يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '"iterative numerical methods"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Mathematics; Volume 10; Issue 7; Pages: 1012

    وصف الملف: application/pdf

    Relation: Computational and Applied Mathematics; https://dx.doi.org/10.3390/math10071012

  4. 4
  5. 5
    Dissertation/ Thesis

    المؤلفون: Prescott, Alexander B.

    المساهمون: Pelletier, Jon D., Baker, Victor R., McGuire, Luke A., Yin, Jianjun

    Relation: Prescott, Alexander B. (2024). Novel Numerical Methods and Future Projections in Debris-Flow Hazard Assessments, Overland Flow Routing, and Global Suspended Sediment Fluxes (Doctoral dissertation, University of Arizona, Tucson, USA).; http://hdl.handle.net/10150/672678

  6. 6
  7. 7
  8. 8
    Academic Journal
  9. 9
  10. 10
  11. 11
    Academic Journal

    المصدر: Parakkal Unni , M , Chandra , M G & Anil Kumar , A 2017 , Memory reduction for numerical solution of differential equations using compressive sensing . in 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA 2017) : 10 -12 March 2017, Penang, Malaysia . IEEE , New York , pp. 79-84 . https://doi.org/10.1109/CSPA.2017.8064928

  12. 12
    Academic Journal

    وصف الملف: application/pdf

    Relation: Gupta, Rohit; Bloch, Anthony M.; Kolmanovsky, Ilya V. (2017). "Combined homotopy and neighboring extremal optimal control." Optimal Control Applications and Methods 38(3): 459-469.; http://hdl.handle.net/2027.42/137623; Optimal Control Applications and Methods; Mereau PM, Powers WF. Conjugate point properties for linear quadratic problems. Journal of Mathematical Analysis and Applications. 1976; 55 ( 2 ): 418 – 433.; Dontchev AL, Hager WW. Lipschitzian stability in nonlinear control and optimization. SIAM Journal on Control and Optimization. 1993; 31 ( 3 ): 569 – 603.; Dontchev AL, Hager WW, Poore AB, Yang B. Optimality, stability, and convergence in nonlinear control. Applied Mathematics and Optimization. 1995; 31 ( 3 ): 297 – 326.; Dontchev AL, Hager WW. Lipschitzian stability for state constrained nonlinear optimal control. SIAM Journal on Control and Optimization. 1998; 36 ( 2 ): 698 – 718.; Schättler H, Ledzewicz U. Geometric Optimal Control: Theory, Methods and Examples. Springer Science & Business Media: New York, 2012.; Speyer JL, Jacobson DH. Primer on Optimal Control Theory. SIAM: Philadelphia, 2010.; Agrachev AA, Sachkov YL. Control Theory from the Geometric Viewpoint. Springer Science & Business Media: Heidelberg, 2004.; Breakwell JV, Yu‐Chi H. On the conjugate point condition for the control problem. International Journal of Engineering Science. 1965; 2 ( 6 ): 565 – 579.; Caroff N, Frankowska H. Conjugate points and shocks in nonlinear optimal control. Transactions of the American Mathematical Society. 1996; 348 ( 8 ): 3133 – 3153.; Loewen PD, Zheng H. Generalized conjugate points for optimal control problems. Nonlinear Analysis: Theory, Methods & Applications. 1994; 22 ( 6 ): 771 – 791.; Zeidan V, Zezza P. The conjugate point condition for smooth control sets. Journal of Mathematical Analysis and Applications. 1988; 132 ( 2 ): 572 – 589.; Zeidan V, Zezza P. Conjugate points and optimal control: counterexamples. IEEE Transactions on Automatic Control. 