-
1Academic Journal
المصدر: Demonstratio Mathematica, Vol 57, Iss 1, Pp 221-239 (2024)
مصطلحات موضوعية: bregman distance, split inclusion problem, inertial algorithm, fixed point problem, banach spaces, 65k15, 47j25, 65j15, 90c33, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2391-4661
-
2Academic Journal
المؤلفون: Puntita Sae-jia, Suthep Suantai
المصدر: AIMS Mathematics, Vol 9, Iss 4, Pp 8476-8496 (2024)
مصطلحات موضوعية: accelerated algorithm, two-step inertial algorithm, convex bilevel optimization problem, data classification, noncommunicable diseases, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
3Academic Journal
المصدر: Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-25 (2021)
مصطلحات موضوعية: Iterative method, Inertial algorithm, Nonlinear equations, Derivative-free method, Projection method, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/1029-242X
-
4Academic Journal
المصدر: Axioms; Volume 12; Issue 6; Pages: 508
مصطلحات موضوعية: variable metric, monotone inclusion, three-operator algorithm, multi-step inertial algorithm
وصف الملف: application/pdf
Relation: Mathematical Analysis; https://dx.doi.org/10.3390/axioms12060508
-
5Academic Journal
المؤلفون: Auwal Bala Abubakar, Poom Kumam, Abdulkarim Hassan Ibrahim
المصدر: IEEE Access, Vol 9, Pp 92157-92167 (2021)
مصطلحات موضوعية: Monotone nonlinear operator, inertial algorithm, conjugate gradient, projection method, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Nattakarn Kaewyong, Kanokwan Sitthithakerngkiet
المصدر: Mathematics; Volume 9; Issue 10; Pages: 1104
مصطلحات موضوعية: inertial algorithm, Tseng’s method, forward-backward algorithm, monotone inclusion problem
وصف الملف: application/pdf
Relation: Mathematics and Computer Science; https://dx.doi.org/10.3390/math9101104
الاتاحة: https://doi.org/10.3390/math9101104
-
7Academic Journal
المؤلفون: C. E. Chidume, S. I. Ikechukwu, A. Adamu
المصدر: Fixed Point Theory and Applications, Vol 2018, Iss 1, Pp 1-9 (2018)
مصطلحات موضوعية: Inertial algorithm, Relatively nonexpansive maps, Generalised projection, Strong convergence, Applied mathematics. Quantitative methods, T57-57.97, Analysis, QA299.6-433
وصف الملف: electronic resource
-
8Academic Journal
مصطلحات موضوعية: variational inequality, hybrid method, parallel computation, sub-gradient extra-gradient inertial method, cyclic inertial algorithm
وصف الملف: application/pdf
Relation: https://www.mdpi.com/2073-8994/12/7/1198; Symmetry 12(7) : (2020) // Article ID 1198; http://hdl.handle.net/10810/45850
-
9
المصدر: Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-25 (2021)
مصطلحات موضوعية: Inertial algorithm, Derivative-free method, Applied Mathematics, MathematicsofComputing_NUMERICALANALYSIS, QA1-939, Discrete Mathematics and Combinatorics, Projection method, Nonlinear equations, Analysis, Iterative method, Mathematics
-
10Academic Journal
المؤلفون: Radu Ioan Boţ (Faculty of Mathematics, University of Vienna), Ernö Robert Csetnek (Faculty of Mathematics, University of Vienna), Nimit Nimana (Department of Mathematics, Faculty of Science, Naresuan University)
المصدر: Vietnam Journal of Mathematics
مصطلحات موضوعية: Proximal-gradient algorithm, Inertial algorithm, Penalization, Fenchel conjugate
وصف الملف: application/pdf
Relation: isPartOf:https://phaidra.univie.ac.at/o:243553[u:scholar collection]; hdl:11353/10.715763; https://phaidra.univie.ac.at/o:715763
-
11Academic Journal
المؤلفون: Radu Ioan Boţ (Faculty of Mathematics, University of Vienna), Ernö Robert Csetnek (Faculty of Mathematics, University of Vienna), Nimit Nimana (Department of Mathematics, Faculty of Science, Naresuan University)
المصدر: Optimization Letters
مصطلحات موضوعية: Gradient method, Penalization, Fenchel conjugate, Inertial algorithm
وصف الملف: application/pdf
Relation: isPartOf:https://phaidra.univie.ac.at/o:243553[u:scholar collection]; hdl:11353/10.715276; https://phaidra.univie.ac.at/o:715276
-
12Academic Journal
المؤلفون: Combettes, Patrick, L, Glaudin, Lilian E.
المساهمون: North Carolina State University Raleigh (NC State), University of North Carolina System (UNC), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
المصدر: ISSN: 1052-6234 ; SIAM Journal on Optimization ; https://hal.sorbonne-universite.fr/hal-01678600 ; SIAM Journal on Optimization, 2017, 27 (4), ⟨10.1137/17M112806X⟩.
