings.J. Algebra 176 (1995), no. 1, 124–127. Zbl 0838.05051, MR 1345297, 10.1006/jabr.1995.1236; reference:[28] Wang H.-J.: Co-maximal graph of non-commutative rings.Linear Algebra Appl. 430 (2009), no. 2, 633–641. Zbl 1151.05019, MR 2469317, 10.1016/j.laa.2008.08.026; reference:[29] Willard S.: General Topology.Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. Zbl 1052.54001, MR 0264581; reference:[30] Ye M., Wu T., Liu Q., Yu H.: Implements of graph blow-up in co-maximal ideal graphs.Comm. Algebra 42 (2014), no. 6, 2476–2483. MR 3169718, 10.1080/00927872.2012.762924
-
5Academic Journal
المؤلفون: Hager, Anthony W.
مصطلحات موضوعية: keyword:Riesz space, keyword:$\sigma$-property, keyword:bounding number, keyword:$P$-space, keyword:paracompact, keyword:locally compact, msc:03E17, msc:06F20, msc:46A40, msc:54A25, msc:54C30, msc:54D20, msc:54D45, msc:54G10
وصف الملف: application/pdf
Relation: mr:MR3513446; zbl:Zbl 06604503; reference:[BGHTZ09] Ball R., Gochev V., Hager A., Todorčević S., Zoble S.: Topological group criterion for $C(X)$ in compact-open-like topologies I.Topology Appl. 156 (2009), 710–720. Zbl 1166.54007, MR 2492956; reference:[BJ86] Blass A., Jech T.: On the Egoroff property of pointwise convergent sequences of functions.Proc. Amer. Math. Society 90 (1986), 524–526. Zbl 0601.54004, MR 0857955, 10.1090/S0002-9939-1986-0857955-3; reference:[D74] Dodds, Theresa K.Y. Chow: Egoroff properties and the order topology in Riesz spaces.Trans. Amer. Math. Soc. 187 (1974), 365–375. MR 0336282, 10.1090/S0002-9947-1974-0336282-3; reference:[D84] van Douwen E.: The integers and topology.in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–1676. Zbl 0561.54004, MR 0776622; reference:[E89] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[GJ60] Gillman L., Jerison M.: Rings of Continuous Functions.The University Series in Higher Mathematics, Van Nostrand, Princeton, N.J.-Toronto-London-New York, 1960. Zbl 0327.46040, MR 0116199; reference:[HM15] Hager A., van Mill J.: Egoroff, $\sigma$, and convergence properties in some archimedean vector lattices.Studia Math. 231 (2015), 269–285. MR 3471054; reference:[HR16] Hager A., Raphael R.: The countable lifting property for Riesz space surjections.Indag. Math., 27 (2016), 75–84. MR 3437737, 10.1016/j.indag.2015.07.005; reference:[H68] Holbrook J.: Seminorms and the Egoroff property in Riesz spaces.Trans. Amer. Math. Soc. 132 (1968), 67–77. Zbl 0169.14802, MR 0228979, 10.1090/S0002-9947-1968-0228979-8; reference:[J80] Jech T.: On a problem of L. Nachbin.Proc. Amer. Math. Soc. 79 (1980), 341–342. Zbl 0441.04002, MR 0565368, 10.1090/S0002-9939-1980-0565368-1; reference:[J02] Jech T.: Set Theory.third millennium edition, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513; reference:[LZ71] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces.Vol. I, North-Holland Mathematical Library, North-Holland, Amsterdam-London, 1971. Zbl 0231.46014, MR 0511676
-
6Academic Journal
المؤلفون: Arhangel'skii, A. V.
