يعرض 1 - 20 نتائج من 77 نتيجة بحث عن '"immersion enthalpy"', وقت الاستعلام: 0.72s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Dissertation/ Thesis

    المؤلفون: Alape Rojas, Lyda Yomary

    المساهمون: Giraldo Gutiérrez, Liliana, Alape Rojas, Lyda

    وصف الملف: 58 páginas; application/pdf

    Relation: E. David y . V.-C. Niculescu, «Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials,» Int J Environ Res Public Health, vol. 18, p. 1, 2021.; N. Pinthong, S. Thepanondh y A. Kondo, «Source Identification of VOCs and their Environmental Health Risk in a Petrochemical Industrial Area,» Aerosol and Air Quality Research , vol. 22, p. 1, 2022.; P. Pandey y R. Yadav, «A Review on Volatile Organic Compounds (VOCs) as Environmental Pollutants: Fate and Distribution,» International Journal of Plant and Environment, vol. 4, p. 14, 2018.; J. L. Domingo y M. Nadal, «Domestic waste composting facilities: A review of human health risks,» Environment International, vol. 35, pp. 383-384, 2008.; A. Russell y G. Gould, Food Preservatives, New York: Kluwer Academic/Plenum , 2003.; M. Rafatullah, O. Sulaiman, . R. Hashim y A. Ahmad, «Adsorption of methylene blue on low-cost adsorbents: a review,» J Hazard Mater, p. 70, 2010.; L. Zhu, D. Shen y K. H. Luo, «A critical review on VOCs adsorption by different porous materials: Species,mechanisms and modification methods,» Journal of Hazardous Materials, vol. 389, p. 3, 2020.; X. Zhao, X. Li, T. Zhu y X. Tang, «Adsorption behavior of chloroform, carbon disulfide, and acetone on coconut shell-derived carbon: experimental investigation,simulation, and model study,» Environmental Science and Pollution Research, vol. 25, pp. 1-2, 2018.; S. M. Petrović, S. R. Savić, J. B. Zvezdanović, L. B. Nikolić y S. T. Stojiljković, «BENZOIC ACID REMOVAL FROM AQUEOUS SOLUTIONS BY ACTIVATED CHARCOAL,» Advanced technologies, vol. 10, p. 5, 2021.; P. De Luca, C. Siciliano , A. Macario y J. B. Nagy , «The Role of Carbon Nanotube Pretreatments in the Adsorption of Benzoic Acid,» Materials, vol. 14, p. 1, 2021.; H. Qin, R. Xiao, R. Zhang y J. Chen, «Efficient adsorption of benzoic acid from aqueous solution by nitrogen-containing activated carbon,» Water Science & Technology, p. 1, 2018.; U. H. Dahiru, F. Saleem, K. Zhang y A. P. Harvey, «Removal of cyclohexane as a toxic pollutant from air using a non-thermal plasma: Influence of different parameters,» Journal of Environmental Chemical Engineering, vol. 9, p. 1, 2021.; A. Valencia, R. Muñiz Valencia, S. G. Ceballos Magaña, C. K. Rojas Mayorga, A. Bonilla Petriciolet, J. González y I. A. Aguayo Villarreal, «Cyclohexane and benzene separation by fixed-bed adsorption on activated carbons prepared from coconut shell,» Environmental Technology & Innovation, vol. 25, pp. 1,2, 2021.; Z. Sun, Z. Cheng, P. Luo, J. Chen, J. Yu, D. Chen y P. Zhao, «Cyclohexane removal and UV post-control of bioaerosols in a combination of UV pretreatment and biotrickling filtration,» Frontiers in Environmental Science, vol. 10, p. 2, 2022.; Public Health England, Cyclohexane General Information. Compendium of Chemical Hazards: Cyclohexane, 2017.; A. D. Marczewska, D. Sternik, A. Swiatkowski, K. Kusmierek, W. Gac y B. Buczek, «Adsorption of phenol from aqueous and cyclohexane solutions on activated carbons with differentiated surface chemistry,» Thermochimica Acta, vol. 715, 2022.; A. D. Marczewska, A. Swiatkowski, S. Biniak y M. Walczyk, «Effect of properties of chemically modified activated carbon and aromatic adsorbate molecule on adsorption from liquid phase,» Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 327, 2008.; D. Hernández Monje, L. Giraldo y J. C. Moreno Piraján, «Immersion Enthalpy of Activated Carbon–Cyclohexane and Activated Carbon–Hexane. Difference in the Solid–Liquid Interaction Enthalpy Due to the Structure of the Solvent,» Processes, vol. 7, p. 2, 2019.; L. Mei-syue , W. Siang Chen y S. Yang-hsin, «Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship,» Journal of Hazardous Materials , vol. 315, pp. 35-36, 2016.; L. Huijuan, W. Keyan, Y. Yansong y L. Chao , «Predicting adsorption coefficients of VOCs using polyparameter linear free energy relationship based on the evaluation of dispersive and specific interactions,» Environmental Pollution, vol. 113224, nº 255, 2019.; C. Li, . Q. Li, D. Tong, Q. Wang, M. Wu, B. Sun, G. Xu y L. Tan, «Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing,» Journal of Environmental Sciences, vol. 93, 2020.; H. Wu, H. Yan, Y. Quan, H. Zhao, N. Jiang y C. Yin, «Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment,» Journal of Environmental Management, vol. 222, 2018.; M. Qu, . Z. Cheng, Z. Sun, D. Chen, . J. Yu y J. Chen, «Non-thermal plasma coupled with catalysis for VOCs abatement: A review,» Process Safety and Environmental Protection, vol. 153, 2021.; L. Casas y N. Le Moual, «Indoor air and respiratory health: Volatile organic compounds and cleaning products,» 2024.; X. Zhang, B. Gao, A. E. Creamer, C. Cao y Y. Li, «Adsorption of VOCs onto engineered carbon materials: A review,» Journal of Hazardous Materials, vol. 338, 2017.; P. González García, «Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,» Renewable and Sustainable Energy Reviews, vol. 82, 