يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"hypergeometric matrix function"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المؤلفون: Ayman Shehata

    المصدر: Symmetry; Volume 13; Issue 12; Pages: 2335

    وصف الملف: application/pdf

    Relation: Mathematics and Symmetry/Asymmetry; https://dx.doi.org/10.3390/sym13122335

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
    Academic Journal

    المصدر: Scientiae Mathematicae Japonicae. 2009, 69(3):315

  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المؤلفون: Shehata, Ayman

    وصف الملف: application/pdf

    Relation: mr:MR3576790; zbl:Zbl 06674853; reference:[1] Aktaş, R.: A new multivariable extension of Humbert matrix polynomials.AIP Publishing LLC Rhodes, Greece AIP Conference Proceedings 1558: Proc. Int. Conf. on Numerical Analysis and Applied Mathematics (2013), 1128-1131 T. Simos et al. \DOI 10.1063/1.4825706. 10.1063/1.4825706; reference:[2] Aktaş, R.: A note on multivariable Humbert matrix polynomials.Gazi Univ. J. Sci. 27 (2014), 747-754.; reference:[3] Aktaş, R., Çekim, B., Çevik, A.: Extended Jacobi matrix polynomials.Util. Math. 92 (2013), 47-64. MR 3136666; reference:[4] Aktaş, R., Çekim, B., Şahin, R.: The matrix version for the multivariable Humbert polynomials.Miskolc Math. Notes 13 (2012), 197-208. Zbl 1274.33009, MR 3002623, 10.18514/MMN.2012.356; reference:[5] Altın, A., Çekim, B.: Generating matrix functions for Chebyshev matrix polynomials of the second kind.Hacet. J. Math. Stat. 41 (2012), 25-32. Zbl 1259.33014, MR 2976908; reference:[6] Altın, A., Çekim, B.: Some properties associated with Hermite matrix polynomials.Util. Math. 88 (2012), 171-181. Zbl 1262.15023, MR 2975830; reference:[7] Altın, A., Çekim, B.: Some miscellaneous properties for Gegenbauer matrix polynomials.Util. Math. 92 (2013), 377-387. Zbl 1293.33007, MR 3136694; reference:[8] Çekim, B., Altın, A., Aktaş, R.: Some relations satisfied by orthogonal matrix polynomials.Hacet. J. Math. Stat. 40 (2011), 241-253. Zbl 1229.33012, MR 2839191; reference:[9] Çekim, B., Altın, A., Aktaş, R.: Some new results for Jacobi matrix polynomials.Filomat 27 (2013), 713-719. MR 3243979, 10.2298/FIL1304713C; reference:[10] Defez, E., Jódar, L.: Some applications of the Hermite matrix polynomials series expansions.J. Comput. Appl. Math. 99 (1998), 105-117. Zbl 0929.33006, MR 1662687, 10.1016/S0377-0427(98)00149-6; reference:[11] Defez, E., Jódar, L.: Chebyshev matrix polynomials and second order matrix differential equations.Util. Math. 61 (2002), 107-123. Zbl 0998.15034, MR 1899321; reference:[12] Defez, E., Jódar, L., Law, A.: Jacobi matrix differential equation, polynomial solutions, and their properties.Comput. Math. Appl. 48 (2004), 789-803. Zbl 1069.33007, MR 2105252, 10.1016/j.camwa.2004.01.011; reference:[13] Dunford, N., Schwartz, J. T.: Linear Operators. Part I, General Theory.Pure and Applied Mathematics 7 A Wiley-Interscience Publishers, John Wiley & Sons, New York (1958). MR 1009162; reference:[14] James, A. T.: Special functions of matrix and single argument in statistics.Theory and Application of Special Functions, Proc. Advanced Sem., Math. Res. Center, Madison, Wis. R. A. Askey Academic Press, New York (1975), 497-520. Zbl 0326.33010, MR 0402145; reference:[15] Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations.Approximation Theory Appl. 12 (1996), 20-30. MR 1465570; reference:[16] Jódar, L., Company, R., Ponsoda, E.: Orthogonal matrix polynomials and systems of second order differential equations.Differ. Equ. Dyn. Syst. 3 (1995), 269-288. Zbl 0892.33004, MR 1386749; reference:[17] Jódar, L., Cortés, J. C.: On the hypergeometric matrix function.J. Comput. Appl. Math. 99 (1998), 205-217. Zbl 0933.33004, MR 1662696, 10.1016/S0377-0427(98)00158-7; reference:[18] Jódar, L., Cortés, J. C.: Closed form general solution of the hypergeometric matrix differential equation.Math. Comput. Modelling 32 (2000), 1017-1028. Zbl 0985.33006, MR 1799616, 10.1016/S0895-7177(00)00187-4; reference:[19] Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix functions.Approximation Theory Appl. 14 (1998), 36-48. MR 1651470; reference:[20] Jódar, L., Sastre, J.: On Laguerre matrix polynomials.Util. Math. 53 (1998), 37-48. Zbl 0990.33008, MR 1622055; reference:[21] Kargin, L., Kurt, V.: Some relations on Hermite matrix polynomials.Math. Comput. Appl. 18 (2013), 323-329. MR 3113139; reference:[22] Khammash, G. S., Shehata, A.: On Humbert matrix polynomials.Asian J. Current Eng. Maths. 1 (2012), 232-240 http://innovativejournal.in/index.php/ajcem/article/view/104/96.; reference:[23] Khan, S., Hassan, N. A. Makboul: 2-variable Laguerre matrix polynomials and Lie-algebraic techniques.J. Phys. A, Math. Theor. 43 (2010), Article ID 235204, 21 pages. MR 2646680, 10.1088/1751-8113/43/23/235204; reference:[24] Metwally, M. S., Mohamed, M. T., Shehata, A.: On Hermite-Hermite matrix polynomials.Math. Bohem. 133 (2008), 421-434. Zbl 1199.15079, MR 2472489; reference:[25] Sastre, J., Jódar, L.: On Laguerre matrix polynomial series.Util. Math. 71 (2006), 109-130. Zbl 1106.33011, MR 2278826; reference:[26] Shehata, A.: On Tricomi and Hermite-Tricomi matrix functions of complex variable.Commun. Math. Appl. 2 (2011), 97-109. Zbl 1266.33012, MR 3000027; reference:[27] Shehata, A.: A new extension of Gegenbauer matrix polynomials and their properties.Bull. Int. Math. Virtual Inst. 2 (2012), 29-42. MR 3149829; reference:[28] Shehata, A.: On pseudo Legendre matrix polynomials.Int. J. Math. Sci. Eng. Appl. 6 (2012), 251-258. MR 3057762; reference:[29] Shehata, A.: On Rainville's matrix polynomials.Sylwan J. 158 (2014), 158-178. MR 3248615; reference:[30] Shehata, A.: On Rice's matrix polynomials.Afr. Mat. 25 (2014), 757-777. Zbl 1321.15041, MR 3248615, 10.1007/s13370-013-0149-3; reference:[31] Shehata, A.: New kinds of hypergeometric matrix functions.British Journal of Mathematics and Computer Science 5 (2015), 92-102 \DOI 10.9734/BJMCS/2015/11492. 10.9734/BJMCS/2015/11492; reference:[32] Shehata, A.: On a new family of the extended generalized Bessel-type matrix polynomials.Mitteilungen Klosterneuburg J. 65 (2015), 100-121.; reference:[33] Shehata, A.: On modified Laguerre matrix polynomials.J. Nat. Sci. Math. 8 (2015), 153-166. MR 3404349; reference:[34] Taşdelen, F., Çekim, B., Aktaş, R.: On a multivariable extension of Jacobi matrix polynomials.Comput. Math. Appl. 61 (2011), 2412-2423. Zbl 1221.33022, MR 2794989, 10.1016/j.camwa.2011.02.019; reference:[35] Upadhyaya, L. M., Shehata, A.: On Legendre matrix polynomials and its applications.Int. Trans. Math. Sci. Comput. 4 (2011), 291-310. MR 3057762; reference:[36] Upadhyaya, L. M., Shehata, A.: A new extension of generalized Hermite matrix polynomials.Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 165-179. Zbl 1311.33008, MR 3394046, 10.1007/s40840-014-0010-3; reference:[37] Varma, S., Çekim, B., Yeşildal, F. Taşdelen: On Konhauser matrix polynomials.Ars Comb. 100 (2011), 193-204. MR 2798172; reference:[38] Varma, S., Taşdelen, F.: Biorthogonal matrix polynomials related to Jacobi matrix polynomials.Comput. Math. Appl. 62 (2011), 3663-3668. Zbl 1236.15048, MR 2852088, 10.1016/j.camwa.2011.08.063

  15. 15
    Periodical
  16. 16