مصطلحات موضوعية: keyword:dense subspace, keyword:perfect space, keyword:Moore space, keyword:Čech-complete, keyword:$p$-space, keyword:$\sigma $-disjoint base, keyword:uniform base, keyword:pseudocompact, keyword:point-countable base, keyword:pseudo-$\omega _1$-compact, msc:54A25, msc:54B05
وصف الملف: application/pdf
Relation: mr:MR3434227; zbl:Zbl 06537722; reference:[1] Arhangel'skiĭ A.V.: Some metrization theorems.Uspekhi Mat. Nauk 18 (1963), no. 5, 139–145 (in Russian). MR 0156318; reference:[2] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces.Mat. Sb. 67(109) (1965), 55–88; English translation: Amer. Math. Soc. Transl. 92 (1970), 1–39. MR 0190889; reference:[3] Arhangel'skii A.V.: A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces.Comment. Math. Univ. Carolin. 54 (2013), no. 2, 121–139. Zbl 1289.54085, MR 3067699; reference:[4] Arhangel'skii A.V., Choban M.M.: Spaces with sharp bases and with other special bases of countable order.Topology Appl. 159 (2012), no. 5, 1578-1590. Zbl 1245.54025, MR 2891424, 10.1016/j.topol.2011.03.015; reference:[5] Arhangel'skii A.V., Tokgöz S.: Paracompactness and remainders: around Henriksen-Isbell's Theorem.Questions Answers Gen. Topology 32 (2014), 5–15. Zbl 1305.54032, MR 3222525; reference:[6] van Douwen E.K., Tall F., Weiss W.: Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH.Proc. Amer. Math. Soc. 64 (1977), 139–145. Zbl 0356.54020, MR 0514998; reference:[7] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780; reference:[8] Filippov V.V.: On feathered paracompacta.Dokl. Akad. Nauk SSSR 178 (1968), no. 3, 555–558. Zbl 0167.21103, MR 0227935; reference:[9] Gruenhage G.: Metrizable spaces and generalizations.in: M. Hušek and J. van Mill, Eds., Recent Progress in General Topology, II, North-Holland, Amsterdam, 2002, Chapter 8, pp. 203–221. Zbl 1029.54036, MR 1969999; reference:[10] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces.Topology Appl. 63 (1995), 69–77. Zbl 0864.54001, MR 1328620, 10.1016/0166-8641(95)90009-8; reference:[11] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, II.Topology Appl. 71 (1996), 179–191. Zbl 0864.54001, MR 1399555, 10.1016/0166-8641(95)00082-8; reference:[12] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114 (2001), 285–293. Zbl 1012.54002, MR 1838327, 10.1016/S0166-8641(00)00043-2; reference:[13] Kuratowski K.: Topology, vol. 1.PWN, Warszawa, 1966.; reference:[14] Michael E.A., Rudin M.E.: Another note on Eberlein compacta.Pacific J. Math. 72 (1977), no. 2, 497–499. MR 0478093, 10.2140/pjm.1977.72.497; reference:[15] Oka S.: Dimension of finite unions of metric spaces.Math. Japon. 24 (1979), 351–362. Zbl 0429.54017, MR 0557465
-
7Academic Journal
المؤلفون: Martínez, Juan Carlos
مصطلحات موضوعية: keyword:property $D$, keyword:meta-Lindelöf, keyword:weak $\overline{\theta}$-refinable, keyword:$P$-space, keyword:scattered space, msc:54A35, msc:54D20, msc:54G10
وصف الملف: application/pdf
Relation: mr:MR3193929; zbl:Zbl 06391541; reference:[1] Arhangel'skii A.V.: D-spaces and finite unions.Proc. Amer. Math. Soc. 132 (2004), 2163–2170. Zbl 1045.54009, MR 2053991, 10.1090/S0002-9939-04-07336-8; reference:[2] Arhangel'skii A.V., Buzyakova R.Z.: Addition theorems and D-spaces.Comment. Math. Univ. Carolin. 43 (2002), 653–663. Zbl 1090.54017, MR 2045787; reference:[3] Barr M., Kennison J.F., Raphael R.: On productively Lindelöf spaces.Sci. Math. Jpn. 65 (2007), 319–332. Zbl 1146.54013, MR 2328213; reference:[4] Burke D.K.: Covering properties.in Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Elsevier, Amsterdam, 1984, pp. 347–422. Zbl 0569.54022, MR 0776628; reference:[5] Buzyakova R.Z: On D-property of strong $\Sigma$-spaces.Comment. Math. Univ. Carolin. 43 (2002), 493–495. Zbl 1090.54018, MR 1920524; reference:[6] van Douwen E.K., Lutzer D.: A note on paracompactness in generalized ordered spaces.Proc. Amer. Math. Soc. 125 (1997), 1237–1245. Zbl 0885.54023, MR 1396999, 10.1090/S0002-9939-97-03902-6; reference:[7] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81 (1979), 371–377. Zbl 0409.54011, MR 0547605, 10.2140/pjm.1979.81.371; reference:[8] van Douwen E.K., Wicke H.H.: A real, weird topology on the reals.Houston J. Math. 3 (1977), 141–152. Zbl 0345.54036, MR 0433414; reference:[9] Fleissner W.G, Stanley A.M.: D-spaces.Topology Appl. 114 (2001), 261–271. Zbl 0983.54024, MR 1838325, 10.1016/S0166-8641(00)00042-0; reference:[10] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Math., 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579; reference:[11] Gruenhage G.: A survey of D-spaces.Contemporary Math. 533 (2011), 13–28. Zbl 1217.54025, MR 2777743, 10.1090/conm/533/10502; reference:[12] Martínez J. C., Soukup L.: The D-property in unions of scattered spaces.Topology Appl. 156 (2009), 3086-3090. Zbl 1178.54009, MR 2556068, 10.1016/j.topol.2009.03.047; reference:[13] Martínez J.C.: On finite unions and finite products with the D-property.Topology Appl. 158 (2011), 223–228. Zbl 1206.54022, MR 2739893; reference:[14] Mashburn J.D.: A note on irreducibility and weak covering properties.Topology Proc. 9 (1984), 339–352. Zbl 0577.54017, MR 0828991; reference:[15] Peng L.-X.: On finite unions of certain D-spaces.Topology Appl. 155 (2008), 522–526. Zbl 1143.54013, MR 2388953, 10.1016/j.topol.2007.11.002; reference:[16] Peng L.-X.: On spaces which are D, linearly D and transitively D.Topology Appl. 157 (2010), 378–384. Zbl 1179.54035, MR 2563288; reference:[17] Peng L.-X.: The D-property which relates to certain covering properties.Topology Appl. 159 (2012), 869–876. Zbl 1247.54033, MR 2868887, 10.1016/j.topol.2011.12.004; reference:[18] Smith J.C.: Properties of weak $\overline{\theta}$-refinable spaces.Proc. Amer. Math. Soc. 53 (1975), 511–517. Zbl 0338.54013, MR 0380731; reference:[19] Soukup D.T., Szeptycki P.J.: A counterexample in the theory of D-spaces.Topology Appl. 159 (2012), 2669–2678. MR 2923437, 10.1016/j.topol.2012.03.016; reference:[20] Zhang H., Shi W.-X.: A note on D-spaces.Topology Appl. 159 (2012), 248–252. Zbl 1244.54058, MR 2852969, 10.1016/j.topol.2011.09.006