2018.; K. Zhoua, L. Li, X. Ma, . Y. Mo, R. Chen, H. Li y H. Li, «Activated carbons modified by magnesium oxide as highly efficient sorbents for acetone,» 10.1039/C7RA11740J , vol. 8, 2018.; M. A. Firdaus Mazlan, . Y. Uemura, . S. Yusup, F. Elhassan, . A. Uddin, A. Hiwada y . M. Demiya, «Activated Carbon from Rubber Wood Sawdust by Carbon Dioxide Activation,» Procedia Engineering, vol. 148, 2016.; Y. Guo, Y. Li, J. Wang, T. Zhu y . M. Ye, «Effects of activated carbon properties on chlorobenzene adsorption and adsorption product analysis,» Chemical Engineering Journal, vol. 236, 2014.; S. M. Petrović, S. R. Savić, J. B. Zvezdanović, L. B. Nikolić y S. T. Stojiljković, «BENZOIC ACID REMOVAL FROM AQUEOUS SOLUTIONS BY ACTIVATED CHARCOAL,» Advanced technologies, vol. 10, pp. 5-9, 2020.; E. Ayranci, N. Hoda y . E. Bayram, «Adsorption of benzoic acid onto high specific area activated carbon cloth,» Journal of Colloid and Interface Science, vol. 284, pp. 83-88, 2004.; S. Suresh, «Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash,» Journal of The Institution of Engineers (India): Series A, vol. 93, pp. 151-161, 2012.; M. I. Gouli Bi, A. Jacques Yapo, A. Serge Ello, D. Diabaté y A. Trokourey, «Adsorption of Acetic and Benzoic Acids from Aqueous Solutions on Activated Carbon,» J. Soc. Ouest Afr. Chim., vol. 026, pp. 53-57, 2008.; H. Shahbeig, N. Bagheri, S. A. Ghorbanian, A. Hallajisani y S. Poorkarimi, «A new adsorption isotherm model of aqueous solutions on granular activated carbon,» World Journal of Modelling and Simulation, vol. 9, pp. 243-252, 2013.; R. Leyva Ramos, «IMPORTANCIA Y APLICACIONES DE LA ADSORCION EN FASE LIQUIDA,» San Luis Potosí, 2017, p. 155.; M. A. Al-Ghouti y D. A. Da'ana, «Guidelines for the use and interpretation of adsorption isotherm models: A review,» Journal of Hazardous Materials, vol. 393, nº 122383, pp. 1-13, 5 July 2020.; F. Granados Correa, J. Serrano Gómez y J. Bonifacio Martínez, «Síntesis y caracterización de materiales inorgánicos para ser empleados como adsorbentes de metales tóxicos y de interés nuclear,» de Contribuciones del Instituto Nacional de Investigaciones Nucleares al avance de la Ciencia y la Tecnología en México, 2010, p. 196; J. Wang y X. Guo, «Adsorption isotherm models: Classification, physical meaning, application and solving,» Journal Pre-proof, p. 17, 2020.; A. Hughmanick Berger y A. S. Bhown, «Comparing Physisorption and Chemisorption Solid Sorbents for use Separating CO2 from Flue Gas using Temperature Swing Adsorption,» Energy Procedia , vol. 4, p. 563, 2011.; A. Mihai Grumezescu, «Nanotechnology For Drinking Water Purification,» de Water Purification, vol. 9, 2017, p. 93.; M. Bugdayc y L. Oncel, «Adsorption Properties of Composites Produced by Combustion Synthesis,» de Advances in Combustion Synthesis and Technology, 2022, p. 99.; C. P. Bergmann y F. Machado Machado, «Experimental Adsorption,» de Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Brasil, Springer, 2015, p. 77.; L. Hu, Z. Yang, Y. Wang, Y. Li, D. Fan, D. Wu, Q. Wei y B. Du, «Facile preparation of water-soluble hyperbranched polyamine functionalized multiwalled carbon nanotubes for high-efficiency organic dye removal from aqueous solution,» Scientific Reports, vol. 7, nº 3611, p. 8, 2017.; Y. Liu y Y.-J. Liu, «Biosorption isotherms, kinetics and thermodynamics,» Separation and Purification Technology, vol. 61, nº 3, pp. 230-240, 2008.; P. Saha y S. Chowdhury, «Insight Into Adsorption Thermodynamics,» de Thermodynamics, IntechOpen, 2011, pp. 351-360.; O. Parkkima, A. Silvestre, J. Silvestre y M. Karppinen, «Oxygen-Nonstoichiometric YBaCo4O7+d as a Catalyst in H2O2 Oxidation of Cyclohexene,» Catalysis Letters, vol. 145, 2014.; L. Giraldo, P. Rodríguez y J. C. Moreno, «Calorimetry of Immersion in the Energetic,» 2018.; V. Bernal, . A. Erto, L. Giraldo y . J. C. Moreno, «Effect of Solution pH on the Adsorption of Paracetamol,» Molecules, vol. 22, 2017.; V. Bernal, J. C. Moreno, L. Giraldo y F. Gómez, «The Immersion Calorimetry as a Tool to Study of the Adsorbate-Adsorbent Interactions on the Adsorption of Emerging Pollutants onto Activated Carbon fromWater: Case Methylparaben and Paracetamol,» 2021.; M. Ghaedi, «Adsorbent,» de Adsorption: Fundamental Processes and Applications, 2021, pp. 73-84.; B. A. Bhanvase, S. H. Sonawane, V. B. Pawade y A. B. Pandit, «Nanomaterials for adsorption of pollutants and heavy metals,» de Handbook of Nanomaterials for Wastewater Treatment: Fundamentals and Scale up Issues, 2021, p. 349.; U. Maheshwari, Removal of Metal Ions from Wastewater using Adsorption: Experimental and Theoretical Studies, Pilani, 2015.; D. Toboła, J. Morgiel y Ł. Maj, «TEM analysis of surface layer of Ti-6Al-4V ELI alloy after slide burnishing and low-temperature gas nitriding,» Applied Surface Science, vol. 515, 2020.; H. B. Asberrya, C. YihKuo, C. HauGung, E. D. Conte y S. YiSuencd, «Characterization of water bamboo husk biosorbents and their application in heavy metal ion trapping,» Microchemical Journal, vol. 113, p. 59, 2014.; M. Almazroueia, S. Elagroudy y I. Janajreha, «Transesterification of waste cooking oil: Quality assessment via thermogravimetric analysis,» Energy Procedia, vol. 158, p. 2070, 2019.; K. Y. Foo y B. H. Hameed, «Insights into the modeling of