يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"keyword:$A$-normal operator"', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR4407350; zbl:Zbl 07547248; reference:[1] Abood, E. H., Al-loz, M. A.: On some generalization of normal operators on Hilbert space.Iraqi J. Sci. 56 (2015), 1786-1794.; reference:[2] Abood, E. H., Al-loz, M. A.: On some generalizations of $(n,m)$-normal powers operators on Hilbert space.J. Progressive Res. Math. (JPRM) 7 (2016), 1063-1070.; reference:[3] Alzuraiqi, S. A., Patel, A. B.: On $n$-normal operators.Gen. Math. Notes 1 (2010), 61-73. Zbl 1225.47023; reference:[4] Arias, M. L., Corach, G., Gonzalez, M. C.: Metric properties of projections in semi-Hilbertian spaces.Integral Equations Oper. Theory 62 (2008), 11-28. Zbl 1181.46018, MR 2442900, 10.1007/s00020-008-1613-6; reference:[5] Arias, M. L., Corach, G., Gonzalez, M. C.: Partial isometries in semi-Hilbertian spaces.Linear Algebra Appl. 428 (2008), 1460-1475. Zbl 1140.46009, MR 2388631, 10.1016/j.laa.2007.09.031; reference:[6] Arias, M. L., Corach, G., Gonzalez, M. C.: Lifting properties in operator ranges.Acta Sci. Math. 75 (2009), 635-653. Zbl 1212.46048, MR 2590353; reference:[7] Baklouti, H., Feki, K., Ahmed, O. A. M. Sid: Joint normality of operators in semi-Hilbertian spaces.Linear Multilinear Algebra 68 (2020), 845-866. Zbl 07178188, MR 4072783, 10.1080/03081087.2019.1593925; reference:[8] Bavithra, V.: $(n,m)$-power quasi normal operators in semi-Hilbertian spaces.J. Math. Informatics 11 (2017), 125-129. 10.22457/jmi.v11a16; reference:[9] Benali, A., Ahmed, O. A. M. Sid: $(\alpha,\beta)$-$A$-normal operators in semi-Hilbertian spaces.Afr. Mat. 30 (2019), 903-920. Zbl 07101153, MR 3993640, 10.1007/s13370-019-00690-3; reference:[10] Chellali, C., Benali, A.: Class of $(A,n)$-power-hyponormal operators in semi-Hilbertian space.Func. Anal. Approx. Comput. 11 (2019), 13-21. Zbl 07158992, MR 4069434; reference:[11] Chō, M., Lee, J. E., Tanahashic, K., Uchiyamad, A.: Remarks on $n$-normal operators.Filomat 32 (2018), 5441-5451. MR 3898586, 10.2298/FIL1815441C; reference:[12] Chō, M., Načevska, B.: Spectral properties of $n$-normal operators.Filomat 32 (2018), 5063-5069. MR 3898553, 10.2298/FIL1814063C; reference:[13] Douglas, R. G.: On majorization, factorization, and range inclusion of operators in Hilbert space.Proc. Am. Math. Soc. 17 (1966), 413-415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1; reference:[14] Jah, S. H.: Class of $(A,n)$-power quasi-normal operators in semi-Hilbertian spaces.Int. J. Pure Appl. Math. 93 (2014), 61-83. Zbl 1331.47034, 10.12732/ijpam.v93i1.6; reference:[15] Jibril, A. A. S.: On $n$-power normal operators.Arab. J. Sci. Eng., Sect. A, Sci. 33 (2008), 247-251. Zbl 1182.47025, MR 2467186; reference:[16] Mary, J. S. I., Vijaylakshmi, P.: Fuglede-Putnam theorem and quasi-nilpotent part of $n$-normal operators.Tamkang J. Math. 46 (2015), (151-165). Zbl 1323.47023, MR 3352354, 10.5556/j.tkjm.46.2015.1665; reference:[17] Saddi, A.: $A$-normal operators in semi-Hilbertian spaces.Aust. J. Math. Anal. Appl. 9 (2012), Article ID 5, 12 pages. Zbl 1259.47022, MR 2878497; reference:[18] Ahmed, O. A. M. Sid, Benali, A.: Hyponormal and $k$-quasi-hyponormal operators on semi-Hilbertian spaces.Aust. J. Math. Anal. Appl. 13 (2016), Article ID 7, 22 pages. Zbl 1348.47022, MR 3513410; reference:[19] Ahmed, O. A. M. Sid, Ahmed, O. B. Sid: On the classes $(n,m)$-power $D$-normal and $(n,m)$-power $D$-quasi-normal operators.Oper. Matrices 13 (2019), 705-732. Zbl 07142373, MR 4008507, 10.7153/oam-2019-13-51; reference:[20] Ahmed, O. B. Sid, Ahmed, O. A. M. Sid: On the class of $n$-power $D$-$m$-quasi-normal operatos on Hilbert spaces.Oper. Matrices 14 (2020), 159-174. Zbl 07347976, MR 4080931, 10.7153/oam-2020-14-13; reference:[21] Suciu, L.: Orthogonal decompositions induced by generalized contractions.Acta Sci. Math. 70 (2004), 751-765. Zbl 1087.47010, MR 2107539