-
8Academic Journal
مصطلحات موضوعية: keyword:hyperspaces, keyword:Vietoris topology, keyword:$F'$-space, keyword:$P$-space, keyword:hereditarily disconnected, msc:54B20, msc:54G05, msc:54G10, msc:54G12, msc:54G20
وصف الملف: application/pdf
Relation: mr:MR2864000; zbl:Zbl 1249.54024; reference:[D] Dijkstra J.J.: A criterion for Erdös spaces.Proc. Edinburgh Math. Soc. (2) 48 (2005), no. 3, 595–601. Zbl 1152.54347, MR 2171187; reference:[E1] Engelking R.: General Topology.translated from the Polish by the author, second edition, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[E2] Engelking R.: Theory of Dimensions Finite and Infinite.Sigma Series in Pure Mathematics, 10, Heldermann, Lemgo, 1995. Zbl 0872.54002, MR 1363947; reference:[Er] Erdös P.: The dimension of the rational points in Hilbert space.Ann. of Math. (2) 41 (1940), 734–736. MR 0003191, 10.2307/1968851; reference:[GH] Gillman L., Henriksen M.: Rings of continuous functions in which every finitely generated ideal is principal.Trans. Amer. Math. Soc. 82 (1956), 366–391. Zbl 0073.09201, MR 0078980, 10.1090/S0002-9947-1956-0078980-4; reference:[IN] Illanes A., Nadler S.B., Jr.: Hyperspaces. Fundamentals and Recent Advances.Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999. Zbl 0933.54009, MR 1670250; reference:[Ke] Keesling J.: On the equivalence of normality and compactness in hyperspaces.Pacific J. Math. 33, 1970, 657–667. Zbl 0182.25401, MR 0267516, 10.2140/pjm.1970.33.657; reference:[Ku] Kunen K.: Weak $P$-points in $N^{\ast}$.Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. Zbl 0435.54021, MR 0588822; reference:[M] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71, (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4; reference:[P] Pol E., Pol R.: A few remarks on connected sets in hyperspaces of hereditarily disconnected spaces.Bol. Soc. Mat. Mexicana (3) 6 (2000), no. 2, 243–245. MR 1810852; reference:[PW] Porter J.R., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York, 1988. Zbl 0652.54016, MR 0918341; reference:[S] Shakhmatov D.B.: A pseudocompact Tychonoff space all countable subsets of which are closed and $C^\ast$-embedded.Topology Appl. 22 (1986), no. 2, 139–144. Zbl 0586.54020, MR 0836321, 10.1016/0166-8641(86)90004-0
-
9Academic Journal
المؤلفون: Estaji, Ali Akbar, Henriksen, Melvin
مصطلحات موضوعية: keyword:$a$-Kasch space, keyword:almost $P$-space, keyword:basically disconnected, keyword:$C$-embedded, keyword:essential ideal, keyword:extremally disconnected, keyword:fixed ideal, keyword:free ideal, keyword:Kasch ring, keyword:$P$-space, keyword:pseudocompact space, keyword:Stone-Čech compactification, keyword:socle, keyword:realcompactification, msc:13A30, msc:16S60, msc:46J10, msc:54C40
وصف الملف: application/pdf
Relation: mr:MR2754064; zbl:Zbl 1240.54064; reference:[1] Azarpanah, F.: Essential ideals in $C(X)$.Period. Math. Hungar. 3 (12) (1995), 105–112. Zbl 0869.54021, MR 1609417, 10.1007/BF01876485; reference:[2] Azarpanah, F.: Intersection of essential ideals in $C(X)$.Proc. Amer. Math. Soc. 125 (1997), 2149–2154. Zbl 0867.54023, MR 1422843, 10.1090/S0002-9939-97-04086-0; reference:[3] Azarpanah, F.: On almost $P$-space.Far East J. Math. Sci. Special volume (2000), 121–132. MR 1761076; reference:[4] Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. R.: On $z^{\circ }$-ideals in $C(X)$.Fund. Math. 160 (1999), 15–25. Zbl 0991.54014, MR 1694400; reference:[5] Dietrich, W. E., Jr., : On the ideal structure of $C(X)$.Trans. Amer. Math. Soc. 152 (1970), 61–77. Zbl 0205.42402, MR 0265941; reference:[6] Donne, A. Le: On a question concerning countably generated $z$-ideal of $C(X)$.Proc. Amer. Math. Soc. 80 (1980), 505–510. MR 0581015; reference:[7] Engelking, R.: General topology.mathematical monographs, vol. 60 ed., PWN Polish Scientific publishers, 1977. Zbl 0373.54002, MR 0500780; reference:[8] Gillman, L., Jerison, M.: Rings of continuous functions.Springer-Verlag, 1979. MR 0407579; reference:[9] Goodearl, K. R.: Von Neumann regular rings.Pitman, San Francisco, 1979. Zbl 0411.16007, MR 0533669; reference:[10] Karamzadeh, O. A. S., Rostami, M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), 179–184. Zbl 0524.54013, MR 0766552; reference:[11] Lam, Tsit-Yuen: Lectures on Modules and Rings.Springer, 1999.; reference:[12] Levy, R.: Almost $P$-spaces.Can. J. Math. 29 (1977), 284–288. Zbl 0342.54032, MR 0464203; reference:[13] Marco, G. De: On the countably generated $z$-ideal of $C(X)$.Proc. Amer. Math. Soc. 31 (1972), 574–576. MR 0288563; reference:[14] Nunzetta, P., Plank, D.: Closed ideal in $C(X)$.Proc. Amer. Math. Soc. 35 (2) (1972), 601–606. MR 0303496
-
10Academic Journal
المؤلفون: Levy, R., Matveev, M.