adsorption isotherm systems,» Chemical Engineering Journal, vol. 156, p. 3, 2010; M. I. El-Khaiary, «Least-squares regression of adsorption equilibrium data:Comparing the options,» Journal of Hazardous Materials, vol. 158, p. 73, 2008.; M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari y M. Sillanpää , «Adsorption isotherm models: A comprehensive and systematic review (2010−2020),» Science of The Total Environment, vol. 812, 2022.; M. Belhachemi y F. Addoun, «Comparative adsorption isotherms and modeling of methylene blue onto activated carbons,» Applied Water Science, vol. 1, nº 3-4, pp. 112-113, 2011.; S. Alam, B. Ullah , M. Sufaid Khan, N. u. Rahman, L. Khan, L. Ali Shah, I. Zekker , J. Burlakovs , A. Kallistova, N. Pimenov , E. Yandri, R. Hendroko Setyobudi , Y. Jani y M. Zahoor , «Adsorption Kinetics and Isotherm Study of Basic Red 5 on Synthesized Silica Monolith Particles,» Water, vol. 13, nº 20, pp. 9-10, 2021.; S. Nethaji, A. Sivasamy y A. B. Mandal, «Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass,» International Journal of Environmental Science and Technology, vol. 10, nº 2, pp. 234-236, 2013.; O. Hamdaoui y E. Naffrechoux, «Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters,» Journal of Hazardous Materials, vol. 147, nº 1-2, pp. 382-384, 2007.; M. Can, «Rhodium Adsorption on Gallic Acid Resol Resin,» ACTA PHYSICA POLONICA A, vol. 127, nº 4, pp. 1302-1303, 2015.; M. A. Al-Ghouti y S. S. Dib, «Utilization of nano-olive stones in environmental remediation of methylene blue from water,» Journal of Environmental Health Science and Engineering, vol. 18, nº 1, p. 72, 2020; E. Newton Augustus, A. Seimokumo Samuel, A. Nimibofa y W. Donbebe, «Removal of Congo Red from Aqueous Solutions Using Fly Ash Modified with Hydrochloric Acid,» British Journal of Applied Science & Technology, vol. 20, p. 3, 2017.; M. Horsfall Jnr y A. I. Spiff, «Equilibrium Sorption Study of Al3+, Co2+ and Ag+ in Aqueous Solutions by Fluted Pumpkin (Telfairia Occidentalis HOOK f) Waste Biomass,» Acta Chimica Slovenica, vol. 52, p. 178, 2005.; G. NECHIFOR, D.-E. PASCU, M. PASCU, G. A. TRAISTARU y P. Constantin ALBU, «COMPARATIVE STUDY OF TEMKIN AND FLORY-HUGGINS ISOTHERMS FOR ADSORPTION OF PHOSPHATE ANION ON MEMBRANES,» UPB Scientific Bulletin, Series B, vol. 77, pp. 67-68, 2015.; V. O. Shikuku y T. Mishra, «Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms,» Applied Water Science, vol. 11, p. 6, 2021.; K. Foo y B. Hameed, «Insights into the modeling of adsorption isotherm systems,» Chemical Engineering Journal, vol. 156, p. 4, 2010.; E. Repo, L. Malinen, R. Koivula, R. Harjula y M. Sillanpää, «Capture of Co(II) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan,» Journal of Hazardous Materials, vol. 187, p. 128, 2011.; N. Ayawei, A. Newton Ebelegi y D. Wankasi, «Modelling and Interpretation of Adsorption Isotherms,» Hindawi Journal of Chemistry, p. 5, 2017.; M. Belhachemi y F. Addoun, «Comparative adsorption isotherms and modeling of methylene blue onto activated carbons,» Applied Water Science, vol. 1, pp. 112-113, 2011.; S. Nethaji, A. Sivasamy y A. B. Mandal, «Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass,» International Journal of Environmental Science and Technology, vol. 10, p. 236, 2013.; Y. Liu y Y.-J. Liu, «Biosorption isotherms, kinetics and thermodynamics,» Separation and Purification Technology, vol. 61, pp. 230-240, 2008.; A. M. Carvajal Bernal y F. A. Gómez Granados, Estudio Termodinámico de la Adsorción de Hidrocarburos Lineales y Compuestos Fenólicos sobre Carbones Activados, Bogotá D.C., 2018, p. 92.; T. Benzaoui, A. Selatnia y D. Djabali, «Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration,» Adsorption Science & Technology, vol. 36, p. 7, 2017.; G. A. Rodriguez, L. Giraldo y J. Moreno, «Evaluación de la señal calorimétrica en una unidad de conducción de calor, como herramienta en la carcaterización de carbones activados,» Revista de Química Teórica y Aplicada, vol. 68, nº 551, pp. 33-37, 2011.; D. C. Hernández Monje, «Adsorción de Benceno, Hexano y Ciclohexano desde Fase Gas sobre Carbones Activados Granulares Modificados. Estudio Entálpico y de Equilibrio.,» Bogotá D.C., 2016 .; A. Bhatnagar , W. Hogland, M. Marques y M. Sillanpää, «An overview of the modification methods of activated carbon for its water treatment applications,» Chemical Engineering Journal , vol. 219, 2013.; W. M. A. Wan Daud y A. H. Houshamnd, «Textural characteristics, surface chemistry and oxidation of activated carbon,» Journal of Natural Gas Chemistry, vol. 19, 2010.; M. A. Montes-Morán, D. Suárez, J. A. Menéndez y E. Fuente, «The Basicity of Carbons,» de Novel carbon adsorbents: The basicity of carbons, 2012.; E. E. de Moraes, M. Z. Tone, S. B. Fagan y M. C. Barbosa, «Density functional theory study of π-aromatic interaction of benzene, phenol, catechol, dopamine isolated dimers and adsorbed on graphene surface,» Journal of Molecular Modeling , vol. 25, 2019.; https://repositorio.unal.edu.co/handle/unal/86625; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Revista Colombiana de Química; Vol. 47 Núm. 2 (2018); 54-62 ; Revista Colombiana de Química; v. 47 n. 2 (2018); 54-62 ; Revista Colombiana de Química; Vol. 47 No. 2 (2018); 54-62 ; 2357-3791 ; 0120-2804

