يعرض 1 - 20 نتائج من 68 نتيجة بحث عن '"intrinsic absorption"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, Iss 15, Pp 189-195 (2023)

    وصف الملف: electronic resource

  2. 2
    Academic Journal
  3. 3
    Dissertation/ Thesis

    جغرافية الموضوع: Colombia, http://vocab.getty.edu/page/tgn/1000050

    وصف الملف: xviii, 135 páginas; application/pdf

    Relation: Agencia Nacional de Hidrocarburos (ANH). (2018). Datos de campos petroleros.; Aki, K. (1969). Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves. Journal of Geophysical Research, 74(2), 615–631.; Aki, K., & Chouet, B. (1975). Origin of coda waves: Source, attenuation, and scattering effects. Journal of Geophysical Research, 80(23), 3322–3342. https://doi.org/10.1029/JB080i023p03322; Angel-Martínez, C. E., Prieto-Grómez, G. A., Cristancho-Mejía, F., Sarmiento-Orjuela, A. M., Vargas-Quintero, J. A., Delgado-mateus, C. J., Toores-Rojas, E., Castelblanco-Ossa, C. A., Camargo-Rache, G. L., Amazo-Gómez, D. F., Cipagauta-Mora, J. B., Lucuara-Reyes, E. D., Ávila-López, K. L., Fracica-González, L. R., Martín-Ravelo, A. S., Atuesta-Ortiz, D. A., García-Romero, D. F., Triviño Cediel, R. J., Jaimes Villareal, V. N., & Alarcón Rodríguez, W. F. (2020). Proyecto MEGIA: Modelo Geológico-Geofísico del Valle Medio del Magdalena. Producto No.5.; ANH, & SGC. (2016). Informe final del Convenio interadministrativo 194 ANH-014 SGC, entre la Agencia Nacional de Hidrocarburos y el Servicio Geológico Colombiano.; Arias, A., & Vargas, R. (1978). Geología de las Planchas 86 Abrego y 97 Cáchira Escala 1:100000. Boletin Geológico, Vol. 23(2), 3–38.; Barrero, D., Pardo, A., Vargas, C., & Martínez, J. (2007). Colombian Sedimentary Basins (Issue June).; Barton, N. (2007). ROCK QUALITY, SEISMIC VELOCITY, ATTENUATION AND ANISOTROPY. Taylor & Francis Group.; Bouchaala, F., Ali, M. Y., Matsushima, J., Bouzidi, Y., Jouini, M. S., Takougang, E. M., & Mohamed, A. A. (2022). Estimation of Seismic Wave Attenuation from 3D Seismic Data: A Case Study of OBC Data Acquired in an Offshore Oilfield. Energies, 15(2), 1–17. https://doi.org/10.3390/en15020534; Butler, R. W. H. (2013). Area balancing as a test of models for the deep structure of mountain belts, with specific reference to the Alps. Journal of Structural Geology, 52(1), 2–16. https://doi.org/10.1016/j.jsg.2013.03.009; Cañas, H., Pérez, O., Ruíz, D., Herrera, W., Morales, C., & Alvarado, S. (2019). Modelo hidrogeológico conceptual Valle Medio del Magdalena Planchas 108 y 119 Puerto Wilches, Barrancabermeja, Sabana de Torres y San Vicente de Chucurí. 366. https://srvags.sgc.gov.co/PortalWeb/ModeloHidrogeologicoVMM/Documento/PDF/InfoMHCVMMPl108-119.pdf; Carboni, F., Back, S., & Barchi, M. R. (2019). Application of the ADS method to predict a “ idden” basal detac ent: W orneo old-and-thrust belt. Journal of Structural Geology, 118(August 2018), 210–223. https://doi.org/10.1016/j.jsg.2018.10.011; Carcolé, E., & Sato, H. (2010). Spatial distribution of scattering loss and intrinsic absorption of short-period S waves in the lithosphere of Japan on the basis of the Multiple Lapse Time Window Analysis of Hi-net data. Geophysical Journal International, 180(1), 268–290. https://doi.org/10.1111/j.1365-246X.2009.04394.x; Chandrasekhar, S. (1960). Radiative transfer. Dover Publications. https://doi.org/LK - https://worldcat.org/title/335528; Chiarabba, C., Piccinini, D., & de Gori, P. (2009). Velocity and attenuation tomography of the Umbria Marche 1997 fault system: Evidence of a fluid-governed seismic sequence. Tectonophysics, 476(1–2), 73–84. https://doi.org/10.1016/j.tecto.2009.04.004; Cooper, M. A., Addison, R., Álvarez, M., Coral, R., Graham, A. ., Hayward, S., Martínez, J., Naar, J., Peñas, R., Pulham, A. ., & Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10), 1421–1443.; Dainty, A. M. (1981). A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophysical Research Letters, 8(11), 1126–1128. https://doi.org/10.1029/GL008i011p01126; Del Pezzo, E., Ibañez, J., Prudencio, J., Bianco, F., & Siena, L. De. (2016). Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions. Geophysical Journal International, 206(2), 742–756. https://doi.org/10.1093/gji/ggw171; Diao, Y., & Espinosa-Marzal, R. M. (2018). The role of water in fault lubrication. Nature Communications, 9(1), 2309. https://doi.org/10.1038/s41467-018-04782-9; Egan, S. S., Buddin, T. S., Kane, S., & Williams, G. D. (1997). Three-dimensional modelling and visualisation in structural geology: New techniques for the restoration and balancing of volumes. The 1996 Geoscience Information Group Conference On Geological Visualisation, Electron Geology, January 2016, 67–82.; Ellsworth, W. L. (2013). Injection-Induced Earthquakes. Science, 341(6142), 250–260. https://doi.org/10.1126/science.1225942; Epard, J. L., & Groshong, R. H. (1993). Excess area and depth to detachment. In American Association of Petroleum Geologists Bulletin (Vol. 77, Issue 8, pp. 1291–1302). https://doi.org/10.1306/bdff8e66-1718-11d7-8645000102c1865d; Erslev, E. A. (1991). Trishear fault-propagation folding. Geology, 19(6), 617–620. https://doi.org/10.1130/0091-7613(1991)0192.3.CO;2; Etayo-Serna, F. (1983). Mapa de terrenos geológicos de Colombia (No. 14) (P. G. Especial (ed.); 14th ed.). Ingeominas.; Eulenfeld, T., & Wegler, U. (2016). Measurement of intrinsic and scattering attenuation of shear waves in two sedimentary basins and comparison to crystalline sites in Germany. Geophysical Journal International, 205(2), 744–757. https://doi.org/10.1093/gji/ggw035; Eulenfeld, T., & Wegler, U. (2017). Crustal intrinsic and scattering attenuation of high-frequency shear waves in the contiguous United States. Journal of Geophysical Research: Solid Earth, 122(6), 4676–4690. https://doi.org/10.1002/2017JB014038; Fehler, M., Hoshiba, M., Sato, H., & Obara, K. (1992). Separation of scattering and intrinsic attenuation for the Kanto‐Tokai region, Japan, using measurements of S‐wave energy versus hypocentral distance. Geophysical Journal International, 108(3), 787–800. https://doi.org/10.1111/j.1365-246X.1992.tb03470.x; Fonseca, H. A., Fuquen, J. A., Mesa, L. D. (UPTC), Talero, C. A. (UPTC), Pérez, O. G. (UPTC), Porras, J. J. (UPTC), & Gavidia, O. (UPTC). (2012). Cartografía geológica de la plancha 108 – “puerto wilc es” escala 1:100.000. Ingeominas, 165.; Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178(January 2017), 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008; Gabrielli, S., Akinci, A., Ventura, G., & Napolitano, F. (2022). Fast Changes in Seismic Attenuation of the Upper Crust due to Fracturing and Fluid Migration : The 2016 – 2017 Central Italy Seismic Sequence. 10(June), 1–18. https://doi.org/10.3389/feart.2022.909698; García-Delgado, H., & Velandia, F. (2020). Tectonic geomorphology of the Serranía de San Lucas (Central Cordillera): Regional implications for active tectonics and drainage rearrangement in the Northern Andes. Geomorphology, 349, 106914. https://doi.org/10.1016/j.geomorph.2019.106914; García, D. (2001). Atenuación sísmica. Aplicación a terremotos intraplaca en México Central. Universidad Complutense de Madrid.; Goebel, T. H. W., & Brodsky, E. E. (2018). The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 361(6405), 899–904. https://doi.org/10.1126/science.aat5449; Gómez, E., Jordan, T. E., Allmendinger, R. W., Hegarty, K., & Kelley, S. (2005). Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Bulletin of the Geological Society of America, 117(5–6), 547–569. https://doi.org/10.1130/B25454.1; Gómez, L. A., Patiño, A., Renzoni, G., Beltrán, A., Quintero, C., & Manrique, M. (2008). Cartografía Geológica y Muestreo Geoquímico escala 1:100.000 de las Planchas 119 Barrancabermeja, 134 Puerto Parra, 149 Puerto Serviez y 150 Cimitarra del Valle Medio del Río Magdalena 11. 