مصطلحات موضوعية: keyword:functionally countable, keyword:pseudo-$\aleph_1$-compact, keyword:DCCC, keyword:P-space, keyword:$\tau$-simple, keyword:scattered, keyword:1-functionally separable, keyword:2-functionally separable, keyword:3-functionally separable, keyword:pseudocompact, keyword:dyadic compactum, keyword:$\sigma$-centered base, keyword:LOTS, msc:54C30, msc:54D65
وصف الملف: application/pdf
Relation: mr:MR2858271; zbl:Zbl 1224.54063; reference:[1] Arhangel'skii A.V.: Topological properties of function spaces: duality theorems.Soviet Math. Doc. 269 (1982), 1289–1292. MR 0705371; reference:[2] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, 1992. MR 1485266; reference:[3] Barr M., Kennison F., Raphael R.: Searching for absolute $\mathcal CR$-epic spaces.Canad. J. Math. 59 (2007), 465–487. MR 2319155, 10.4153/CJM-2007-020-9; reference:[4] Barr M., Burgess W.D., Raphael R.: Ring epimorphisms and $C(X)$.Theory Appl. Categ. 11 (2003), no. 12, 283–308. Zbl 1042.54007, MR 1988400; reference:[5] Burgess W.D., Raphael R.: Compactifications, $C(X)$ and ring epimorphisms.Theory Appl. Categ. 16 (2006), no. 21, 558–584. Zbl 1115.18001, MR 2259263; reference:[6] van Douwen E.K.: Density of compactifications.Set-theoretic Topology, Academic Press, New York, 1977, pp. 97-110. Zbl 0379.54006, MR 0442887; reference:[7] Galvin F.: Problem 6444.Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434.; reference:[8] Hrušák M., Raphael R., Woods R.G.: On a class of pseudocompact spaces derived from ring epimorphisms.Topology Appl. 153 (2005), 541–556. MR 2193326; reference:[9] Levy R., Rice M.D.: Normal $P$ spaces and the $G_\delta$-topology.Colloq. Math. 44 (1981), 227–240. Zbl 0496.54034, MR 0652582; reference:[10] Matveev M.: One more topological equivalent of CH.Topology Appl. 157 (2010), 1211–1214. Zbl 1190.54003, MR 2607088, 10.1016/j.topol.2010.02.013; reference:[11] Moore J.T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5; reference:[12] Moore J.T.: An $L$ space with a $d$-separable square.Topology Appl. 155 (2008), 304–307. Zbl 1146.54015, MR 2380267, 10.1016/j.topol.2007.07.006; reference:[13] Noble N., Ulmer M.: Factorizing functions on cartesian products.Trans. Amer. Math. Soc. 163 (1972), 329–339. MR 0288721, 10.1090/S0002-9947-1972-0288721-2; reference:[14] Pełczyński A., Semadeni Z.: Spaces of continuous functions III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211–222. MR 0107806; reference:[15] Raphael M., Woods R.G.: The epimorphic hull of $C(X)$.Topology Appl. 105 (2002), 65–88. Zbl 1069.18001, MR 1761087; reference:[16] Reznichenko E.A.: A pseudocompact space in which only sets of complete cardinality are not closed and not discrete.Moscow Univ. Math. Bull. (1989), no. 6, 69–70. MR 1065983; reference:[17] Rudin W.: Continuous functions on compact spaces without perfect subsets.Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl 0077.31103, MR 0085475, 10.1090/S0002-9939-1957-0085475-7; reference:[18] Steprans J.: Trees and continuous mappings into the real line.Topology Appl. 12 (1981), no. 2, 181–185. Zbl 0457.54010, MR 0612014, 10.1016/0166-8641(81)90019-5
-
11Academic Journal
المؤلفون: Arhangel'skii, A. V.
