يعرض 1 - 20 نتائج من 46 نتيجة بحث عن '"inertial algorithm"', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المساهمون: North Carolina State University Raleigh (NC State), University of North Carolina System (UNC), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: ISSN: 1052-6234 ; SIAM Journal on Optimization ; https://hal.sorbonne-universite.fr/hal-01678600 ; SIAM Journal on Optimization, 2017, 27 (4), ⟨10.1137/17M112806X⟩.

  13. 13
  14. 14
    Academic Journal

    المؤلفون: Jolaoso, L.O., Abass, H.A., Mewomo, O.T.

    وصف الملف: application/pdf

    Relation: mr:MR3994324; zbl:Zbl 07138661; reference:[1] Abass, H.A., Ogbuisi, F.U., Mewomo, O.T.: Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm.U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190. MR 3785191; reference:[2] Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping.Set-Valued Anal. 9 (2001), 3–11. MR 1845931, 10.1023/A:1011253113155; reference:[3] Beck, A., Teboull, M.: Gradient-based algorithms with applications to signal-recovery problems.Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88. MR 2767564; reference:[4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problem.SIAM J. Imaging Sci. 2 (1) (2009), 183–202. MR 2486527, 10.1137/080716542; reference:[5] Bot, R.I., Csetnek, E.R.: An inerial Tseng’s type proximal point algorithm for nonsmooth and nonconvex optimization problem.J. Optim. Theory Appl. 171 (2016), 600–616. MR 3557440, 10.1007/s10957-015-0730-z; reference:[6] Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions.EJCO 4 (2016), 3–25. MR 3500980; reference:[7] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction.Inverse Problems 20 (2004), 103–120. MR 2044608, 10.1088/0266-5611/20/1/006; reference:[8] Cai, G., Shehu, Y.: An iterative algorithm for fixed point problem and convex minimization problem with applications.Fixed Point Theory and Appl. 2015 123 (2015), 18 pp. MR 3303116; reference:[9] Ceng, L.-C., Ansari, Q.H., Ya, J.-C.: Some iterative methods for finding fixed points and for solving constrained convex minimization problems.Nonlinear Anal. 74 (2011), 5286–5302. MR 2819274, 10.1016/j.na.2011.05.005; reference:[10] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space.Numer. Algorithms 8 (2–4) (1994), 221–239. Zbl 0828.65065, MR 1309222, 10.1007/BF02142692; reference:[11] Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage thresholding algorithm.J. Optim. Theory Appl. 166 (2015), 968–982. MR 3375610, 10.1007/s10957-015-0746-4; reference:[12] Chan, R.H., Ma, S., Jang, J.F.: Inertial proximal ADMM for linearly constrained separable convex optimization.SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267. MR 3404682, 10.1137/15100463X; reference:[13] Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators.Optimization 53 (2004), 475–504. MR 2115266, 10.1080/02331930412331327157; reference:[14] Combettes, P.L., Pesquet, J.-C.: Proximal Splitting Methods in Signal Processing.Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212. MR 2858838; reference:[15] Fichera, G.: Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno.Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140. MR 0178631; reference:[16] Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory.Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005; reference:[17] Guo, Y., Cui, W.: Strong convergence and bounded perturbation resilence of a modified proximal gradient algorithm.J. Ineq. Appl. 2018 (2018). MR 3797139, 10.1186/s13660-018-1695-x; reference:[18] Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces.Numer. Algorithms (2018), https://doi.org/10.1007/s11075-018-0633-9. MR 4027651, 10.1007/s11075-018-0633-9; reference:[19] Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces.Adv. Pure Appl. Math. 9 (3) (2018), 167–183. MR 3819533, 10.1515/apam-2017-0037; reference:[20] Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space.Demonstratio Math. 51 (2018), 211–232. MR 3856588, 10.1515/dema-2018-0015; reference:[21] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize.Demonstratio Math. 52 (1) (2019), 183–203. MR 3938331; reference:[22] Lions, J.L., Stampacchia, G.: Variational inequalities.Comm. Pure Appl. Math. 20 (1967), 493–519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302; reference:[23] Lorenz, D., Pock, T.: An inertial forward-backward algorithm for monotone inclusions.J. Math. Imaging Vision 51 (2) (2015), 311–325. MR 3314536, 10.1007/s10851-014-0523-2; reference:[24] Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), 469–479. MR 2273538, 