    وصف الملف: application/pdf; text/html; application/xml

    Relation: https://revistas.unal.edu.co/index.php/rcolquim/article/view/68213/66304; https://revistas.unal.edu.co/index.php/rcolquim/article/view/68213/67428; https://revistas.unal.edu.co/index.php/rcolquim/article/view/68213/67429; Guiloski, I. C.; Ribas, J. L. C.; Piancini, L. D. S.; Dagostim, A. C.; Cirio, S. M.; Fávaro, L. F. et al. Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environ. Toxicol. Pharmacol. 2017, 53, 111-120. DOI: https://doi.org/10.1016/j.etap.2017.05.005.; E Beijer, K.; Björlenius, B.; Shaik, S.; Lindberg, R. H.; Brunström, B.; Brandt, I. Removal of pharmaceuticals and unspecified contaminants in sewage treatment effluents by activated carbon filtration and ozonation: Evaluation using biomarker responses and chemical analysis. Chemosphere. 2017, 176, 342-351. DOI:https://doi.org/10.1016/j.chemosphere.2017.02.127; Ocampo-Perez, R.; Leyva-Ramos, R.; Mendoza-Barron, J.; Guerrero-Coronado, R. M. Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models. J. Colloid Interface Sci., 2011, 364(1), 195-204. DOI: https://doi.org/10.1016/j.jcis.2011.08.032; Terzyk, A. P. Molecular properties and intermolecular forces—factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions. J. Colloid Interface Sci. 2004, 275(1), 9-29. DOI: https://doi.org/10.1016/j.jcis.2004.02.011; Masson, S.; Vaulot, C., Reinert, L.; Guittonneau, S.; Gadiou, R.; Duclaux, L. Thermodynamic study of seven micropollutants adsorption onto an activated carbon cloth: Van’t Hoff method, calorimetry, and COSMO-RS simulations. Environ. Sci. Pollut Res. 2017, 24 (11), 10005-10017. DOI: https://doi.org/10.1007/s11356-016-7614-0; VanDer Kamp, K. A.; Qiang, D.; Aburub, A.; Wurster, D. E. Modified Langmuir-like model for modeling the adsorption from aqueous solutions by activated carbons. Langmuir. 2005, 21(1), 217-224. DOI:10.1021/la040093o.; Jaroniec, M.; Madey, R. Enthalpy of immersion of a microporous solid. J. Phys. Chem. 1988, 92 (13), 3986-3988.; Guo, L.; Xiao, L.; Shan, X.; Zhang, X. Modeling adsorption with lattice Boltzmann equation. Sci. Rep., 2016, 6, 27134. DOI:10.1038/srep27134; Boehm, H. P. Chemical identification of surface groups. Adv. Catal., 1966, 16, 179-274. DOI: https://doi.org/10.1016/S0360-0564(08)60354-5; Babić, B. M.; Milonjić, S. K.; Polovina, M. J.; Kaludierović, B. V. Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon., 1999, 37(3), 477-481. DOI: https://doi.org/10.1016/S0008-6223(98)00216-4; Ocampo-Perez, R.; Aguilar-Madera, C. G.; Díaz-Blancas, V. 3D modeling of overall adsorption rate of acetaminophen on activated carbon pellets. Chem. Eng. J., 2017, 321, 510-520. DOI: https://doi.org/10.1016/j.cej.2017.03.137; Pradhan, B. K.; Sandle, N. K. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon., 1999, 37(8), 1323-1332. DOI: https://doi.org/10.1016/S0008-6223(98)00328-5; Yu, Z.; Meng, X.; Liu, N.; Shi, L. A novel disposal approach of deactivated resin catalyst for methyl tert-butyl ether synthesis: Preparation of low-cost activated carbons with remarkable performance on dibenzothiophene adsorption. Fuel., 2017, 207, 47-55.; Child, R.; Ramanathan, S. Composition of coconut shells. J. Am. Chem. Soc., 1938, 60(6), 1506-1507. DOI:10.1021/ja01273a501; Bansal, R. C.; Goyal, M. Activated carbon adsorption. CRC press.: 6000 Broken sound Parkway NW, suite 300, Boca raton FL. 2005; pp 1-5. DOI: https://doi.org/10.1201/9781420028812; Bernal, V.; Erto, A.; Giraldo, L.; Moreno-Piraján, J. C. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons. Molecules, 2017, 22(7), 1032. DOI:10.3390/molecules22071032; Bernal, V.; Giraldo, L.; Moreno-Piraján, J. C. Thermodynamic study of the interactions of salicylic acid and granular activated carbon in solution at different pHs. Adsorpt. Sci. Technol., 2017, p. 0263617417730463. DOI: https://doi.org/10.1177/0263617417730463.; Maszkowska, J.; Wagil, M.; Mioduszewska, K.; Kumirska, J.; Stepnowski, P.; Białk-Bielińska, A. Thermodynamic studies for adsorption of ionizable pharmaceuticals onto soil. Chemosphere,2014, 111, 568-574 DOI: https://doi.org/10.1016/j.chemosphere.2014.05.005; Vijayakumar, G.; Tamilarasan, R.; Dharmendirakumar, M. Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J. Mater. Environ. Sci, 2012, 3(1), 157-170.; https://revistas.unal.edu.co/index.php/rcolquim/article/view/68213

  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rcolquim/article/view/68213; Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Química; Revista Colombiana de Química; Bernal Fernández, Valentina and Moreno-Piraján, Juan Carlos and Giraldo, Liliana (2018) Adsorción de acetaminofén sobre carbones activados a diferente pH. Entalpía y entropía del proceso. Revista Colombiana de Química, 47 (2). pp. 54-62. ISSN 2357-3791; https://repositorio.unal.edu.co/handle/unal/66247; http://bdigital.unal.edu.co/67271/

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
  13. 13
    Dissertation/ Thesis

    المساهمون: Giraldo Gutiérrez, Liliana, Moreno Piraján, Juan Carlos, Grupo de Calorimetría

