-
1Academic Journal
المؤلفون: Jain Shilpi, Goyal Rahul, Oros Georgia Irina, Agarwal Praveen, Momani Shaher
المصدر: Open Physics, Vol 20, Iss 1, Pp 730-739 (2022)
مصطلحات موضوعية: matrix functional calculus, mittag–leffler matrix function, gamma matrix function, beta matrix function, gauss hypergeometric matrix function, confluent hypergeometric matrix function, beta matrix transform and laplace transform, Physics, QC1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2391-5471
-
2Academic Journal
المؤلفون: Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla
المصدر: AIMS Mathematics, Vol 7, Iss 8, Pp 14474-14491 (2022)
مصطلحات موضوعية: (k,τ)-gauss hypergeometric matrix function, mellin transform, fractional kinetic equation, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
3Academic Journal
المؤلفون: Al e’damat, Ayed, Verma, Ashish, Younis, Jihad, Aydi, Hassen
المصدر: Applied Mathematics & Information Sciences
مصطلحات موضوعية: Gamma matrix function, incomplete Pochhammer symbols, hypergeometric matrix function, Bessel matrix function
وصف الملف: application/pdf
Relation: https://digitalcommons.aaru.edu.jo/amis/vol17/iss3/11; https://digitalcommons.aaru.edu.jo/context/amis/article/3222/viewcontent/62622t8cw4p15j.pdf
-
4Academic Journal
المؤلفون: M. Abdalla
المصدر: Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-14 (2020)
مصطلحات موضوعية: Wright hypergeometric matrix function, Fractional integral and differential operators, Matrix recurrence relation, Integral formulae, Mathematics, QA1-939
وصف الملف: electronic resource
-
5Academic Journal
المؤلفون: Ayman Shehata
المصدر: Symmetry; Volume 13; Issue 12; Pages: 2335
مصطلحات موضوعية: matrix functional calculus, hypergeometric matrix function, Lommel matrix polynomials (LMPs), Lommel matrix differential equations
وصف الملف: application/pdf
Relation: Mathematics and Symmetry/Asymmetry; https://dx.doi.org/10.3390/sym13122335
الاتاحة: https://doi.org/10.3390/sym13122335
-
6Academic Journal
المؤلفون: Batahan Raed S., Bathanya A. A.
المصدر: Acta Universitatis Sapientiae: Mathematica, Vol 10, Iss 1, Pp 32-45 (2018)
مصطلحات موضوعية: laguerre matrix polynomials, three terms recurrence relation, generalized hypergeometric matrix function and gamma matrix function, 15a15, 33c45, 42c05, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2066-7752
-
7Academic Journal
المؤلفون: Ayman Shehata
المصدر: Mathematica Bohemica, Vol 141, Iss 4, Pp 407-429 (2016)
مصطلحات موضوعية: hypergeometric matrix function, Humbert matrix polynomials, matrix functional calculus, generating matrix function, matrix differential equation, Mathematics, QA1-939
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: GEZER, Halil, KAANOGLU, Cem
المصدر: Volume: 72, Issue: 3 606-617 ; 1303-5991 ; 2618-6470 ; Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics
مصطلحات موضوعية: Wright hypergeometric matrix function, generalized hypergeometric functions, Riemann-Liouville fractional derivative, Mathematical Sciences, Matematik
وصف الملف: application/pdf
Relation: https://dergipark.org.tr/tr/download/article-file/2553701; https://dergipark.org.tr/tr/pub/cfsuasmas/issue/79978/1147745
-
9
المؤلفون: A. A. Bathanya, Raed S. Batahan
المصدر: Acta Universitatis Sapientiae: Mathematica, Vol 10, Iss 1, Pp 32-45 (2018)
مصطلحات موضوعية: Pure mathematics, Recurrence relation, 15a15, 42c05, General Mathematics, 010102 general mathematics, 010103 numerical & computational mathematics, Expression (computer science), 01 natural sciences, Hypergeometric distribution, 33c45, Matrix (mathematics), Matrix function, Laguerre polynomials, QA1-939, three terms recurrence relation, laguerre matrix polynomials, 0101 mathematics, Representation (mathematics), generalized hypergeometric matrix function and gamma matrix function, Mathematics
-
10Academic Journal
المؤلفون: K.A.M. Sayyed, M.S. Metwally, M.T. Mohamed
المصدر: Scientiae Mathematicae Japonicae. 2009, 69(3):315
-
11Academic Journal
المؤلفون: Bin-Saad, Maged G., Mohsen, Fadhle B.F.