10.1016/j.jmaa.2005.12.066; reference:[25] Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Anal. 16 (2008), 899–912. MR 2466027, 10.1007/s11228-008-0102-z; reference:[26] Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed-point iteration processes.Nonlinear Anal. 64 (2006), 2400–2411. MR 2215815, 10.1016/j.na.2005.08.018; reference:[27] Meir, A., Keeler, E.: A theorem on contraction mappings.J. Math. Anal. Appl. 28 (1969), 326–329. MR 0250291, 10.1016/0022-247X(69)90031-6; reference:[28] Mewomo, O.T., Ogbuisi, F.U.: Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces.Quaestiones Math. 41 (1) (2018), 129–148. MR 3761493, 10.2989/16073606.2017.1375569; reference:[29] Moudafi, A.: Viscosity approximation method for fixed-points problems.J. Math. Anal. Appl. 241 (1) (2000), 46–55. MR 1738332, 10.1006/jmaa.1999.6615; reference:[30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators.J. Comput. Appl. Math. 155 (2003), 447–454. MR 1984300, 10.1016/S0377-0427(02)00906-8; reference:[31] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms.Optim. Lett. 8 (7) (2014), 2099–2110. MR 3263242, 10.1007/s11590-013-0708-4; reference:[32] Nesterov, Y.: A method for solving the convex programming problem with convergence rate $0(\frac{1}{k^2})$.Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547. MR 0701288; reference:[33] Ogbuisi, F.U., Mewomo, O.T.: On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm.J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128. MR 3692443, 10.1007/s11784-016-0397-6; reference:[34] Ogbuisi, F.U., Mewomo, O.T.: Iterative solution of split variational inclusion problem in a real Banach space.Afrika Mat. (3) 28 (1–2) (2017), 295–309. MR 3613639, 10.1007/s13370-016-0450-z; reference:[35] Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of common solution of certain nonlinear problems.Fixed Point Theory 19 (1) (2018), 335–358. MR 3754008, 10.24193/fpt-ro.2018.1.26; reference:[36] Okeke, C.C., Mewomo, O.T.: On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings.Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280. MR 3742495; reference:[37] Parith, N., Boyd, S.: Proximal algorithms.Foundations and Trends in Optimization 1 (3) (2013), 123–231.; reference:[38] Pesquet, J.-C., Putselnik, N.: A parallel inertial proximal optimization method.Pacific J. Optim. 8 (2) (2012), 273–306. MR 2954380; reference:[39] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.U.S.S.R. Comput. Math. Math. Phys. 4 (5) (1964), 1–17. MR 0169403, 10.1016/0041-5553(64)90137-5; reference:[40] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators.Trans. Amer. Math. Soc. 149 (1970), 75–88. MR 0282272, 10.1090/S0002-9947-1970-0282272-5; reference:[41] Rockafellar, R.T., Wets, R.: Variational Analysis.Springer, Berlin, 1988.; reference:[42] Shehu, Y.: Approximation of solutions to constrained convex minimization problem in Hilbert spaces.Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1. MR 3386057, 10.1007/s10013-014-0091-1; reference:[43] Stampacchia, G.: Formes bilinearies coercitives sur les ensembles convexes.Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416. MR 0166591; reference:[44] Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm.J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43. MR 2911685; reference:[45] Suzuki, T.: Moudai’s viscosity approximations with Meir-Keeler contractions.J. Math. Anal. Appl. 325 (2007), 342–352. MR 2273529, 10.1016/j.jmaa.2006.01.080; reference:[46] Takahashi, W., Wen, C.-F., Yao, J.-C.: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space.Fixed Point Theory 19 (1) (2018), 407–420. MR 3754014, 10.24193/fpt-ro.2018.1.32; reference:[47] Tian, M., Huang, L.H.: A general approximation method for a kind of convex optimization problems in Hilbert spaces.J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073. MR 3198359; reference:[48] Xu, H.K.: Viscosity approximation method for nonexpansive mappings.J. Math. Anal. Appl. 298 (1) (2004), 279–291. MR 2086546, 10.1016/j.jmaa.2004.04.059; reference:[49] Xu, H.K.: Average mappings and the gradient projection algorithm.J. Optim. Theory Appl. 150 rm (2) (2011), 360–378. MR 2818926, 10.1007/s10957-011-9837-z

  15. 15
  16. 16
  17. 17
    Dissertation/ Thesis
  18. 18
  19. 19

    المساهمون: North Carolina State University [Raleigh] (NC State), University of North Carolina System (UNC), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: SIAM Journal on Optimization
    SIAM Journal on Optimization, 2017, 27 (4), ⟨10.1137/17M112806X⟩
    SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2017, 27 (4), ⟨10.1137/17M112806X⟩

  20. 20