    وصف الملف: xxiv, 171 páginas; application/pdf

    Relation: L. Bandura, D. Kołodyńska, W. Franus, Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash, Process Saf. Environ. Prot. (2017). https://doi.org/10.1016/j.psep.2017.03.036; G. Gałezowska, M. Chraniuk, L. Wolska, In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review, TrAC - Trends Anal. Chem. 77 (2016) 14–22. https://doi.org/10.1016/j.trac.2015.10.012; M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - A review, Atmos. Environ. 140 (2016) 117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031; R. Tong, L. Zhang, X. Yang, J. Liu, P. Zhou, J. Li, Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing, J. Clean. Prod. 208 (2019) 1096–1108. https://doi.org/10.1016/j.jclepro.2018.10.195.; X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review, Sep. Purif. Technol. 235 (2020) 116213. https://doi.org/10.1016/j.seppur.2019.116213.; Y. Qi, L. Shen, J. Zhang, J. Yao, R. Lu, T. Miyakoshi, Species and release characteristics of VOCs in furniture coating process, Environ. Pollut. 245 (2019) 810–819. https://doi.org/10.1016/j.envpol.2018.11.057.; E.H. Lee, D. Paek, Y.L. Kho, K. Choi, H.J. Chae, Color vision impairments among shipyard workers exposed to mixed organic solvents, especially xylene, Neurotoxicol. Teratol. 37 (2013) 39–43. https://doi.org/10.1016/j.ntt.2013.02.005.; A.M. Betancur-Sánchez, E.M. Vásquez-Trespalacios, C. Sardi-Correa, Impaired colour vision in workers exposed to organic solvents: A systematic review, Arch. La Soc. Española Oftalmol. (English Ed. 92 (2017) 12–18. https://doi.org/10.1016/j.oftale.2016.09.003.; E.M.D.C.B. Lacerda, M.G. Lima, A.R. Rodrigues, C.E.C. Teixeira, L.J.B. De Lima, D.F. Ventura, L.C.D.L. Silveira, Psychophysical evaluation of achromatic and chromatic vision of workers chronically exposed to organic solvents, J. Environ. Public Health. 2012 (2012) 1–7. https://doi.org/10.1155/2012/784390.; T.L. Costa, M.T.S. Barboni, A.L. de A. Moura, D.M.O. Bonci, M. Gualtieri, L.C. de Lima Silveira, D.F. Ventura, Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields, PLoS One. 7 (2012) 1–9. https://doi.org/10.1371/journal.pone.0042961.; A.M. Landtblom, A. Kristoffersson, I. Boström, Organic solvent exposure as a risk factor for multiple sclerosis: An updated review, Rev. Neurol. (Paris). 175 (2019) 625–630. https://doi.org/10.1016/j.neurol.2019.07.014.; C. Barul, M. Carton, L. Radoï, G. Menvielle, C. Pilorget, A.S. Woronoff, I. Stücker, D. Luce, Occupational exposure to petroleum-based and oxygenated solvents and oral and oropharyngeal cancer risk in men: A population-based case-control study in France, Cancer Epidemiol. 59 (2019) 22–28. https://doi.org/10.1016/j.canep.2019.01.005.; S. Batterman, F.C. Su, S. Li, B. Mukherjee, C. Jia, HEI Health Review Committee, Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data., Res. Rep. Health. Eff. Inst. (2014) 3–63. http://www.ncbi.nlm.nih.gov/pubmed/25145040 (accessed October 6, 2017).; A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int. 42 (2016) 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145.; M.J. Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, J. Quesada-Medina, Ionic liquid technology to recover volatile organic compounds (VOCs), J. Hazard. Mater. 321 (2017) 484–499. https://doi.org/10.1016/j.jhazmat.2016.09.040.; H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A.; X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013.; L. Zhou, Q. Yu, Y. Cui, F. Xie, W. Li, Y. Li, M. Chen, Adsorption properties of activated carbon from reed with a high adsorption capacity, Ecol. Eng. 102 (2017) 443–450. https://doi.org/10.1016/j.ecoleng.2017.02.036.; Y. Yang, X., Yi, H., Tang, X., Zhao, S., Yang, Z., Ma, Behaviors and kinetics of toluene adsorption‐desorption on activated carbons with varying pore structure, J. Environ. Sci. 67 (2018) 104–114. https://doi.org/10.1016/j.jes.2017.06.032.; E. Gallego, F.J. Roca, J.F. Perales, X. Guardino, Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement, Build. Environ. 67 (2013) 14–25. https://doi.org/10.1016/j.buildenv.2013.05.003.; L. Li, S. Liu, J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater. 192 (2011) 683–690. https://doi.org/10.1016/j.jhazmat.2011.05.069.; A. Sekar, G.K. Varghese, M.K. Ravi Varma, Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment, Heliyon. 5 (2019) 2918. https://doi.org/10.1016/j.heliyon.2019.e02918.; M. Song, X. Liu, Y. Zhang, M. Shao, K. Lu, Q. Tan, M. Feng, Y. Qu, Sources and abatement mechanisms of VOCs in southern China, Atmos. Environ. 201 (2019) 28–40. https://doi.org/10.1016/j.atmosenv.2018.12.019.; W.-T. Tsai, Toxic Volatile Organic Compounds (VOCs) in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea, Environments. 3 (2016) 23–30. https://doi.org/10.3390/environments3030023.; J. Fan, X. Gou, Y. Sun, X. Ran, W. Teng, X. Wang, Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs), Nat. Gas Ind. B. 4 (2017) 382–389. https://doi.org/10.1016/j.ngib.2017.10.003.; M.M. Dubinin, Microporous structures of carbonaceous adsorbents, Carbon N. Y. 20 (1982) 195–200. https://doi.org/10.1016/0008-6223(82)90020-3.; D. Hugi-Cleary, S. Wermeille, F. Stoeckli, The Characterization of Non-Porous Surfaces by a Combination of the BET and the Dubinin-Radushkevich-Kaganer (DRK) Theories, Chimia (Aarau). 57 (2003) 611–615. https://doi.org/10.2533/000942903777678740.; R. Denoyel, F. Rouquerol, J. Rouquerol, Porous texture and surface characterization from liquid – solid interactions: immersion calorimetry and adsorption from solution, in: J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing (Eds.), Adsorpt. by Powders Porous Solids Princ. Methodol. Appl., ACADEMIC PRESS, INC., Kidlington, 2014: pp. 273–300.; X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. 338 (2017) 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013.; L. Zhu, D. Shen, K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, J. Hazard. Mater. 389 (2020) 122102. https://doi.org/10.1016/j.jhazmat.2020.122102.; A. Erto, S. Chianese, A. Lancia, D. Musmarra, On the mechanism of benzene and toluene adsorption in single-compound and binary systems: Energetic interactions and competitive effects, Desalin. Water Treat. 86 (2017) 259–265. https://doi.org/10.5004/dwt.2017.20712.; J.M. Martín Martínez, Porosidad de Carbones II. Teoría de Polanyi - Dubinin, in: Martín-Martínez JM (Ed.), Adsorción Física Gases y Vap. Por Carbones, Universidad de Alicante Publicaciones, Alicante, 1990: pp. 5–80.; F. Stoeckli, A. Slasli, D. Hugi-Cleary, A. Guillot, The characterization of microporosity in carbons with molecular sieve effects, Microporous Mesoporous Mater. 51 (2002) 197–202. https://doi.org/10.1016/S1387-1811(01)00482-6.; B. Rubahamya, K.S. Kumar Reddy, A. Prabhu, A. Al Shoaibi, C. Srinivasakannan, Porous carbon screening for benzene sorption, Environ. Prog. Sustain. Energy. 38 (2019) 93–99. https://doi.org/10.1002/ep.12925.; https://repositorio.unal.edu.co/handle/unal/83000; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  14. 14
    Academic Journal

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/rcolquim/article/view/55606; Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Química; Revista Colombiana de Química; Acevedo, Sergio and Giraldo, Liliana and Moreno, Juan Carlos (2015) CARACTERIZACIÓN TEXTURAL Y QUÍMICA DE CARBONES ACTIVADOS PREPARADOS A PARTIR DE CUESCO DE PALMA AFRICANA (ELAEIS GUINEENSIS) POR ACTIVACIÓN QUÍMICA CON CaCl2 y MgCl2. Revista Colombiana de Química, 44 (3). pp. 18-24. ISSN 2357-3791; https://repositorio.unal.edu.co/handle/unal/66297; http://bdigital.unal.edu.co/67321/

  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    المصدر: Materials; Volume 3; Issue 1; Pages: 452-466