95. http://aplicaciones1.sgc.gov.co/sicat/html/ConsultaBasica.aspx; Greaves, R. J., & Fulp, T. J. (1987). Three-dimensional seismic monitoring of an enhanced oil recovery process. Environment International, 12(1–4), V–VI. https://doi.org/10.1016/0160-4120(86)90083-8; Groshong, R. H. (2006). Structural Validation, Restoration, and Prediction. In 3-D Structural Geology (2nd ed.). Springer.; Guerrero, J., Mejía-Molina, A., & Osorno, J. (2020). Biomicrite, Marlstone, and Shale Properties: Exploration of Nonconventional Hydrocarbons in the Cretaceous Colombian Back–Arc Basin. In J. G. Tapias & A. O. Pinilla-Pachón (Eds.), The Geology of Colombia (Vol. 2, pp. 299–333). Publicaciones Geológicas Especiales 36. https://doi.org/10.32685/pub.esp.36.2019.09; Guo, H., & Thurber, C. (2021). Double-difference seismic attenuation tomography method and its application to the Geysers geothermal field, California. Geophysical Journal International, 225(2), 926–949. https://doi.org/10.1093/gji/ggab017; Guzmán, R. (2011). Potential Resources of Unconventional Hydrocarbons in Colombia. In ANH Unconventional Hydrocarbons Workshop (pp. 1–13). Arthur D. Little, Inc.; Harris, J. M., Yin, F., & Quan, Y. (1996). Enhanced oil recovery monitoring using P-wave attenuation. 1996 SEG Annual Meeting, 1882–1885. https://doi.org/10.1190/1.1826508; Hartiine, C. S., Walters, M. A., & Wright, M. C. (2015). Three-Dimensional structural model building, induced seismicity analysis, drilling analysis, and reservoir management at the geysers geothermal field, Northern California. Transactions - Geothermal Resources Council, 39(1), 603–614.; Horton, B. K., Parra, M., & Mora, A. (2020). Construction of the Eastern Cordillera of Colombia: Insights from the sedimentary record. In Jorge Gómez & D. Mateus-Zabala (Eds.), Paleogene-Neogene. Servicio Geológico Colombiano, Publica-ciones Geológicas Especiales (Vol. 3, pp. 67–88). https://doi.org/10.32685/pub.esp.37.2019.03; Hoshiba, M., Sato, H., & Fehler, M. (1991). Numerical Basis of the Separation of Scattering and lntrinsic Absorption from Full Seismogram Envelope a Monte-Carlo Simulation of Multiple lsotropic Scattering. Apers in Meteorology and Geophysics, 42, 65–91.; Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical Society, 64(1), 133–150. https://doi.org/10.1111/j.1365-246X.1981.tb02662.x; Ingrain. (2012). Cuenca del Valle Medio del Magdalena - Integración Geológica de la Digitalización y Análisis de Núcleos. In ANH.; Jimenez, G., López, O., Jaimes, L., & Mier Umaña, R. (2016). Variaciones en el estilo estructural relacionado con anisotropias de basamento en el Valle Medio del Magdalena. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40(155), 312. https://doi.org/10.18257/raccefyn.293; Johnston, D. H., Toksöz, M. N., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. GEOPHYSICS, 44(4), 691–711. https://doi.org/10.1190/1.1440970; Julivert, M. (1968). Léxico estratigráfico. Colombia. Union Internationale Des Sciencies Géologiques, V(4 a).; Kammer, A., Piraquive, A., Gómez, C., Mora, A., & Velásquez, A. (2020). Structural Styles of the Eastern Cordillera of Colombia. In J. Gómez & D. Mateus-Zabala (Eds.), Geology of Colombia (Vol. 3, pp. 143–183). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.06; Kane, S. J., Williams, G. D., Buddin, T. S., Egan, S. S., & Hodgetts, D. (1997). Flexural-slip based restoration in 3D, a new approach. 1997 AAPG Annual Convention Official Program A, 58.; Kennedy, B. M., Kharaka, Y. K., Evans, W. C., Ellwood, A., DePaolo, D. J., Thordsen, J., Ambats, G., & Mariner, R. H. (1997). Mantle fluids in the San Andreas fault system, California. Science, 278(5341), 1278–1281. https://doi.org/10.1126/science.278.5341.1278; Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., & Ge, S. (2014). Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448–451. https://doi.org/10.1126/science.1255802; Knopoff, L. (1964). Q. Reviews of Geophysics, 2(4).; Komatsu, M., Takenaka, H., & Oda, H. (2017). Three-dimensional P- and S-wave attenuation structures around the source region of the 2016 Kumamoto earthquakes 4. Seismology. Earth, Planets and Space, 69(1), 1–9. https://doi.org/10.1186/s40623-017-0683-6; Leptokaropoulos, K., Rychert, C. A., Harmon, N., Schlaphorst, D., Grevemeyer, I., Kendall, J. M., & Singh, S. C. (2023). Broad fault zones enable deep fluid transport and limit earthquake magnitudes. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41403-6; Liu, X., Zhao, D., & Li, S. (2014). Seismic attenuation tomography of the Northeast Japan arc: Insight into the 2011 Tohoku earthquake ( M w 9.0) and subduction dynamics. Journal of Geophysical Research: Solid Earth, 119(2), 1094–1118. https://doi.org/10.1002/2013JB010591; Londoño, J. M., Quintero, S., Vallejo, K., Muñoz, F., & Romero, J. (2019). Seismicity of Valle Medio del Magdalena basin, Colombia. Journal of South American Earth Sciences, 92(July 2018), 565–585. https://doi.org/10.1016/j.jsames.2019.04.003; Londoño, J. M., Velásquez, L. V., & Bermudez, J. C. (2022). Seismic Wave Attenuation at Valle Medio Del Magdalena, Colombia. SSRN Electronic Journal, February. https://doi.org/10.2139/ssrn.4066289; Lopez-Mir, B. (2019). Cross-Section Construction and Balancing: Examples From the Spanish Pyrenees. In Problems and Solutions in Structural Geology and Tectonics (1st ed., Vol. 5, Issue 1). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814048-2.00001-6; Mantilla, L., Bernal, L., Clavijo, J., Pinto, J., Páez, L., Pérez, A., Quintero, I., Garcia, M., Correa, K., Serrano, J., Gaviria, J., Niz, L., Navas, G., Silva, A., Osorio, J., & Etayo, F. (2006a). Memoria Explicativa de la Cartografía Geológica de la Plancha 85 Simití, Sur de los Departamentos de Bolívar y Cesar.; Mantilla, L., Bernal, L., Clavijo, J., Pinto, J., Páez, L., Pérez, A., Quintero, I., Garcia, M., Correa, K., Serrano, J., Gaviria, J., Niz, L., Navas, G., Silva, A., Osorio, J., & Etayo, F. (2006b). MEMORIA EXPLICATIVA Plancha 96 BOCAS DEL ROSARIO, Sur de los Departamentos de Bolívar y Cesar y Noroeste del Departamento de Santander Bogotá,.; Marshak, S., & Mitra, G. (1988). Basic Methods of Structural Geology (1st ed., Issue 1). Prentice Hall.; Mavko, G. M., & Nur, A. (1979). Wave attenuation in partially saturated rocks. GEOPHYSICS, 44(2), 161–178. https://doi.org/10.1190/1.1440958; McCaig, A. M. (1988). Deep fluid circulation in fault zones. Geology, 16(10), 867–870. https://doi.org/10.1130/0091-7613(1988)0162.3.CO;2; Mojica, J., & Franco, R. (1990). Estructura y Evolucion Tectonlca del Valle Medio y Superior del Magdalena, Colombia. Geología Colombiana, 17(17), 41–64.; Montaño, P. C., Nova, G., Bayona, G., Mahecha, H., Ayala, C., Jaramillo, C., & De La Parra, F. (2016). Análisis de secuencias y procedencia EN sucesiones sedimentarias de grano fino: Un ejemplo de la Formación Umir y base de la Formación Lisama, en el sector de Simacota (Santander, Colombia). Boletin de Geologia, 38(1), 51–72. https://doi.org/10.18273/revbol.v38n1-2016003; Morales, L. (1958). General geology and oil occurrences of middle Magdalena valley, Colombia: South America. In AAPG Special Volumes (pp. 641–695).; Mount, V. S., Suppe, J., & Hook, S. C. (1990). A forward modeling strategy for balancing cross sections. American Association of Petroleum Geologists Bulletin, 74(5), 521–531. https://doi.org/10.1306/0c9b235d-1710-11d7-8645000102c1865d; Nagata, K., Nakatani, M., & Yoshida, S. (2008). Monitoring frictional strength with acoustic wave transmission. Geophysical Research Letters, 35(6), 1–5. https://doi.org/10.1029/2007GL033146; Ordóñez Carmona, O., Frantz, J. C., & Londoño, C. (2009). Serranía de San Lucas: Mineralizaciones auríferas, intrusiones de 1500 Ma, metamorfismo Grenville y magmatismo Jurásico. XII Congreso Colombiano de Geología, October 2014, 4. https://doi.org/10.13140/2.1.2705.1525; Paasschens, J. C. J. (1997). Solution of the time-dependent Boltzmann equation. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 56(1), 1135–1141. https://doi.org/10.1103/PhysRevE.56.1135; Patarroyo, P. (1997). Barremiano Inferior en la Base de la Formación Paja, Barichara, Santander - Colombia. Geología Colombiana, 22(0), 135–138.; Prieto, G. A., Beroza, G. C., Barrett, S. A., López, G. A., & Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570–571, 42–56. https://doi.org/10.1016/j.tecto.2012.07.019; Prudencio, J., Del Pezzo, E., García-Yeguas, A., & Ibáñez, J. M. (2013). Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands-I: Model and the case of tenerife Island. Geophysical Journal International, 195(3), 1942–1956. https://doi.org/10.1093/gji/ggt361; Pujades, L. G., Ugalde, A., Canas, J. A., Navarro, M., Badal, F. J., & Corchete, V. (1997). Intrinsic and scattering attenuation from observed seismic codas in the Almeria Basin (southeastern Iberian Peninsula). Geophysical Journal International, 129, 281–291. https://doi.org/10.1016/j.pepi.2004.02.004; Pulli, J. (1984). Attenuation of Coda Waves in New England By. Bulletin of the Seismological Society of America, 74(4), 1149–1166. http://www.bssaonline.org/content/74/4/1149.short; Rolon, L., & Toro, J. (2003). Role of Extensional Structures in the development of the Middle Magdalena Valley Basin–Colombia. VIII Simposio Bolivariano - Exploracion Petrolera En Las Cuencas Subandinas, 161–167. http://www.earthdoc.org/publication/publicationdetails/?publication=7904; Royero, M. J., & Clavijo, J. (2001). Memoria explicativa del mapa geológico generalizado del departamento de Santander, escala 1:400.000. Ingeominas, 256.; Sanabria Umbacía, J. E., Poveda Niño, P. F., Castro García, R. H., & Arango Acevedo, M. A. (2012). Modelamiento estadístico para la predicción analógica de reservas en los bloques sometidos al proceso de inyección de agua en las Cuencas Valle Medio del Magdalena, Catatumbo y Llanos Orientales.; Sarmiento, G., Puentes, J., & Sierra, C. (2015). Evolución Geológica y Estratigrafía del Sector Norte del Valle Medio del Magdalena. Geología Norandina, 12(1), 51–82.; Sarmiento, L. F. (2011). Petroleum Geology of Colombia (Vol. 11). Agencia Nacional de Hidrocarburos.; Sato, H. (1977). Energy propagation including scattering effects single isotropic scattering approximation. Journal of Physics of the Earth, 25(1), 27–41. https://doi.org/10.4294/jpe1952.25.27; Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition (2nd ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23029-5; Sens-Schönfelder, C., & Wegler, U. (2006). Radiative transfer theory for estimation of the seismic moment. Geophysical Journal International, 167(3), 1363–1372. https://doi.org/10.1111/j.1365-246X.2006.03139.x; Shearer, P. M. (2009). Introduction to Seismology (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511841552; Suppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7), 684–721. https://doi.org/10.2475/ajs.283.7.684; Taboada, A., Rivera, L., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., & Rivera, C. (2000). Geodynamics of the northern Andes. Tectonics, 19(5), 787–813.; Tenthorey, E., Cox, S. F., & Todd, H. F. (2003). Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones. Earth and Planetary Science Letters, 206(1–2), 161–172. https://doi.org/10.1016/S0012-821X(02)01082-8; Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibáñez-Mejía, M., & Valencia, V. A. (2013). Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society Special Publication, 377(1), 257–283. https://doi.org/10.1144/SP377.10; Toro, G. Di, Aretusini, S., Cornelio, C., Nielsen, S., Spagnuolo, E., Núnez-Cascajero, A., Tapetado, A., & Vázquez, C. (2021). Friction during earthquakes: 25 years of experimental studies. IOP Conference Series: Earth and Environmental Science, 861(5). https://doi.org/10.1088/1755-1315/861/5/052032; Ugalde, A., Carcolé, E., & Vargas, C. A. (2010). S-wave attenuation characteristics in the Galeras volcanic complex (south western Colombia). Physics of the Earth and Planetary Interiors, 181(3–4), 73–81. https://doi.org/10.1016/j.pepi.2010.04.009; Vargas, C. A. (2004). PROPAGACIÓN DE ONDAS SÍSMICAS Y ATENUACIÓN DE ONDAS DE CODA EN EL TERRITORIO COLOMBIANO (L. Pujades & A. Ugalde (eds.)). Academica Colombiana de Ciencias Exactas, Físicas y Naturales.; Vargas, C. A., Castelblanco, C. A., Ramírez, J. M., & Jiménez, J. M. (2022). Distribución de la sismicidad cortical en el Valle Medio del Magdalena enfocada a los proyectos piloto de investigación integral (PPII).; Vargas, C. A., & Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328; Vargas, C. A., Ugalde, A., Pujades, L. G., & Canas, J. A. (2004). Spatial variation of coda wave attenuation in northwestern Colombia. Geophysical Journal International, 158(2), 609–624. https://doi.org/10.1111/j.1365-246X.2004.02307.x; Vargas Jiménez, C. A. (2014). Potencial de recursos No Convencionales en Colombia. In Sociedad Colombiana de Geologia (p. 23). http://www.anh.gov.co/Seguridad-comunidades-y-medio-ambiente/Estrategia Ambiental/Proyectos/Yacimientos-no-convencionales/Paginas/default.aspx; Vera Rodriguez, I., & Stanchits, S. (2017). Spatial and Temporal Variation of Seismic Attenuation During Hydraulic Fracturing of a Sandstone Block Subjected to Triaxial Stress. Journal of Geophysical Research: Solid Earth, 122(11), 9012–9030. https://doi.org/10.1002/2017JB014602; Wang, Z., Zhao, D., Liu, X., & Li, X. (2017). Seismic attenuation tomography of the source zone of the 2016 Kumamoto earthquake (M 7.3). Journal of Geophysical Research: Solid Earth, 122(4), 2988–3007. https://doi.org/10.1002/2016JB013704; Ward, D. E., Goldsmith, R., Jimeno, A., Cruz, J., Restrepo, H., & Gómez, E. (1973). MAPA GEOLÓGICO DE COLOMBIA, CUADRÁNGULO H-12 BUCARAMANGA PLANCHAS 109 RIONEGRO - 120 BUCARAMANGA, CUADRÁNGULO H-13 PAMPLONA PLANCHAS 110 PAMPLONA - 121CERRITO.; Wcisło, M., tabile, T. ., Telesca, ., & Eisner, . (2018). ariations o attenuation and VP/VS ratio in the vicinity of wastewater injection: A case study of Costa Molina 2 well (High Agri Valley, Italy). Geophysics, 83(2), B25–B31. https://doi.org/10.1190/geo2017-0123.1; Whitehead, B. A., Harris, C., & Sloan, R. A. (2020). Deep infiltration of surface water during deformation? Evidence from a low- δ18O shear zone at Koegel Fontein, Namaqualand, South Africa. Lithos, 366–367, 105562. https://doi.org/10.1016/j.lithos.2020.105562; Yu, H., Harrington, R. M., Kao, H., Liu, Y., Abercrombie, R. E., & Wang, B. (2020). Well Proximity Governing Stress Drop Variation and Seismic Attenuation Associated With Hydraulic Fracturing Induced Earthquakes. In Journal of Geophysical Research: Solid Earth (Vol. 125, Issue 9). https://doi.org/10.1029/2020JB020103; Zarifi, Z., Havskov, J., & Hanyga, A. (2007). An insight into the Bucaramanga nest. Tectonophysics, 443(1–2), 93–105. https://doi.org/10.1016/j.tecto.2007.06.004; Zhao, Y., Nilot, E. A., Li, B., Fang, G., Luo, W., & Li, Y. E. (2023). Seismic Attenuation Extraction From Traffic Signals Recorded by a Single Seismic Station. Geophysical Research Letters, 50(3), 1–11. https://doi.org/10.1029/2022GL100548; Zhu, W., Allison, K. L., Dunham, E. M., & Yang, Y. (2020). Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-18598-z; https://repositorio.unal.edu.co/handle/unal/86082; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal
  15. 15
  16. 16
    Academic Journal
  17. 17
  18. 18
    Academic Journal
  19. 19
  20. 20