-
1Academic Journal
المؤلفون: Bouzeffour, Fethi, Ben Mansour, Hanen, Zaghouani, Ali
مصطلحات موضوعية: keyword:$d$-orthogonal polynomials, keyword:matrix element, keyword:coherent state, keyword:hypergeometric function, keyword:Meixner polynomials, keyword:$d$-dimensional linear functional vector, msc:22E47, msc:33C45, msc:33D15
وصف الملف: application/pdf
Relation: mr:MR3632998; zbl:Zbl 06738504; reference:[1] Aptekarev, A. I.: Multiple orthogonal polynomials.J. Comput. Appl. Math. 99 (1998), 423-447. Zbl 0958.42015, MR 1662713, 10.1016/S0377-0427(98)00175-7; reference:[2] Arvesú, J., Coussement, J., Assche, W. Van: Some discrete multiple orthogonal polynomials.J. Comput. Appl. Math. 153 (2003), 19-45. Zbl 1021.33006, MR 1985676, 10.1016/S0377-0427(02)00597-6; reference:[3] Cheikh, Y. Ben, Lamiri, I.: On obtaining dual sequences via inversion coefficients.Proc. of the 4th workshop on advanced special functions and solutions of PDE's Sabaudia, Italy, 2009, Lecture Notes of Seminario Interdisciplinare di Mathematica {\it 9} A. Cialdea et al. (2010), 41-56. Zbl 1216.44003; reference:[4] Cheikh, Y. Ben, Zaghouani, A.: $d$-orthogonality via generating functions.J. Comput. Appl. Math. 199 (2007), 2-22. Zbl 1119.42009, MR 2267527, 10.1016/j.cam.2005.01.051; reference:[5] Bouzeffour, F., Zagouhani, A.: $q$-oscillator algebra and $d$-orthogonal polynomials.J. Nonlinear Math. Phys. 20 (2013), 480-494. MR 3196458, 10.1080/14029251.2013.868262; reference:[6] Genest, V. X., Miki, H., Vinet, L., Zhedanov, A.: The multivariate Charlier polynomials as matrix elements of the Euclidean group representation on oscillator states.J. Phys. A, Math. Theor. 47 (2014), Article ID 215204, 16 pages. Zbl 1296.33025, MR 3207168, 10.1088/1751-8113/47/21/215204; reference:[7] Genest, V. X., Vinet, L., Zhedanov, A.: $d$-orthogonal polynomials and $\frak {su}$ (2).J. Math. Anal. Appl. 390 (2012), 472-487. Zbl 1238.33004, MR 2890531, 10.1016/j.jmaa.2012.02.004; reference:[8] Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their $q$-analogues.Springer Monographs in Mathematics, Springer, Berlin (2010). Zbl 1200.33012, MR 2656096, 10.1007/978-3-642-05014-5; reference:[9] Lamiri, I., Ouni, A.: $d$-orthogonality of some basic hypergeometric polynomials.Georgian Math. J. 20 (2013), 729-751. Zbl 1282.33027, MR 3139281, 10.1515/gmj-2013-0039; reference:[10] Maroni, P.: L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux.Ann. Fac. Sci. Toulouse, Math. (5) 11 French (1989), 105-139. Zbl 0707.42019, MR 1425747, 10.5802/afst.672; reference:[11] Plyushchay, M. S.: Deformed Heisenberg algebra with reflection.Nuclear Physics B 491 (1997), 619-634. Zbl 0937.81034, MR 1449322, 10.1016/S0550-3213(97)00065-5; reference:[12] Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillators calculus.Nonselfadjoint Operators and Related Topics. Workshop on Operator Theory and Its Applications Beersheva, Israel, 1992, Oper. Theory Adv. App. 73, Birkhäuser, Basel (1994), 369-396 A. Feintuch et al. Zbl 0826.33005, MR 1320555, 10.1007/978-3-0348-8522-5_15; reference:[13] Assche, W. Van, Coussement, E.: Some classical multiple orthogonal polynomials.J. Comput. Appl. Math. 127 (2001), 317-347. Zbl 0969.33005, MR 1808581, 10.1016/S0377-0427(00)00503-3; reference:[14] Iseghem, J. Van: Laplace transform inversion and Padé-type approximants.Appl. Numer. Math. 3 (1987), 529-538. Zbl 0634.65129, MR 0918793, 10.1016/S0377-0427(00)00503-3; reference:[15] Vinet, L., Zhedanov, A.: Automorphisms of the Heisenberg-Weyl algebra and $d$-orthogonal polynomials.J. Math. Phys. 50 (2009), Article No. 033511, 19 pages. Zbl 1202.33018, MR 2510916, 10.1063/1.3087425