مصطلحات موضوعية: keyword:remainder, keyword:compactification, keyword:topological group, keyword:$p$-space, keyword:Lindelöf $p$-space, keyword:metrizability, keyword:countable type, keyword:Lindelöf space, keyword:pseudocompact space, keyword:$\pi $-base, msc:54A25, msc:54B05
وصف الملف: application/pdf
Relation: mr:MR2433629; zbl:Zbl 1212.54086; reference:[1] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces.Mat. Sb. 67 (109) (1965), 55-88; English translation: Amer. Math. Soc. Transl. 92 (1970), 1-39. MR 0190889; reference:[2] Arhangel'skii A.V.: Classes of topological groups.Russian Math. Surveys 36 (3) (1981), 151-174. MR 0622722, 10.1070/RM1981v036n03ABEH004249; reference:[3] Arhangel'skii A.V.: Some connections between properties of topological groups and of their remainders.Moscow Univ. Math. Bull. 54:3 (1999), 1-6. MR 1711899; reference:[4] Arhangel'skii A.V.: Topological invariants in algebraic environment.in: Recent Progress in General Topology 2, eds. M. Hušek, Jan van Mill, North-Holland, Amsterdam, 2002, pp.1-57. Zbl 1030.54026, MR 1969992; reference:[5] Arhangel'skii A.V.: Remainders in compactifications and generalized metrizability properties.Topology Appl. 150 (2005), 79-90. Zbl 1075.54012, MR 2133669, 10.1016/j.topol.2004.10.015; reference:[6] Arhangel'skii A.V.: More on remainders close to metrizable spaces.Topology Appl. 154 (2007), 1084-1088. Zbl 1144.54001, MR 2298623, 10.1016/j.topol.2006.10.008; reference:[7] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780; reference:[8] Filippov V.V.: On perfect images of paracompact $p$-spaces.Soviet Math. Dokl. 176 (1967), 533-536. MR 0222853; reference:[9] Henriksen M., Isbell J.R.: Some properties of compactifications.Duke Math. J. 25 (1958), 83-106. Zbl 0081.38604, MR 0096196, 10.1215/S0012-7094-58-02509-2; reference:[10] Tkachenko M.G.: The Suslin property in free topological groups over compact spaces (Russian).Mat. Zametki 34 (1983), 601-607; English translation: Math. Notes 34 (1983), 790-793. MR 0722229; reference:[11] Roelke W., Dierolf S.: Uniform Structures on Topological Groups and their Quotients.McGraw-Hill, New York, 1981.
-
12Academic Journal
المؤلفون: Aliabad, Ali Rezaei
مصطلحات موضوعية: keyword:pasting topological spaces at one point, keyword:rings of continuous (bounded) real functions on $X$, keyword:$z$-ideal, keyword:$z^\circ $-ideal, keyword:$C$-embedded, keyword:$P$-space, keyword:$F$-space, msc:54B15, msc:54C40, msc:54C45, msc:54G05, msc:54G10
وصف الملف: application/pdf
Relation: mr:MR2280803; zbl:Zbl 1164.54338; reference:[1] A. R. Aliabad: $z^\circ $-ideals in $C(X)$.PhD. Thesis, 1996.; reference:[2] F. Azarpanah, O. A. S. Karamzadeh, and A. Rezaei Aliabad: On ideals consisting entirely of zero divisors.Comm. Algebra 28 (2000), 1061–1073. MR 1736781, 10.1080/00927870008826878; reference:[3] F. Azarpanah, O, A. S. Karamzadeh, and A. Rezaei Aliabad: On $z^o-ideals$ in $C(X)$.Fundamenta Math. 160 (1999), 15–25. MR 1694400; reference:[4] F. Azarpanah, O. A. S. Karamzadeh: Algebraic characterizations of some disconnected spaces.Italian J. Pure Appl. Math. 10 (2001), 9–20. MR 1962109; reference:[5] R. Engelking: General Topology.PWN—Polish Scientific Publishing, , 1977. Zbl 0373.54002, MR 0500780; reference:[6] A. A. Estaji, O, A. S. Karamzadeh: On $C(X)$ modulo its socle.Comm. Algebra 31 (2003), 1561–1571. MR 1972881, 10.1081/AGB-120018497; reference:[7] L. Gillman, M. Jerison: Rings of Continuous Functions.Van Nostrand Reinhold, New York, 1960. MR 0116199; reference:[8] M. Henriksen, R. G. Wilson: Almost discrete $SV$-space.Topology and its Application 46 (1992), 89–97. MR 1184107; reference:[9] M. Henriksen, S. Larson, J. Martinez, and R. G. Woods: Lattice-ordered algebras that are subdirect products of valuation domains.Trans. Amer. Math. Soc. 345 (1994), 195–221. MR 1239640, 10.1090/S0002-9947-1994-1239640-0; reference:[10] O. A. S. Karamzadeh, M. Rostami: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), 179–184. MR 0766552; reference:[11] S. Larson: $f$-rings in which every maximal ideal contains finitely many prime ideals.Comm. Algebra 25 (1997), 3859–3888. MR 1481572, 10.1080/00927879708826092; reference:[12] R. Levy: Almost $P$-spaces.Can. J. Math. 2 (1977), 284–288. Zbl 0342.54032, MR 0464203; reference:[13] S. Willard: General Topology.Addison Wesley, Reading, 1970. Zbl 0205.26601, MR 0264581