    مصطلحات موضوعية: bone charcoal, immersion enthalpy, adsorption, heavy metals

    وصف الملف: application/pdf

  19. 19
    Academic Journal
  20. 20
    Dissertation/ Thesis

    المؤلفون: Cárdenas Cuevas, Lady Johana

    المساهمون: Giraldo Gutiérrez, Liliana, Grupo de Calorimetría

    وصف الملف: xvi, 90 páginas; application/pdf

    Relation: A. Tolosana-Moranchel, J. A. Anderson, J. A. Casas, M. Faraldos, and A. Bahamonde, “Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds,” J. Environ. Chem. Eng., vol. 5, no. 5, pp. 4612–4620, 2017, doi:10.1016/j.jece.2017.08.053.; X. xia Yang, X. fang Hou, X. ming Gao, and F. Fu, “Hierarchical porous carbon from semi-coke via a facile preparation method for p-nitrophenol adsorption,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 563, pp. 50–58, 2019, doi:10.1016/j.colsurfa.2018.11.018.; X. Wang, H. Li, and J. Huang, “Adsorption of p-chlorophenol on three amino-modified hyper-cross-linked resins,” J. Colloid Interface Sci., vol. 505, pp. 585–592, 2017, doi:10.1016/j.jcis.2017.06.053.; Y. M. Magdy, H. Altaher, and E. ElQada, “Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling,” Appl. Water Sci., vol. 8, no. 1, 2018, doi:10.1007/s13201-018-0666-1.; N. Sarker and A. N. M. Fakhruddin, “Removal of phenol from aqueous solution using rice straw as adsorbent,” Appl. Water Sci., vol. 7, no. 3, pp. 1459–1465, 2017, doi:10.1007/s13201-015-0324-9.; H. Biglari, M. Afsharnia, V. Alipour, R. Khosravi, K. Sharafi, and A. H. Mahvi, “A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry,” Environ. Sci. Pollut. Res., vol. 24, no. 4, pp. 4105–4116, 2017, doi:10.1007/s11356-016-8079-x; O. Shmychkova, T. Luk’yanenko, A. Yakubenko, R. Amadelli, and A. Velichenko, “Electrooxidation of some phenolic compounds at Bi-doped PbO2,” Appl. Catal. B Environ., vol. 162, pp. 346–351, 2015, doi:10.1016/j.apcatb.2014.07.011.; E. Hernández-Francisco, J. Peral, and L. M. Blanco-Jerez, “Removal of phenolic compounds from oil refinery wastewater by electrocoagulation and Fenton/photo-Fenton processes,” J. Water Process Eng., vol. 19, no. February, pp. 96–100, 2017, doi:10.1016/j.jwpe.2017.07.010.; P. R. M. Cavalcante, R. P. F. Melo, T. N. Castro Dantas, A. A. Dantas Neto, E. L. Barros Neto, and M. C. P. A. Moura, “Removal of phenol from aqueous medium using micellar solubilization followed by ionic flocculation,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 2778–2784, 2018, doi:10.1016/j.jece.2018.04.025.; M. D. Víctor-Ortega, J. M. Ochando-Pulido, and A. Martínez-Ferez, “Performance and modeling of continuous ion exchange processes for phenols recovery from olive mill wastewater,” Process Saf. Environ. Prot., vol. 100, pp. 242–251, 2016, doi:10.1016/j.psep.2016.01.017.; D. P. Zagklis, A. I. Vavouraki, M. E. Kornaros, and C. A. Paraskeva, “Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption,” J. Hazard. Mater., vol. 285, pp. 69–76, 2015, doi:10.1016/j.jhazmat.2014.11.038.; F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. Llewellyn, and G. Maurin, Adsorption by powders and porous solids: Principles, Methodology and Applications. 2014.; X. Gao, Y. Dai, Y. Zhang, and F. Fu, “Effective adsorption of phenolic compound from aqueous solutions on activated semi coke,” J. Phys. Chem. Solids, vol. 102, pp. 142–150, 2017, doi:10.1016/j.jpcs.2016.11.023.; L. Zhang, B. Zhang, T. Wu, D. Sun, and Y. Li, “Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 484, no. August, pp. 118–129, 2015, doi:10.1016/j.colsurfa.2015.07.055.; Q. Qin, K. Liu, D. Fu, and H. Gao, “Effect of chlorine content of chlorophenols on their adsorption by mesoporous SBA-15,” J. Environ. Sci. (China), vol. 24, no. 8, pp. 1411–1417, 2012, doi:10.1016/S1001-0742(11)60924-8.; D. Zhao, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science (80-. )., vol. 279, no. 5350, pp. 548–552, 1998, doi:10.1126/science.279.5350.548.; J. P. Thielemann, F. Girgsdies, R. Schlögl, and C. Hess, “Pore structure and surface area of silica SBA-15: influence of washing and scale-up,” Beilstein J. Nanotechnol., vol. 2, no. 1, pp. 110–118, 2011, doi:10.3762/bjnano.2.13.; M. S. Cho, H. J. Choi, K. Y. Kim, and W. S. Ahn, “Synthesis and characterization of polyaniline/mesoporous SBA-15 nanocomposite,” Macromol. Rapid Commun., vol. 23, no. 12, 2002, doi:10.1002/1521-3927(20020801)23:123.0.CO;2-Y.; V. L. Zholobenko, A. Y. Khodakov, M. Impéror-Clerc, D. Durand, and I. Grillo, “Initial stages of SBA-15 synthesis: An overview,” Advances in Colloid and Interface Science, vol. 142, no. 1–2. 2008, doi:10.1016/j.cis.2008.05.003.; V. Chaudhary and S. Sharma, “An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions,” J. Porous Mater., vol. 24, no. 3, 2017, doi:10.1007/s10934-016-0311-z.; M. A. U. Martines, E. Yeong, A. Larbot, and E. Prouzet, “Temperature dependence in the synthesis of hexagonal MSU-3 type mesoporous silica synthesized with Pluronic P123 block copolymer,” Microporous Mesoporous Mater., vol. 74, no. 1–3, 2004, doi:10.1016/j.micromeso.2004.06.021; Q. Li et al., “Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution,” Appl. Surf. Sci., vol. 290, pp. 260–266, 2014, doi:10.1016/j.apsusc.2013.11.065.; S. Huh, J. W. Wiench, J. C. Yoo, M. Pruski, and V. S. Y. Lin, “Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method,” Chem. Mater., vol. 15, no. 22, 2003, doi:10.1021/cm0210041.; A. S. Maria Chong and X. S. Zhao, “Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials,” J. Phys. Chem. B, vol. 107, no. 46, 2003, doi:10.1021/jp035877+.; S. L. Burkett, S. D. Sims, and S. Mann, “Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors,” Chem. Commun., no. 11, 1996, doi:10.1039/CC9960001367.; D. J. Macquarrie, “Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM,” Chem. Commun., no. 16, 1996, doi:10.1039/CC9960001961.; T. Yokoi, H. Yoshitake, and T. Tatsumi, “Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes,” J. Mater. Chem., 2004, doi:10.1039/b310576h.; D. Y. Takamori, M. A. Bizeto, M. C. de A. Fantini, C. P. L. Rubinger, R. Faez, and T. S. Martins, “Polyaniline inclusion into ordered mesoporous silica matrices: Synthesis, characterization and electrical transport mechanism,” Microporous Mesoporous Mater., vol. 274, pp. 212–219, 2019, doi:10.1016/j.micromeso.2018.07.045.; M. S. Lashkenari, M. Ghorbani, M. Safabakhsh, B. Shahrokhi, J. fallah, and S. Rezaei, “Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation,” J. Appl. Electrochem., vol. 50, no. 5, 2020, doi:10.1007/s10800-020-01400-9.; L. Munguía-Cortés et al., “APTES-functionalization of SBA-15 using ethanol or toluene: Textural characterization and sorption performance of carbon dioxide,” J. Mex. Chem. Soc., vol. 61, no. 4, 2017, doi:10.29356/jmcs.v61i4.457.; J. Huang et al., “Pb (II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15,” J. Colloid Interface Sci., vol. 385, no. 1, pp. 137–146, 2012, doi:10.1016/j.jcis.2012.06.054.; P. Rodríguez-Estupiñán, L. Giraldo, and J. C. Moreno-Piraján, “Calorimetric study of amino-functionalised SBA-15,” J. Therm. Anal. Calorim., vol. 121, no. 1, pp. 127–134, 2015, doi:10.1007/s10973-015-4562-8.; M. Anbia and S. Amirmahmoodi, “Adsorption of phenolic compounds from aqueous solutions using functionalized SBA-15 as a nano-sorbent,” Sci. Iran., vol. 18, no. 3 C, pp. 446–452, 2011, doi:10.1016/j.scient.2011.05.007.; P. S. Liu and G. F. Chen, “Chapter Nine - Characterization Methods: Basic Factors,” in Porous Materials, 2014.; F. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin, “Evaluation of the BET theory for the characterization of meso and microporous MOFs,” Small Methods, vol. 2, no. 11. 2018, doi:10.1002/smtd.201800173.; D. Dollimore, P. Spooner, and A. Turner, “The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas,” Surface Technology, vol. 4, no. 2. 1976, doi:10.1016/0376-4583(76)90024-8.; K. S. W. Sing, “Reporting physisorption data for gas/solid systems,” Pure Appl. Chem., vol. 54, no. 11, 1982, doi:10.1351/pac198254112201.; M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, 2015, doi:10.1515/pac-2014-1117.; B. J. Inkson, “Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016.; N. Rahmat, N. Sadon, and M. A. Yusof, “Thermogravimetric Analysis (TGA) Profile at Different Calcination Conditions for Synthesis of PTES-SBA-15,” Am. J. Appl. Sci., 2017, doi:10.3844/ajassp.2017.938.944.; N. Saadatkhah et al., “Experimental methods in chemical engineering: Thermogravimetric analysis—TGA,” Canadian Journal of Chemical Engineering, vol. 98, no. 1. 2020, doi:10.1002/cjce.23673.; M. Ghanei, A. Rashidi, H. A. Tayebi, and M. E. Yazdanshenas, “Removal of Acid Blue 25 from Aqueous Media by Magnetic-SBA-15/CPAA Super Adsorbent: Adsorption Isotherm, Kinetic, and Thermodynamic Studies,” J. Chem. Eng. Data, vol. 63, no. 9, 2018, doi:10.1021/acs.jced.8b00474.; V. Alfredsson and H. Wennerström, “The Dynamic Association Processes Leading from a Silica Precursor to a Mesoporous SBA-15 Material,” Acc. Chem. Res., vol. 48, no. 7, 2015, doi:10.1021/acs.accounts.5b00165.; T. Kjellman, S. Asahina, J. Schmitt, M. Impéror-Clerc, O. Terasaki, and V. Alfredsson, “Direct observation of plugs and intrawall pores in SBA-15 using low voltage high resolution scanning electron microscopy and the influence of solvent properties on plug-formation,” Chem. Mater., vol. 25, no. 20, 2013, doi:10.1021/cm402635m.; S. Mohammadi and H. Faghihian, “Elimination of Cs + from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: kinetic, thermodynamic, and isotherm studies,” Environ. Sci. Pollut. Res., vol. 26, no. 12, 2019, doi:10.1007/s11356-019-04623-2.; A. L. Doadrio, J. M. Sánchez-Montero, J. C. Doadrio, A. J. Salinas, and M. Vallet-Regí, “A molecular model to explain the controlled release from SBA-15 functionalized with APTES,” Microporous Mesoporous Mater., vol. 195, 2014, doi:10.1016/j.micromeso.2014.04.019.; M. Kokunešoski et al., “Influence of synthesis conditions on morphological features of the SBA-15 containing only elongated and rounded/spherical grains,” Sci. Sinter., vol. 50, no. 1, 2018, doi:10.2298/SOS1801111K.; S. Weng, Z. Lin, Y. Zhang, L. Chen, and J. Zhou, “Facile synthesis of SBA-15/polyaniline nanocomposites with high electrochemical activity under neutral and acidic conditions,” React. Funct. Polym., vol. 69, no. 2, pp. 130–136, 2009, doi:10.1016/j.reactfunctpolym.2008.12.001.; C. C. S. Pedroso, V. Junqueira, C. P. L. Rubinger, T. S. Martins, and R. Faez, “Preparation, characterization and electrical conduction mechanism of polyaniline/ordered mesoporous silica composites,” Synth. Met., vol. 170, no. 1, 2013, doi:10.1016/j.synthmet.2013.02.014.; M. Abboud et al., “Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the adsorption of methylene blue from wastewater,” New J. Chem., vol. 44, no. 6, 2020, doi:10.1039/d0nj00076k.; A.-D. Bendrea, A.-M. Catargiu, and M. Grigoras, “Hybrid Organic-Inorganic Composite Materials for Application in Chemical Sensors,” Chem. J. Mold., vol. 4, no. 2, 2021, doi:10.19261/cjm.2009.04(2).03.; T. M. Albayati, I. K. Salih, and H. F. Alazzawi, “Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system,” Heliyon, vol. 5, no. 10, 2019, doi:10.1016/j.heliyon.2019.e02539.; D. Lv et al., “Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions,” Appl. Surf. Sci., vol. 428, 2018, doi:10.1016/j.apsusc.2017.09.151.; H. P. Boehm, “Some aspects of the surface chemistry of carbon blacks and other carbons,” Carbon, vol. 32, no. 5. 1994, doi:10.1016/0008-6223(94)90031-0.; R. B. Fidel, D. A. Laird, and M. L. Thompson, “Evaluation of Modified Boehm Titration Methods for Use with Biochars,” J. Environ. Qual., vol. 42, no. 6, 2013, doi:10.2134/jeq2013.07.0285.; A. M. Oickle, S. L. Goertzen, K. R. Hopper, Y. O. Abdalla, and H. A. Andreas, “Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant,” Carbon N. Y., vol. 48, no. 12, 2010, doi:10.1016/j.carbon.2010.05.004.; H. Wu, W. Lu, Y. Chen, P. Zhang, and X. Cheng, “Application of Boehm Titration for the Quantitative Measurement of Soot Oxygen Functional Groups,” Energy and Fuels, vol. 34, no. 6, 2020, doi:10.1021/acs.energyfuels.0c00904.; Y. El-Sayed, K. Loughlin, S. Ur Rehman, D. Abouelnasr, and I. Al-Zubaidy, “Development of semi-static steam process for the production of sludge-based adsorbents,” Adsorpt. Sci. Technol., vol. 32, no. 4, 2014, doi:10.1260/0263-6174.32.4.291.; G. A. Parks, “The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems,” Chem. Rev., vol. 65, no. 2, 1965, doi:10.1021/cr60234a002.; M. Kosmulski, “The pH dependent surface charging and points of zero charge. VIII. Update,” Advances in Colloid and Interface Science, vol. 275. 