المصدر: Acta et Commentationes Universitatis Tartuensis de Mathematica; Vol. 22 No. 1 (2018); 13-22 ; 2228-4699 ; 1406-2283
مصطلحات موضوعية: hypergeometric matrix function, Laguerre and Konhauser matrix polynomials, operational identities, generating matrix function, differential equations
وصف الملف: application/pdf
Relation: http://ojs.utlib.ee/index.php/ACUTM/article/view/ACUTM.2018.22.02/12160; http://ojs.utlib.ee/index.php/ACUTM/article/view/ACUTM.2018.22.02
-
12
المؤلفون: SHEHATA, Ayman
المصدر: Volume: 5, Issue: 2 24-35
Konuralp Journal of Mathematicsمصطلحات موضوعية: Engineering, Hypergeometric matrix function,Bessel matrix functions,Integral representations, Mathematics::Classical Analysis and ODEs, Mühendislik
وصف الملف: application/pdf
-
13Academic Journal
المؤلفون: KHAN, MUMTAZ AHMAD, KHAN, ABDUL HAKIM, SINGH, VIRENDER
المصدر: Asian Journal of Mathematics and Computer Research; 2017 - Volume 16 [Issue 4]; 197-207 ; 2395-4213
مصطلحات موضوعية: Gamma matrix function, Hypergeometric matrix function, Three term matrix recurrence relation, Gegenbauer matrix differential equation, Gegenbauer matrix polynomials, Orthogonal matrix Polynomials
وصف الملف: application/pdf
-
14Academic Journal
المؤلفون: Shehata, Ayman
مصطلحات موضوعية: keyword:hypergeometric matrix function, keyword:Humbert matrix polynomials, keyword:matrix functional calculus, keyword:generating matrix function, keyword:matrix differential equation, msc:15A60, msc:33C45, msc:33C55, msc:33E20
وصف الملف: application/pdf
Relation: mr:MR3576790; zbl:Zbl 06674853; reference:[1] Aktaş, R.: A new multivariable extension of Humbert matrix polynomials.AIP Publishing LLC Rhodes, Greece AIP Conference Proceedings 1558: Proc. Int. Conf. on Numerical Analysis and Applied Mathematics (2013), 1128-1131 T. Simos et al. \DOI 10.1063/1.4825706. 10.1063/1.4825706; reference:[2] Aktaş, R.: A note on multivariable Humbert matrix polynomials.Gazi Univ. J. Sci. 27 (2014), 747-754.; reference:[3] Aktaş, R., Çekim, B., Çevik, A.: Extended Jacobi matrix polynomials.Util. Math. 92 (2013), 47-64. MR 3136666; reference:[4] Aktaş, R., Çekim, B., Şahin, R.: The matrix version for the multivariable Humbert polynomials.Miskolc Math. Notes 13 (2012), 197-208. Zbl 1274.33009, MR 3002623, 10.18514/MMN.2012.356; reference:[5] Altın, A., Çekim, B.: Generating matrix functions for Chebyshev matrix polynomials of the second kind.Hacet. J. Math. Stat. 41 (2012), 25-32. Zbl 1259.33014, MR 2976908; reference:[6] Altın, A., Çekim, B.: Some properties associated with Hermite matrix polynomials.Util. Math. 88 (2012), 171-181. Zbl 1262.15023, MR 2975830; reference:[7] Altın, A., Çekim, B.: Some miscellaneous properties for Gegenbauer matrix polynomials.Util. Math. 92 (2013), 377-387. Zbl 1293.33007, MR 3136694; reference:[8] Çekim, B., Altın, A., Aktaş, R.: Some relations satisfied by orthogonal matrix polynomials.Hacet. J. Math. Stat. 40 (2011), 241-253. Zbl 1229.33012, MR 2839191; reference:[9] Çekim, B., Altın, A., Aktaş, R.: Some new results for Jacobi matrix polynomials.Filomat 27 (2013), 713-719. MR 3243979, 10.2298/FIL1304713C; reference:[10] Defez, E., Jódar, L.: Some applications of the Hermite matrix polynomials series expansions.J. Comput. Appl. Math. 99 (1998), 105-117. Zbl 0929.33006, MR 1662687, 10.1016/S0377-0427(98)00149-6; reference:[11] Defez, E., Jódar, L.: Chebyshev matrix polynomials and second order matrix differential equations.Util. Math. 61 (2002), 107-123. Zbl 0998.15034, MR 1899321; reference:[12] Defez, E., Jódar, L., Law, A.: Jacobi matrix differential equation, polynomial solutions, and their properties.Comput. Math. Appl. 48 (2004), 789-803. Zbl 1069.33007, MR 2105252, 10.1016/j.camwa.2004.01.011; reference:[13] Dunford, N., Schwartz, J. T.: Linear Operators. Part I, General Theory.Pure and Applied Mathematics 7 A Wiley-Interscience Publishers, John Wiley & Sons, New York (1958). MR 1009162; reference:[14] James, A. T.: Special functions of matrix and single argument in statistics.Theory and Application of Special Functions, Proc. Advanced Sem., Math. Res. Center, Madison, Wis. R. A. Askey