-
13Academic Journal
المؤلفون: Ghosh, Swapan Kumar
مصطلحات موضوعية: keyword:minimal prime ideal, keyword:$P$-space, keyword:$F$-space, keyword:$\mu$-compact space, keyword:$\phi $-compact space, keyword:$\phi '$-compact space, keyword:round subset, keyword:almost round subset, keyword:nearly round subset, msc:46E25, msc:46J20, msc:54C40
وصف الملف: application/pdf
Relation: mr:MR2337417; zbl:Zbl 1150.54018; reference:[1] Gillman L., Jerison M.: Rings of Continuous Functions.University Series in Higher Math., Van Nostrand, Princeton, New Jersey, 1960. Zbl 0327.46040, MR 0116199; reference:[2] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110-130. Zbl 0147.29105, MR 0194880; reference:[3] Johnson D.G., Mandelker M.: Functions with pseudocompact support.General Topology Appl. 3 (1973), 331-338. Zbl 0277.54009, MR 0331310; reference:[4] Mandelker M.: Round $z$-filters and round subsets of $\beta X$.Israel J. Math. 7 (1969), 1-8. Zbl 0174.25604, MR 0244951; reference:[5] Mandelker M.: Supports of continuous functions.Trans. Amer. Math. Soc. 156 (1971), 73-83. Zbl 0197.48703, MR 0275367
-
14Academic Journal
المؤلفون: Tkachenko, M.
مصطلحات موضوعية: keyword:$\Bbb R$-factorizable, keyword:totally bounded, keyword:$\omega $-narrow, keyword:complete, keyword:Lindelöf, keyword:$P$-space, keyword:realcompact, keyword:Dieudonné-complete, keyword:pseudo-$\omega _1$-compact, msc:22A05, msc:54C10, msc:54C45, msc:54D20, msc:54D60, msc:54G10, msc:54G20, msc:54H11
وصف الملف: application/pdf
Relation: mr:MR2281014; zbl:Zbl 1150.54035; reference:[1] Arhangel'skii A.V.: Topological Function Spaces.Math. Appl. (Soviet Series), 78, Kluwer, Dordrecht, 1992.; reference:[2] Clay E., Clark B., Schneider V.: Using a set to construct a group topology.Kyungpook Math. J. 37 (1997), 113-116. Zbl 0876.22003, MR 1454775; reference:[3] Comfort W.W.: Compactness-like properties for generalized weak topological sums.Pacific J. Math. 60 (1975), 31-37. Zbl 0307.54016, MR 0431088; reference:[4] Guran I.: On topological groups close to being Lindelöf.Soviet Math. Dokl. 23 (1981), 173-175. Zbl 0478.22002; reference:[5] Hernández C.: Topological groups close to being $\sigma$-compact.Topology Appl. 102 (2000), 101-111. MR 1739266; reference:[6] Hernández C., Tkachenko M.G.: Subgroups of $\Bbb R$-factorizable groups.Comment. Math. Univ. Carolin. 39 (1998), 371-378. MR 1651979; reference:[7] Leischner M.: Quotients of Raikov-complete topological groups.Note Mat. 13 (1993), 75-85. Zbl 0847.54030, MR 1283519; reference:[8] Tkachenko M.G.: Factorization theorems for topological groups and their applications.Topology Appl. 38 (1991), 21-37. Zbl 0722.54039, MR 1093863; reference:[9] Tkachenko M.G.: Subgroups, quotient groups and products of $\Bbb R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464; reference:[10] Tkachenko M.G.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960; reference:[11] Tkachenko M.G.: $\Bbb R$-factorizable groups and subgroups of Lindelöf $P$-groups.Topology Appl. 136 (2004), 135-167. Zbl 1039.54020, MR 2023415; reference:[12] Williams S.W.: Box products.in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, eds., Chapter 4, North-Holland, Amsterdam, 1984, pp.169-200. Zbl 0769.54008, MR 0776623
-
15Academic Journal
المؤلفون: Hernández, Constancio, Tkachenko, Michael
مصطلحات موضوعية: keyword:$P$-space, keyword:$P$-group, keyword:pseudo-$\omega _1$-compact, keyword:$\omega $-stable, keyword:$\Bbb R$-factorizable, keyword:$\aleph _0$-bounded, keyword:pseudocharacter, keyword:cellularity, keyword:$\aleph_ 0$-box topology, keyword:$\sigma $-product, msc:22A05, msc:54A25, msc:54C10, msc:54C25, msc:54G10, msc:54H11
وصف الملف: application/pdf