  2. 2
    Academic Journal

    المؤلفون: Lauric, Vasile

    وصف الملف: application/pdf

    Relation: mr:MR3881902; zbl:Zbl 07031703; reference:[1] Lauric, V.: Remarks on hyponormal operators and almost normal operators.Matematiche (Catania) 72 (2017), 3-8. MR 3666546; reference:[2] Pasnicu, C.: Weighted shifts as direct summands mod $\mathcal C_2$ of normal operators.Dilation Theory, Toeplitz operators, and Other Topics 7th Int. Conf. Oper. Theory, Timisoara, 1982, Oper. Theory, Adv. Appl. {\it 11} (1983) 275-281. Zbl 0527.47021, MR 0789643; reference:[3] Putinar, M.: Hyponormal operators are subscalar.J. Oper. Theory 12 (1984), 385-395. Zbl 0573.47016, MR 0757441; reference:[4] Voiculescu, D.: Hilbert space operators modulo normed ideals.Proc. Int. Congr. Math. Warszawa, 1983 2 (1984), 1041-1047. Zbl 0594.46063, MR 0804756; reference:[5] Voiculescu, D. V.: Almost normal operators mod Hilbert-Schmidt and the $K$-theory of the Banach algebras $E\Lambda(\Omega)$.J. Noncommut. Geom. 8 (2014), 1123-1145. Zbl 1325.46074, MR 3310942, 10.4171/JNCG/181

  3. 3
    Academic Journal

    المؤلفون: Othman, Sadoon Ibrahim

    وصف الملف: application/pdf

    Relation: mr:MR1400605; zbl:Zbl 0863.47016; reference:[1] A. Brown: On a class of operators.Proc Amer. Math. Soc 4 (1953), 723-728. Zbl 0051.34303, MR 0059483, 10.1090/S0002-9939-1953-0059483-2; reference:[2] J. B. Conway: Subnormal Operators.Pitman Publishing Inc., London, 1981. Zbl 0474.47013, MR 0634507; reference:[3] N. Dunford, J. Schwartz: Linear Operators, Part II.Interscience, New York, 1963. Zbl 0128.34803, MR 0188745; reference:[4] P. R. Halmos: Normal dilations and extensions of operators.Summa Brasil. Math. 2 (1950), 125-134. MR 0044036; reference:[5] V. I. Istrătescu: Introduction to Linear Operator Theory.Marcel Dekker, Inc., New York, 1981. MR 0608969

  4. 4
    Academic Journal

    المؤلفون: Kojecký, Tomáš

    وصف الملف: application/pdf

    Relation: mr:MR1072606; zbl:Zbl 0726.65059; reference:[1] N. Dunford J. T. Schwartz: Linear Operators I, II.Interscience, New York (1958).; reference:[2] T. Kojecký: Iterative solution of eigenvalue problems for normal operator.Apl. rnat. 35 (1990), 158-161. MR 1042851; reference:[3] T. Kojecký: On a certain class of always convergent sequences and the Rayleigh quotient iteration.AUPO F.R.N. (1988), 85-90. MR 1039885; reference:[4] J. Kolomý: On determination of eigenvalues and eigenvectors of self-adjoint operators.Apl. mat. 26 (1981), 161-170. MR 0615603