Academic Press, New York (1975), 497-520. Zbl 0326.33010, MR 0402145; reference:[15] Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations.Approximation Theory Appl. 12 (1996), 20-30. MR 1465570; reference:[16] Jódar, L., Company, R., Ponsoda, E.: Orthogonal matrix polynomials and systems of second order differential equations.Differ. Equ. Dyn. Syst. 3 (1995), 269-288. Zbl 0892.33004, MR 1386749; reference:[17] Jódar, L., Cortés, J. C.: On the hypergeometric matrix function.J. Comput. Appl. Math. 99 (1998), 205-217. Zbl 0933.33004, MR 1662696, 10.1016/S0377-0427(98)00158-7; reference:[18] Jódar, L., Cortés, J. C.: Closed form general solution of the hypergeometric matrix differential equation.Math. Comput. Modelling 32 (2000), 1017-1028. Zbl 0985.33006, MR 1799616, 10.1016/S0895-7177(00)00187-4; reference:[19] Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix functions.Approximation Theory Appl. 14 (1998), 36-48. MR 1651470; reference:[20] Jódar, L., Sastre, J.: On Laguerre matrix polynomials.Util. Math. 53 (1998), 37-48. Zbl 0990.33008, MR 1622055; reference:[21] Kargin, L., Kurt, V.: Some relations on Hermite matrix polynomials.Math. Comput. Appl. 18 (2013), 323-329. MR 3113139; reference:[22] Khammash, G. S., Shehata, A.: On Humbert matrix polynomials.Asian J. Current Eng. Maths. 1 (2012), 232-240 http://innovativejournal.in/index.php/ajcem/article/view/104/96.; reference:[23] Khan, S., Hassan, N. A. Makboul: 2-variable Laguerre matrix polynomials and Lie-algebraic techniques.J. Phys. A, Math. Theor. 43 (2010), Article ID 235204, 21 pages. MR 2646680, 10.1088/1751-8113/43/23/235204; reference:[24] Metwally, M. S., Mohamed, M. T., Shehata, A.: On Hermite-Hermite matrix polynomials.Math. Bohem. 133 (2008), 421-434. Zbl 1199.15079, MR 2472489; reference:[25] Sastre, J., Jódar, L.: On Laguerre matrix polynomial series.Util. Math. 71 (2006), 109-130. Zbl 1106.33011, MR 2278826; reference:[26] Shehata, A.: On Tricomi and Hermite-Tricomi matrix functions of complex variable.Commun. Math. Appl. 2 (2011), 97-109. Zbl 1266.33012, MR 3000027; reference:[27] Shehata, A.: A new extension of Gegenbauer matrix polynomials and their properties.Bull. Int. Math. Virtual Inst. 2 (2012), 29-42. MR 3149829; reference:[28] Shehata, A.: On pseudo Legendre matrix polynomials.Int. J. Math. Sci. Eng. Appl. 6 (2012), 251-258. MR 3057762; reference:[29] Shehata, A.: On Rainville's matrix polynomials.Sylwan J. 158 (2014), 158-178. MR 3248615; reference:[30] Shehata, A.: On Rice's matrix polynomials.Afr. Mat. 25 (2014), 757-777. Zbl 1321.15041, MR 3248615, 10.1007/s13370-013-0149-3; reference:[31] Shehata, A.: New kinds of hypergeometric matrix functions.British Journal of Mathematics and Computer Science 5 (2015), 92-102 \DOI 10.9734/BJMCS/2015/11492. 10.9734/BJMCS/2015/11492; reference:[32] Shehata, A.: On a new family of the extended generalized Bessel-type matrix polynomials.Mitteilungen Klosterneuburg J. 65 (2015), 100-121.; reference:[33] Shehata, A.: On modified Laguerre matrix polynomials.J. Nat. Sci. Math. 8 (2015), 153-166. MR 3404349; reference:[34] Taşdelen, F., Çekim, B., Aktaş, R.: On a multivariable extension of Jacobi matrix polynomials.Comput. Math. Appl. 61 (2011), 2412-2423. Zbl 1221.33022, MR 2794989, 10.1016/j.camwa.2011.02.019; reference:[35] Upadhyaya, L. M., Shehata, A.: On Legendre matrix polynomials and its applications.Int. Trans. Math. Sci. Comput. 4 (2011), 291-310. MR 3057762; reference:[36] Upadhyaya, L. M., Shehata, A.: A new extension of generalized Hermite matrix polynomials.Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 165-179. Zbl 1311.33008, MR 3394046, 10.1007/s40840-014-0010-3; reference:[37] Varma, S., Çekim, B., Yeşildal, F. Taşdelen: On Konhauser matrix polynomials.Ars Comb. 100 (2011), 193-204. MR 2798172; reference:[38] Varma, S., Taşdelen, F.: Biorthogonal matrix polynomials related to Jacobi matrix polynomials.Comput. Math. Appl. 62 (2011), 3663-3668. Zbl 1236.15048, MR 2852088, 10.1016/j.camwa.2011.08.063
-
15Periodical
-
16
المؤلفون: Shehata, Ayman
المصدر: Mathematica bohemica | 2016 Volume:141 | Number:4