1989; 34 ( 2 ): 254 – 255.; Zeidan V. The Riccati equation for optimal control problems with mixed state‐control constraints: necessity and sufficiency. SIAM Journal on Control and Optimization. 1994; 32 ( 5 ): 1297 – 1321.; Bertrand R, Epenoy R. New smoothing techniques for solving bang‐bang optimal control problems numerical results and statistical interpretation. Optimal Control Applications and Methods. 2002; 23 ( 4 ): 171 – 197.; Silva C, Trélat E. Smooth regularization of bang‐bang optimal control problems. IEEE Transactions on Automatic Control. 2010; 55 ( 11 ): 2488 – 2499.; Davison EJ, Maki MC. The numerical solution of the matrix Riccati differential equation. IEEE Transactions on Automatic Control. 1973; 18 ( 1 ): 71 – 73.; Abou‐Kandil H, Freiling G, Ionescu V, Jank G. Matrix Riccati Equations in Control and Systems Theory. Birkhäuser, 2012.; Frankowska H. 2002. Value function in optimal control. In Mathematical Control Theory, Lecture Notes, Agrachev AA (ed.)., International Centre for Theoretical Physics, vol. 8; 515 – 653.; Betts JT. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics. 1998; 21 ( 2 ): 193 – 207.; Rao AV. A survey of numerical methods for optimal control. Advances in the Astronautical Sciences. 2009; 135 ( 1 ): 497 – 528.; Ben‐Asher JZ. Optimal Control Theory with Aerospace Applications. American Institute of Aeronautics and Astronautics, 2010.; Hauser J, Meyer DG. Trajectory morphing for nonlinear systems. In Proceedings of American Control Conference: Philadelphia, 1998; 2065 – 2070.; Graichen K, Petit N. A continuation approach to state and adjoint calculation in optimal control applied to the reentry problem. In Proceedings of IFAC World Congress: Seoul, 2008; 14307 – 14312.; Olympio JT. A second‐order gradient solver using a homotopy method for space trajectory problems. In Proceedings of AIAA/AAS Astrodynamics Specialist Conference: Toronto, 2010; AIAA 2010 – 7827.; Hatcher A. Algebraic Topology. Cambridge University Press: Cambridge, 2002.; Allgower EL, Georg K. Numerical Continuation Methods: An Introduction. Springer Science & Business Media: Berlin, 1990.; Trélat E. Optimal control and applications to aerospace: some results and challenges. Journal of Optimization Theory and Applications. 2012; 154 ( 3 ): 713 – 758.; Bonilla J, Diehl M, Logist F, De Moor B, Van Impe JF. A convexity‐based homotopy method for nonlinear optimization in model predictive control. Optimal Control Applications and Methods. 2010; 31 ( 5 ): 393 – 414.; Caillau JB, Cots O, Gergaud J. Differential continuation for regular optimal control problems. Optimization Methods and Software. 2012; 27 ( 2 ): 177 – 196.; Kim M. Continuous low‐thrust trajectory optimization: techniques and applications. Ph.D. Thesis, Virginia Polytechnic Institute and State University, 2005.; Rostalski P, Fotiou IA, Bates DJ, Beccuti AG, Morari M. Numerical algebraic geometry for optimal control applications. SIAM Journal on Optimization. 2011; 21 ( 2 ): 417 – 437.; Zhulin SS. Homotopy method for finding extremals in optimal control problems. Differential Equations. 2007; 43 ( 11 ): 1495 – 1504.; Bloch AM. Nonholonomic Mechanics and Control. Springer Science & Business Media: New York, 2015.; Bryson AE. Applied Optimal Control: Optimization, Estimation and Control. CRC Press: Boca Raton, 1975.