Relation: mr:MR2076867; zbl:Zbl 1100.54026; reference:[1] Arhangel'skii A.V.: Factorization theorems and function spaces: stability and monolithicity.Soviet Math. Dokl. 26 (1982), 177-181; Russian original in: Dokl. Akad. Nauk SSSR 265 (1982), 1039-1043. MR 0670475; reference:[2] Blair R.L., Hager A.W.: $z$-embeddings in $\beta X\times\beta Y$.Set-Theoretic Topology, Academic Press, New York, 1977, pp.47-72. MR 0440496; reference:[3] Comfort W.W.: Compactness-like properties for generalized weak topological sums.Pacific J. Math. 60 (1975), 31-37. Zbl 0307.54016, MR 0431088; reference:[4] Comfort W.W., Robertson L.: Extremal phenomena in certain classes of totally bounded groups.Dissertationes Math. 272 (1988), 1-48. Zbl 0703.22002, MR 0959432; reference:[5] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16 (1966), 483-496. Zbl 0214.28502, MR 0207886; reference:[6] Engelking R.: General Topology.Heldermann Verlag, 1989. Zbl 0684.54001, MR 1039321; reference:[7] Hernández C., Tkachenko M.: Subgroups of $\Bbb R$-factorizable groups.Comment. Math. Univ. Carolinae 39 (1998), 371-378. MR 1651979; reference:[8] Hernández S.: Algebras of real-valued continuous functions in product spaces.Topology Appl. 22 (1986), 33-42. MR 0831179; reference:[9] Noble M.: A note on $z$-closed projection.Proc. Amer. Math. Soc. 23 (1969), 73-76. MR 0246271; reference:[10] Noble M.: Products with closed projections.Trans. Amer. Math. Soc. 140 (1969), 381-391. Zbl 0192.59701, MR 0250261; reference:[11] Novak J.: On the Cartesian product of two compact spaces.Fund. Math. 40 (1953), 106-112. Zbl 0053.12404, MR 0060212; reference:[12] Schepin E.V.: Real-valued functions and canonical sets in Tychonoff products and topological groups.Russian Math. Surveys 31 (1976), 19-30.; reference:[13] Tkachenko M.: Subgroups, quotient groups and products of $\Bbb R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464; reference:[14] Tkachenko M.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960; reference:[15] Tkachenko M.: $\Bbb R$-factorizable groups and subgroups of Lindelöf $P$-groups.submitted. Zbl 1039.54020
-
16Academic Journal
المؤلفون: Henriksen, Melvin, Martínez, Jorge, Woods, R. Grant
مصطلحات موضوعية: keyword:quasi $P$-space, keyword:$P$-space, keyword:scattered space, keyword:Cantor-Bendixson derivatives, keyword:\newline nodec space, keyword:quasinormality, msc:06F25, msc:54C10, msc:54C40, msc:54D45, msc:54G10, msc:54G12, msc:54G99
وصف الملف: application/pdf
Relation: mr:MR2026163; zbl:Zbl 1098.54013; reference:[BSV81] Balcar B., Simon P., Vojtáš P.: Refinement properties and extensions of filters in boolean algebras.Trans. Amer. Math. Soc. 267 (1981), 265-283. MR 0621987, 10.1090/S0002-9947-1981-0621987-0; reference:[BH87] Ball R.N., Hager A.W.: Archimedean kernel-distinguishing extensions of archimedean $\ell$-groups with weak unit.Indian J. Math. 29 (3) (1987), 351-368. MR 0971646; reference:[BKW77] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneaux Réticulés.Lecture Notes in Math. 608, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653; reference:[Bl76] Blair R.L.: Spaces in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. Zbl 0359.54009, MR 0420542, 10.4153/CJM-1976-068-9; reference:[Bu80] Burke D.: Closed Mappings.Surveys in Gen. Topology, Academic Press, New York, 1980, pp.1-32. Zbl 0476.54017, MR 0564098; reference:[CH70] Comfort W., Hager A.: Estimates for the number of continuous functions.Trans. Amer. Math. Soc. 150 (1970), 619-631. MR 0263016, 10.1090/S0002-9947-1970-0263016-X; reference:[CM90] Conrad P., Martinez J.: Complemented lattice-ordered groups.Indag. Math. (N.S.) 1 (1990), 281-297. Zbl 0735.06006, MR 1075880, 10.1016/0019-3577(90)90019-J; reference:[D95] Darnel M.: Theory of Lattice-Ordered Groups.Pure & Appl. Math. 187, Marcel Dekker, New York, 1995. Zbl 0810.06016, MR 1304052; reference:[DF99] Dummit D.S., Foote R.M.: Abstract Algebra.2nd edition, Prentice Hall, 1999. Zbl 1037.00003, MR 1138725; reference:[vD93] van Douwen E.: Applications of maximal topologies.Topology Appl. 51 (1993), 125-139. Zbl 0845.54028, MR 1229708, 10.1016/0166-8641(93)90145-4; reference:[vDP79] van Douwen E., Pryzmusiński T.: First countable and countable spaces all compactifications of which contain $\beta \Bbb N$, Fund. Math.52 (1979), 229-234. MR 0532957, 10.4064/fm-102-3-229-234; reference:[En89] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321; reference:[GJ60] Gillman