2020, doi:10.1016/j.cis.2019.102064.; S. Z. N. Ahmad, R. Hamdan, W. A. W. Mohamed, N. Othman, and N. S. M. Zin, “Chemical composition, pH value, and points of zero charge of high calcium and high iron electric arc furnace slag,” Int. J. Eng. Technol., vol. 7, no. 3.23 Special Issue 23, 2018, doi:10.14419/ijet.v7i3.23.17249.; J. S. Noh and J. A. Schwarz, “Effect of HNO3 treatment on the surface acidity of activated carbons,” Carbon N. Y., vol. 28, no. 5, 1990, doi:10.1016/0008-6223(90)90069-B.; A. Dutta, “Fourier Transform Infrared Spectroscopy,” in Spectroscopic Methods for Nanomaterials Characterization, vol. 2, 2017.; R. Ojeda-López, I. J. Pérez-Hermosillo, J. Marcos Esparza-Schulz, A. Cervantes-Uribe, and A. Domínguez-Ortiz, “SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio,” Adsorption, 2015, doi:10.1007/s10450-015-9716-2.; J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, and M. Lindén, “On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution,” Langmuir, vol. 23, no. 8, 2007, doi:10.1021/la062450w.; Q. N. K. Nguyen, N. T. Yen, N. D. Hau, and H. L. Tran, “Synthesis and Characterization of Mesoporous Silica SBA-15 and ZnO/SBA-15 Photocatalytic Materials from the Ash of Brickyards,” J. Chem., vol. 2020, 2020, doi:10.1155/2020/8456194.; S. Iqbal and J. Il Yun, “EDTA-functionalized mesoporous silica for the removal of corrosion products: Adsorption studies and performance evaluation under gamma irradiation,” Microporous Mesoporous Mater., vol. 248, 2017, doi:10.1016/j.micromeso.2017.04.028.; J. Silvestre-Albero, C. Gómez de Salazar, A. Sepúlveda-Escribano, and F. Rodríguez-Reinoso, “Characterization of microporous solids by immersion calorimetry,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 187, no. 188, 2001, doi:10.1016/S0927-7757(01)00620-3.; F. Stoeckli, T. A. Centeno, J. B. Donnet, N. Pusset, and E. Papirer, “Characterization of industrial activated carbons by adsorption and immersion techniques and by STM,” Fuel, vol. 74, no. 11, 1995, doi:10.1016/0016-2361(95)00168-5.; J. C. Moreno and L. Giraldo, “Determination of the immersion enthalpy of activated carbon by microcalorimetry of the heat conduction,” Instrum. Sci. Technol., vol. 28, no. 2, pp. 171–178, 2000, doi:10.1081/CI-100100970.; J. A. Menéndez, “On the use of calorimetric techniques for the characterization of carbons: A brief review,” Thermochim. Acta, vol. 312, no. 1–2, 1998, doi:10.1016/s0040-6031(97)00441-3.; R. Denoyel, F. Rouquerol, and J. Rouquerol, “Porous texture and surface characterization from liquid-solid interactions: Immersion calorimetry and adsorption from solution,” in Adsorption by Carbons, 2008.; A. M. Carvajal-Bernal, F. Gómez-Granados, L. Giraldo, and J. C. Moreno-Piraján, “A study of the interactions of activated carbon-phenol in aqueous solution using the determination of immersion enthalpy,” Appl. Sci., vol. 8, no. 6, p. 843, 2018, doi:10.3390/app8060843.; L. Giraldo, P. Rodríguez-Estupiñán, and J. C. Moreno-Piraján, “Calorimetry of Immersion in the Energetic Characterization of Porous Solids,” in Calorimetry - Design, Theory and Applications in Porous Solids, 2018.; S. M. Sarge, G. W. H. Höhne, and W. Hemminger, Calorimetry: Fundamentals, Instrumentation and Applications, vol. 9783527327614. 2014.; I. Wadsö and R. N. Goldberg, “Standards in isothermal microcalorimetry: (IUPAC Technical Report),” Pure Appl. Chem., vol. 73, no. 10, 2001, doi:10.1351/pac200173101625.; W. Zielenkiewicz, “Comparative measurements in isoperibol calorimetry: Uses and misuses,” Thermochim. Acta, vol. 347, no. 1–2, 2000, doi:10.1016/s0040-6031(99)00425-6.; J. C. Moreno and L. Giraldo, “Influence of thermal insulation of the surroundings on the response of the output electric signal in a heat conduction calorimetric unit,” Instrum. Sci. Technol., vol. 33, no. 4, 2005, doi:10.1081/CI-200063709.; P. J. van Ekeren, “Handbook of Thermal Analysis and Calorimetry,” Thermochim. Acta, vol. 407, no. 1–2, 2003, doi:10.1016/s0040-6031(03)00283-1.; D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “Characterisation of granular activated carbon prepared by activation with CaCl2 by means of gas adsorption and immersion calorimetry,” Adsorption, vol. 22, no. 4–6, pp. 717–723, 2016, doi:10.1007/s10450-016-9764-2.; L. Navarrete, L. Giraldo, and J. Moreno, “Influencia de la química superficial en la entalpía de inmersión de carbones activados en soluciones acuosas de fenol y 4-nitro fenol,” Rev. Colomb. Química, vol. 35, no. 2, pp. 215–224, 2006.; P. Rodríguez Estupiñán, L. Giraldo Gutiérrez, and J. Moreno Piraján, “Relación entre entalpías de inmersión de carbones activados modificados en su química superficial en diferentes líquidos y sus características fisicoquímicas,” Afinidad Rev. química teórica y Apl., vol. 72, no. 570, pp. 114–119, 2015.; A. Da̧browski, P. Podkościelny, Z. Hubicki, and M. Barczak, “Adsorption of phenolic compounds by activated carbon - A critical review,” Chemosphere, vol. 58, no. 8, 2005, doi:10.1016/j.chemosphere.2004.09.067.; K. Sharafi et al., “Phenol adsorption on scoria stone as adsorbent - Application of response surface method and artificial neural networks,” J. Mol. Liq., vol. 274, 2019, doi:10.1016/j.molliq.2018.11.006.; H. T. Hamad, “Removal of phenol and inorganic metals from wastewater using activated ceramic,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 4, 2021, doi:10.1016/j.jksues.2020.04.006.; B. K. Singh and P. S. Nayak, “Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash,” Adsorpt. Sci. Technol., vol. 22, no. 4, 2004, doi:10.1260/0263617041514901.; B. Chakraborty, “Kinetic study of degradation of p-nitro phenol by a mixed bacterial culture and its constituent pure strains,” in Materials Today: Proceedings, 2016, vol. 3, no. 10, doi:10.1016/j.matpr.2016.10.034.; M. J. Ahmed and S. K. Theydan, “Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones,” Ecotoxicol. Environ. Saf., vol. 84, 2012, doi:10.1016/j.ecoenv.2012.06.019.; D. Wei et al., “Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: A DFT and MD simulation study,” Chem. Eng. J., vol. 375, 2019, doi:10.1016/j.cej.2019.121964.; A. Shokri, “Degradation of 4-Chloro phenol in aqueous media thru UV/Persulfate method by Artificial Neural Network and full factorial design method,” Int. J. Environ. Anal. Chem., 2020, doi:10.1080/03067319.2020.1791328.; I. Abay, A. Denizli, E. Bişkin, and B. Salih, “Removal and pre-concentration of phenolic species onto β-cyclodextrin modified poly(hydroxyethylmethacrylate-ethyleneglycoldimethacrylate) microbeads,” Chemosphere, vol. 61, no. 9, 2005, doi:10.1016/j.chemosphere.2005.03.079.; M. A. Al-Ghouti and D. A. Da’ana, “Guidelines for the use and interpretation of adsorption isotherm models: A review,” Journal of Hazardous Materials, vol. 393. 2020, doi:10.1016/j.jhazmat.2020.122383; H. A. Asmaly et al., “Adsorption of phenol on aluminum oxide impregnated fly ash,” Desalin. Water Treat., vol. 57, no. 15, pp. 6801–6808, 2016, doi:10.1080/19443994.2015.1010238; https://repositorio.unal.edu.co/handle/unal/81784; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/