مصطلحات موضوعية: averaged operator, fixed point iteration, forward-backward algorithm, inertial algorithm, mean value iterations, monotone operator splitting, nonsmooth minimization, Peaceman– Rachford algorithm, proximal algorithm, [MATH]Mathematics [math]
Relation: hal-01678600; https://hal.sorbonne-universite.fr/hal-01678600; https://hal.sorbonne-universite.fr/hal-01678600/document; https://hal.sorbonne-universite.fr/hal-01678600/file/17m112806x.pdf
-
13
المؤلفون: Abdulkarim Hassan Ibrahim, Auwal Bala Abubakar, Poom Kumam
المصدر: IEEE Access, Vol 9, Pp 92157-92167 (2021)
مصطلحات موضوعية: Inertial frame of reference, General Computer Science, Iterative method, projection method, General Engineering, Monotonic function, Projection (linear algebra), TK1-9971, Nonlinear system, Conjugate gradient method, Convergence (routing), Projection method, Monotone nonlinear operator, Applied mathematics, General Materials Science, conjugate gradient, Electrical engineering. Electronics. Nuclear engineering, Electrical and Electronic Engineering, inertial algorithm, Mathematics
-
14Academic Journal
المؤلفون: Jolaoso, L.O., Abass, H.A., Mewomo, O.T.
مصطلحات موضوعية: keyword:proximal gradient algorithm, keyword:proximal operator, keyword:demimetric mappings, keyword:inertial algorithm, keyword:viscosity approximation, keyword:Meir Keeler contraction, keyword:fixed point theory, msc:46N10, msc:47H10, msc:47J25, msc:65K10, msc:65K15
وصف الملف: application/pdf
Relation: mr:MR3994324; zbl:Zbl 07138661; reference:[1] Abass, H.A., Ogbuisi, F.U., Mewomo, O.T.: Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm.U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190. MR 3785191; reference:[2] Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping.Set-Valued Anal. 9 (2001), 3–11. MR 1845931, 10.1023/A:1011253113155; reference:[3] Beck, A., Teboull, M.: Gradient-based algorithms with applications to signal-recovery problems.Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88. MR 2767564; reference:[4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problem.SIAM J. Imaging Sci. 2 (1) (2009), 183–202. MR 2486527, 10.1137/080716542; reference:[5] Bot, R.I., Csetnek, E.R.: An inerial Tseng’s type proximal point algorithm for nonsmooth and nonconvex optimization problem.J. Optim. Theory Appl. 171 (2016), 600–616. MR 3557440, 10.1007/s10957-015-0730-z; reference:[6] Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions.EJCO 4 (2016), 3–25. MR 3500980; reference:[7] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction.Inverse Problems 20 (2004), 103–120. MR 2044608, 10.1088/0266-5611/20/1/006; reference:[8] Cai, G., Shehu, Y.: An iterative algorithm for fixed point problem and convex minimization problem with applications.Fixed Point Theory and Appl. 2015 123 (2015), 18 pp. MR 3303116; reference:[9] Ceng, L.-C., Ansari, Q.H., Ya, J.-C.: Some iterative methods for finding fixed points and for solving constrained convex minimization problems.Nonlinear Anal. 74 (2011), 5286–5302. MR 2819274, 10.1016/j.na.2011.05.005; reference:[10] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space.Numer. Algorithms 8 (2–4) (1994), 221–239. Zbl 0828.65065, MR 1309222, 10.1007/BF02142692; reference:[11] Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage thresholding algorithm.J. Optim. Theory Appl. 166 (2015), 968–982. MR 3375610, 10.1007/s10957-015-0746-4; reference:[12] Chan, R.H., Ma, S., Jang, J.F.: Inertial proximal ADMM for linearly constrained separable convex optimization.SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267. MR 3404682, 10.1137/15100463X; reference:[13] Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators.Optimization 53 (2004), 475–504. MR 2115266, 10.1080/02331930412331327157; reference:[14] Combettes, P.L., Pesquet, J.-C.: Proximal Splitting Methods in Signal Processing.Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212. MR 2858838; reference:[15] Fichera, G.: Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno.Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140. MR 0178631; reference:[16] Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory.Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005; reference:[17] Guo, Y., Cui, W.: Strong convergence and bounded perturbation resilence of a modified proximal gradient algorithm.J. Ineq. Appl. 2018 (2018). MR 3797139, 10.1186/s13660-018-1695-x; reference:[18] Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces.Numer. Algorithms (2018), https://doi.org/10.1007/s11075-018-0633-9. MR 4027651, 10.1007/s11075-018-0633-9; reference:[19] Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces.Adv. Pure Appl. Math. 9 (3) (2018), 167–183. MR 3819533, 10.1515/apam-2017-0037; reference:[20] Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space.Demonstratio Math. 51 (2018), 211–232. MR 3856588, 10.1515/dema-2018-0015; reference:[21] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize.Demonstratio Math. 52 (1) (2019), 183–203. MR 3938331; reference:[22] Lions, J.L., Stampacchia, G.: Variational inequalities.Comm. Pure Appl. Math. 20 (1967), 493–519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302; reference:[23] Lorenz, D., Pock, T.: An inertial forward-backward algorithm for monotone inclusions.J. Math. Imaging Vision 51 (2) (2015), 311–325. MR 3314536, 10.1007/s10851-014-0523-2; reference:[24] Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), 469–479. MR 2273538, 10.1016/j.jmaa.2005.12.066; reference:[25] Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Anal. 16 (2008), 899–912. MR 2466027, 10.1007/s11228-008-0102-z; reference:[26] Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed-point iteration processes.Nonlinear Anal. 64 (2006), 2400–2411. MR 2215815, 10.1016/j.na.2005.08.018; reference:[27] Meir, A., Keeler, E.: A theorem on contraction mappings.J. Math. Anal. Appl. 28 (1969), 326–329. MR 0250291, 10.1016/0022-247X(69)90031-6; reference:[28] Mewomo, O.T., Ogbuisi, F.U.: Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces.Quaestiones Math. 41 (1) (2018), 129–148. MR 3761493, 10.2989/16073606.2017.1375569; reference:[29] Moudafi, A.: Viscosity approximation method for fixed-points problems.J. Math. Anal. Appl. 241 (1) (2000), 46–55. MR 1738332, 10.1006/jmaa.1999.6615; reference:[30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators.J. Comput. Appl. Math. 155 (2003), 447–454. MR 1984300, 10.1016/S0377-0427(02)00906-8; reference:[31] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms.Optim. Lett. 8 (7) (2014), 2099–2110. MR 3263242, 10.1007/s11590-013-0708-4; reference:[32] Nesterov, Y.: A method for solving the convex programming problem with convergence rate $0(\frac{1}{k^2})$.Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547. MR 0701288; reference:[33] Ogbuisi, F.U., Mewomo, O.T.: On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm.J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128. MR 3692443, 10.1007/s11784-016-0397-6; reference:[34] Ogbuisi, F.U., Mewomo, O.T.: Iterative solution of split variational inclusion problem in a real Banach space.Afrika Mat. (3) 28 (1–2) (2017), 295–309. MR 3613639, 10.1007/s13370-016-0450-z; reference:[35] Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of common solution of certain nonlinear problems.Fixed Point Theory 19 (1) (2018), 335–358. MR 3754008, 10.24193/fpt-ro.2018.1.26; reference:[36] Okeke, C.C., Mewomo, O.T.: On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings.Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280. MR 3742495; reference:[37] Parith, N., Boyd, S.: Proximal algorithms.Foundations and Trends in Optimization 1 (3) (2013), 123–231.; reference:[38] Pesquet, J.-C., Putselnik, N.: A parallel inertial proximal optimization method.Pacific J. Optim. 8 (2) (2012), 273–306. MR 2954380; reference:[39] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.U.S.S.R. Comput. Math. Math. Phys. 4 (5) (1964), 1–17. MR 0169403, 10.1016/0041-5553(64)90137-5; reference:[40] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators.Trans. Amer. Math. Soc. 149 (1970), 75–88. MR 0282272, 10.1090/S0002-9947-1970-0282272-5; reference:[41] Rockafellar, R.T., Wets, R.: Variational Analysis.Springer, Berlin, 1988.; reference:[42] Shehu, Y.: Approximation of solutions to constrained convex minimization problem in Hilbert spaces.Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1. MR 3386057, 10.1007/s10013-014-0091-1; reference:[43] Stampacchia, G.: Formes bilinearies coercitives sur les ensembles convexes.Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416. MR 0166591; reference:[44] Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm.J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43. MR 2911685; reference:[45] Suzuki, T.: Moudai’s viscosity approximations with Meir-Keeler contractions.J. Math. Anal. Appl. 325 (2007), 342–352. MR 2273529, 10.1016/j.jmaa.2006.01.080; reference:[46] Takahashi, W., Wen, C.-F., Yao, J.-C.: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space.Fixed Point Theory 19 (1) (2018), 407–420. MR 3754014, 10.24193/fpt-ro.2018.1.32; reference:[47] Tian, M., Huang, L.H.: A general approximation method for a kind of convex optimization problems in Hilbert spaces.J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073. MR 3198359; reference:[48] Xu, H.K.: Viscosity approximation method for nonexpansive mappings.J. Math. Anal. Appl. 298 (1) (2004), 279–291. MR 2086546, 10.1016/j.jmaa.2004.04.059; reference:[49] Xu, H.K.: Average mappings and the gradient projection algorithm.J. Optim. Theory Appl. 150 rm (2) (2011), 360–378. MR 2818926, 10.1007/s10957-011-9837-z