L., Jerison M.: Quotient fields of residue class rings of function rings.Illinois J. Math. 4 (1960), 425-436. Zbl 0098.30701, MR 0124727, 10.1215/ijm/1255456059; reference:[GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Grad. Texts Math. 43, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579; reference:[HM93] Hager A., Martinez J.: Fraction-dense algebras and spaces.Canad. J. Math. 45 (1993), 977-996. Zbl 0795.06017, MR 1239910, 10.4153/CJM-1993-054-6; reference:[HJ65] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110-130. Zbl 0147.29105, MR 0194880, 10.1090/S0002-9947-1965-0194880-9; reference:[HLMW94] Henriksen M., Larson S., Martinez J., Woods R.G.: Lattice-ordered algebras that are subdirect products of valuation domains.Trans. Amer. Math. Soc. 345 1 (September 1994), 195-221. Zbl 0817.06014, MR 1239640, 10.1090/S0002-9947-1994-1239640-0; reference:[HVW87] Henriksen M., Vermeer J., Woods R.G.: Quasi-$F$ covers of Tychonoff spaces.Trans. Amer. Math. Soc. 303 (2) (1987), 779-803. Zbl 0653.54025, MR 0902798; reference:[Ki01] Kimber C.: $m$-Quasinormal $f$-rings.J. Pure Appl. Algebra 158 (2001), 197-223. Zbl 0987.06017, MR 1822841, 10.1016/S0022-4049(00)00061-X; reference:[Ko89] Koppelberg S.: Handbook of Boolean Algebras, I.J.D. Monk, Ed., with R. Bonnet; Elsevier, Amsterdam-New York-Oxford-Tokyo, 1989. MR 0991565; reference:[La95] Larson S.: A characterization of $f$-rings in which the sum of semiprime $\ell$-ideals is semiprime and its consequences.Comm. Algebra 23 (1995), 14 5461-5481. Zbl 0847.06007, MR 1363616, 10.1080/00927879508825545; reference:[La97a] Larson S.: Quasi-normal $f$-rings.in Proc. Ord. Alg. Structures (Curaçao, 1995), W.C. Holland & J. Martinez, Eds., Kluwer Acad. Publ., Dordrecht, 1997, pp.261-275. Zbl 0872.06013, MR 1445116; reference:[La97b] Larson S.: $f$-Rings in which every maximal ideal contains finitely many minimal prime ideals.Comm. Algebra 25 (1997), 3859-3888. Zbl 0952.06026, MR 1481572, 10.1080/00927879708826092; reference:[Le77] Levy R.: Almost $P$-spaces.Canad. J. Math. 29 (1977), 284-288. Zbl 0342.54032, MR 0464203, 10.4153/CJM-1977-030-7; reference:[LR81] Levy R., Rice M.: Normal spaces and the $G_{\delta}$-topology.Colloq. Math. 44 (1981), 227-240. MR 0652582, 10.4064/cm-44-2-227-240; reference:[Mn69] Mandelker M.: $F'$-spaces and $z$-embedded subspaces.Pacific J. Math. 28 (1969), 615-621. Zbl 0172.47903, MR 0240782, 10.2140/pjm.1969.28.615; reference:[MR69] Mioduszewski J., Rudolph L.: $H$-closed and extremally disconnected Hausdorff spaces.Dissertationes Math. LXVI (1969, Warsaw).; reference:[Mo70] Montgomery R.: Structures determined by prime ideals of rings of functions.Trans. Amer. Math. Soc. 147 (1970), 367-380. Zbl 0222.54014, MR 0256174, 10.1090/S0002-9947-1970-0256174-4; reference:[Mo73] Montgomery R.: The mapping of prime $z$-ideals.Symp. Math. 17 (1973), 113-124. MR 0440495; reference:[Mr70] Mrowka S.: Some comments on the author's example of a non-R-compact space.Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443-448. MR 0268852; reference:[O80] Oxtoby J.: Measure and Category.2nd edition, Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl 0435.28011, MR 0584443; reference:[PW88] Porter J., Woods R.g.: Extensions and Absolutes of Hausdorff Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1988. Zbl 0652.54016, MR 0918341; reference:[vRS82] van Rooij A., Shikof W.: A Second Course in Real Analysis.Cambridge Univ. Press, Cambridge, England, 1982.; reference:[Se59] Semadeni Z.: Sur les ensembles clairsemés.Rozprawy Mat. 19 (1959), Warsaw. Zbl 0137.16002, MR 0107849; reference:[Se71] Semadeni Z.: Banach Spaces of Continuous Functions.Polish Scientific Publishers, Warsaw, 1971. Zbl 0478.46014, MR 0296671; reference:[T68] Telgársky R.: Total paracompactness and paracompact dispersed spaces.Bull. Acad. Polon. Sci. 16 (1968), 567-572. MR 0235517; reference:[Ve73] Veksler A.G.: $P'$-points, $P'$-sets and $P'$-spaces. A new class of order-continuous measures and functionals.Soviet Math. Dokl. 14 (1973), 1440-1445. MR 0341447; reference:[W75] Weir M.: Hewitt-Nachbin Spaces.North Holland Publ. Co., Amsterdam, 1975. Zbl 0314.54002, MR 0514909