  13. 13
    Academic Journal

    وصف الملف: application/pdf

    Relation: Hudson, Jennifer; Gupta, Rohit; Li, Nan; Kolmanovsky, Ilya (2017). "Iterative model and trajectory refinement for orbital trajectory optimization." Optimal Control Applications and Methods 38(6): 1132-1147.; http://hdl.handle.net/2027.42/139923; Optimal Control Applications and Methods; Isidori A, Astolfi A. Disturbance attenuation and H ∞ control via measurement feedback in nonlinear systems. IEEE Trans Autom Control. 1992; 37 ( 9 ): 1283 ‐ 1293.; Gupta R, Hudson J, Bloch AM, Kolmanovsky IV. Optimal control of manifold filling during VDE mode transitions. Proceedings of the 52nd IEEE Conference on Decision and Control. Florence, Italy; 2013: 2227 – 2232.; Clohessy WH, Wiltshire RS. Terminal guidance system for satellite rendezvous. J Aerosp Sci. 1960; 27 ( 9 ): 653 ‐ 658.; Hudson J, Kolmanovsky I. Iterative model refinement for orbital trajectory optimization. Proceedings of 2012 AAS/AIAA Space Flight Mechanics Meeting. Charleston, SC; 2012: 1933 – 1950.; Hudson J, Kolmanovsky IV. Iterative model and trajectory refinement for attitude and shape control of a dumbbell spacecraft. Proceedings of 2013 AAS/AIAA Astrodynamics Specialist Conference. Hilton Head, South Carolina; Summer August 11, 2013. Paper AAS 13‐890: 2787 – 2796.; Frihauf P, Krstic M, Basar T. Finite‐horizon LQ control for unknown discrete‐time linear systems via extremum seeking. Proceedings of 51st IEEE Conference on Decision and Control (CDC), vol. 10‐13. Maui, HI; December 2012: 5717 ‐ 5722. doi:10.1109/CDC.2012.6426052; Gunnarsson S, Norrlof M. On the design of ILC algorithms using optimization. Automatica. 2001; 37 ( 12 ): 2011 ‐ 2016. ISSN 0005‐1098, 10.1016/S0005‐1098(01)00154‐6; Lee JH, Lee KS, Kim WC. Model‐based iterative learning control with a quadratic criterion for time‐varying linear systems. Autom. 2000; 36 ( 5 ): 641 ‐ 657. ISSN 0005‐1098, 10.1016/S0005‐1098(99)00194‐6; Luus R. On the application of iterative dynamic programming to singular optimal control problems. IEEE Trans Autom Control. 1992; 37 ( 11 ): 1802 ‐ 1806. doi:10.1109/9.173155; Hofer EP, Tibken B. An iterative method for the finite‐time bilinear‐quadratic control problem. J Optim Theory Appl. 1998; 57 ( 3 ): 411 ‐ 427. doi:10.1007/BF02346161; Ying YQ, Rao M, Sun Y. Suboptimal control for bilinear systems. Optimal Control Appl Methods. 1993; 14 ( 3 ): 195 ‐ 201. 10.1002/oca.4660140305; Aganovic Z, Gajic Z. The successive approximation procedure for finite‐time optimal control of bilinear systems. IEEE Trans Autom Control. 1994; 39 ( 9 ): 1932 ‐ 1935. doi:10.1109/9.317128; Lee S, Lee K. Bilinear systems controller design with approximation techniques. J Chungcheong Math Soc. 2005; 18 ( 1 ): 101 – 116.; Conway BA. Spacecraft Trajectory Optimization. Cambridge: Cambridge University Press; 2010.; Boltyanski VG, Poznyak AS. The Robust Maximum Principle: Theory and Applications. New York: Birkhäuser Mathematics; 2012.; Wie B. Space Vehicle Dynamics and Control. Reston, VA: AIAA; 1998.; Polk JE, Brinza D, Kakuda RY, et al. Demonstration of the NSTAR ion propulsion system on the Deep Space One mission. Proceedings of the 27th International Electric Propulsion Conference. Pasadena, CA; October 2001. also Paper 01‐075.; Patterson MJ, Benson SW. NEXT ion propulsion system development status and performance. Proceedings of the 43rd Joint Propulsion Conference and Exhibit. Cincinnati, OH; 2007. also Paper 2007‐5199.; Florenz RE, Hall SJ, Gallimore AD, et al. First firing of a 100‐kW nested‐channel hall thruster. Proceedings of the 33rd International Electric Propulsion Conference. Washington, DC; 2013: 27 – 40. IEPC‐2013‐394.; Betts JT. Very low‐thrust trajectory optimization using a direct SQP method. J Comput Appl Math. 27 ‐ 40; 120.; Hudson J, Kolmanovsky IV, Hong J, et al. Iterative model and trajectory refinement for launch optimization of automotive powertrains. Proceedings of 15th IFAC Workshop on Control Applications of Optimization. Rimini, Italy; September 2012: 147 – 151.

  14. 14
    Academic Journal

    المساهمون: School of Computer Engineering

    وصف الملف: 11 p.; application/pdf

    Relation: IEEE Transactions on Parallel and Distributed Systems; Rafique, A., Constantinides, G. A., & Kapre, N. (2015). Communication Optimization of Iterative Sparse Matrix-Vector Multiply on GPUs and FPGAs. IEEE Transactions on Parallel and Distributed Systems, 26(1), 24-34.; https://hdl.handle.net/10356/81168; http://hdl.handle.net/10220/39128

  15. 15
    Academic Journal

    المؤلفون: Akimova, Elena N., Belousov, D. V.

    المصدر: Journal of Computational Science

    وصف الملف: application/pdf

    Relation: Akimova E. N. Parallel algorithms for solving linear systems with block-tridiagonal matrices on multi-core CPU with GPU / Elena N. Akimova, D. V. Belousov // Journal of Computational Science. — 2012. — Vol. 3. — № 6. — P. 445-449.; 49aeb492-25cb-4f1d-a5b2-b29d70e5e45f; http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84867209814; http://elar.urfu.ru/handle/10995/51207; 84867209814

  16. 16
  17. 17
  18. 18
  19. 19
    Electronic Resource