-
15
المؤلفون: Glaudin, Lilian
المساهمون: Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université, Patrick Louis Combettes
المصدر: Analyse numérique [math.NA]. Sorbonne Université, 2019. Français. ⟨NNT : 2019SORUS119⟩
مصطلحات موضوعية: Inertial algorithm, Éclatement d'opérateur monotone, Variable metric algorithm, Algorithm with memory, Algorithme avec mémoire, Averaged operator, Algorithme inertiel, Opérateur moyenné, Fixed point algorithm, Algorithme de point fixe, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], Monotone operator splitting, Algorithme à métrique variable
-
16
المؤلفون: Glaudin, Lilian
المساهمون: Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université, Patrick Louis Combettes
المصدر: Analyse numérique [math.NA]. Sorbonne Université, 2019. Français. ⟨NNT : 2019SORUS119⟩
مصطلحات موضوعية: Inertial algorithm, Éclatement d'opérateur monotone, Variable metric algorithm, Algorithm with memory, Algorithme avec mémoire, Averaged operator, Algorithme inertiel, Opérateur moyenné, Fixed point algorithm, Algorithme de point fixe, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], Monotone operator splitting, Algorithme à métrique variable
-
17Dissertation/ Thesis
المؤلفون: Glaudin, Lilian
المساهمون: Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Sorbonne Université, Patrick Louis Combettes
المصدر: https://theses.hal.science/tel-02946811 ; Analyse numérique [math.NA]. Sorbonne Université, 2019. Français. ⟨NNT : 2019SORUS119⟩.
مصطلحات موضوعية: Inertial algorithm, Variable metric algorithm, Algorithm with memory, Fixed point algorithm, Monotone operator splitting, Averaged operator, Algorithme inertiel, Algorithme à métrique variable, Algorithme avec mémoire, Algorithme de point fixe, Éclatement d'opérateur monotone, Opérateur moyenné, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Relation: NNT: 2019SORUS119; tel-02946811; https://theses.hal.science/tel-02946811; https://theses.hal.science/tel-02946811/document; https://theses.hal.science/tel-02946811/file/GLAUDIN_Lilian_2019.pdf
-
18Dissertation/ Thesis
المؤلفون: Glaudin, Lilian
المساهمون: Sorbonne université, Combettes, Patrick Louis
مصطلحات موضوعية: Algorithme inertiel, Algorithme à métrique variable, Algorithme avec mémoire, Algorithme de point fixe, Éclatement d'opérateur monotone, Opérateur moyenné, Inertial algorithm, Variable metric algorithm, Algorithm with memory, Fixed point algorithm, Monotone operator splitting, Averaged operator, 519.6
-
19
المؤلفون: Patrick L. Combettes, Lilian E. Glaudin
المساهمون: North Carolina State University [Raleigh] (NC State), University of North Carolina System (UNC), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
المصدر: SIAM Journal on Optimization
SIAM Journal on Optimization, 2017, 27 (4), ⟨10.1137/17M112806X⟩
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2017, 27 (4), ⟨10.1137/17M112806X⟩مصطلحات موضوعية: nonsmooth minimization, 0211 other engineering and technologies, Forward–backward algorithm, 010103 numerical & computational mathematics, 02 engineering and technology, averaged operator, Fixed point, 01 natural sciences, Theoretical Computer Science, Fixed-point iteration, Affine hull, FOS: Mathematics, Point (geometry), [MATH]Mathematics [math], 0101 mathematics, monotone operator splitting, Mathematics - Optimization and Control, Mathematics, Peaceman– Rachford algorithm, forward-backward algorithm, 021103 operations research, proximal algorithm, mean value iterations, fixed point iteration, Monotone polygon, Optimization and Control (math.OC), Orbit (dynamics), Primary 65J15, 47H09, Secondary 47H05, 65K05, 90C25, Minification, inertial algorithm, Algorithm, Software
-
20
المؤلفون: Nimit Nimana, Ernö Robert Csetnek, Radu Ioan Boţ
المصدر: Vietnam Journal of Mathematics
مصطلحات موضوعية: Convex analysis, Mathematical optimization, 021103 operations research, 47H05, General Mathematics, Proximal-gradient algorithm, 010102 general mathematics, 0211 other engineering and technologies, Proper convex function, 65K05, 02 engineering and technology, Subderivative, 01 natural sciences, Bilevel optimization, Article, 90C25, Inertial algorithm, Fenchel conjugate, Convex optimization, Proximal gradient methods for learning, Differentiable function, 0101 mathematics, Convex conjugate, Penalization, Mathematics
وصف الملف: application/pdf