-
1Academic Journal
المؤلفون: Sy, Bocar, Bah, Fatoumata Bintou, Dao, Quoc-Hy
المصدر: ISSN: 2073-4441 ; Water, vol. 16, no. 15 (2024) 2201.
مصطلحات موضوعية: info:eu-repo/classification/ddc/354.3, info:eu-repo/classification/ddc/910, info:eu-repo/classification/ddc/333.7-333.9, Flood extent mapping, Flood exposition assessment, Remote sensing, Google Earth Engine, Sentinel-1, Hydrological and hydraulic modeling, Senegal
Relation: https://archive-ouverte.unige.ch/unige:179169; unige:179169
-
2Academic Journal
المؤلفون: Bocar Sy, Fatoumata Bintou Bah, Hy Dao
المصدر: Water, Vol 16, Iss 15, p 2201 (2024)
مصطلحات موضوعية: flood extent mapping, flood exposition assessment, remote sensing, Google Earth Engine, Sentinel-1, hydrological and hydraulic modeling, Hydraulic engineering, TC1-978, Water supply for domestic and industrial purposes, TD201-500
-
3Academic Journal
المصدر: Italian journal of engineering geology and environment; No. 2 (2022); 5-15 ; 2035-5688 ; 1825-6635
مصطلحات موضوعية: flood hazard, bridge obstruction, hydrological and hydraulic modeling, dam break, levees openings
وصف الملف: application/pdf
-
4Dissertation/ Thesis
المؤلفون: Forero Hernández, Angie Tatiana
المساهمون: Vélez Upegui, Jorge Julián, Moncada Aguirre, Angélica María, Forero Hernández, Tatiana 0000-0002-8317-5177
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines::624 - Ingeniería civil, Cambio climático, Reducción de escala no paramétrica, Inundaciones urbanas, Modelación hidrológica e hidráulica, Climate change, Non-parametric scale reduction, Urban flooding, Hydrological and hydraulic modeling, Climatología, Climatology
وصف الملف: 180 páginas; application/pdf
Relation: 2° Institute. (2020a). Methane Levels: Current & Historic Atmospheric CH4. https://www.methanelevels.org/#sources; 2° Institute. (2020b). Nitrous Oxide Levels: Current & Historic Atmospheric N2O . https://www.n2olevels.org/; Abatzoglou, J. T., & Brown, T. J. (2012). A comparison of statistical downscaling methods suited for wildfire applications. International Journal of Climatology, 32(5), 772–780. https://doi.org/10.1002/joc.2312; Agencia Espacial Europea, Centro Nacional de Estudios Espaciales, & CGI. (2015). Sea level rise data. https://doi.org/10.5270/esa-sea_level_cci-MSLA-1993_2015-v_2.0-201612; Alcaldía de Manizales. (2019a). Implementación Sistema de Alerta temprana por Inundación de la Ciudad de Manizales, para las quebradas Manizales, El Guamo y Olivares. Https://Planeacion.Manizales.Gov.Co/Gestionriesgo/Index.Php/Component/Content/Article?Id=146.; Alcaldía de Manizales. (2019b). Secretaría de Planeación.; Amat Rodrigo, J. (2017, July). Test de Wilcoxon Mann Whitney como alternativa al t-test. https://www.cienciadedatos.net/documentos/17_mann%E2%80%93whitney_u_test#Comparaci%C3%B3n_entre_t-test_y_test_de_Mann%E2%80%93Whitney%E2%80%93Wilcoxon; American Chemical Society. (2020a). Greenhouse gases - ACS. https://www.acs.org/content/acs/en/climatescience/greenhousegases/properties.html; American Chemical Society. (2020b). Sources and Sinks - ACS. https://www.acs.org/content/acs/en/climatescience/greenhousegases/sourcesandsinks.html; Barrera Escoda, A. (2004). Técnicas de completado de series mensuales y apliación al estudio de la influencia de la NAO en la distribución de la precipitación en España. Universidad de Barcelona.; Barros, V., Menéndez, Á., & Nagy, G. (2005). El cambio climático en el río de La Plata. En Fundación Ciudad. Instituto Nacional del Agua de Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas.; BC Noticias. (2021). Aguacero causó inundaciones y caída de árboles en Manizales. Https://Www.Bcnoticias.Com.Co/Aguacero-Causo-Inundaciones-y-Caida-de-Arboles-En-Manizales/.; BC Noticias. (2022). Manizales despidió septiembre con lluvias torrenciales e inundaciones. Https://Www.Bcnoticias.Com.Co/Manizales-Despidio-Septiembre-Con-Lluvias-Torrenciales-e-Inundaciones/.; Benavides, H. O., & León, G. E. (2007). Información técnica sobre Gases de Efecto Invernadero y el Cambio Climático. En Ideam. https://doi.org/IDEAM–METEO/008-2007; Bergström, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments.; Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., & Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004; Boughton, W. (2004). The Australian water balance model. Environmental Modelling & Software, 19(10), 943–956. https://doi.org/10.1016/j.envsoft.2003.10.007; Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero, calentamiento global y cambio climático: Una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10), 2–12. http://www.revista.unam.mx/vol.8/num10/art78/oct_art78.pdf; Cabezas, F. (2015). Análisis estructural de modelos hidrológicos y de sistemas de recursos hídricos en zonas semiáridas. Universidad de Murcia.; CAIT Climate Data Explorer. (2019). Country Greenhouse Gas Emissions. Washington, DC: World Resources Institute. http://cait.wri.org; Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., & Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010; Caracol Noticias. (2022). Estragos en Manizales por las fuertes lluvias registradas en las últimas horas.; Carbon Brief. (2020, April 15). Mapped: How climate change affects extreme weather around the world. https://www.carbonbrief.org/mapped-how-climate-change-affects-extreme-weather-around-the-world; Castro, L. M., & Carvajal, Y. (2010). Análisis de tendencia y homogeneidad de series climatológicas. Ingeniería de Recursos Naturales y Del Ambiente, 9, 15–25. http://www.redalyc.org/articulo.oa?id=231116434002; Centro de Investigaciones Oceanográficas e Hidrográficas. (2016, May 9). Zona de Confluencia Intertropical. https://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaCaribe3.php; Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe. (2015, July 27). Efectos del cambio climático en Colombia. ¿Por qué debemos buscar respuestas en la Antártida? https://www.cioh.org.co/index.php/es/2015-07-27-19-20-22/1735-efectos-del-cambio-climatico-en-colombia-ipor-que-debemos-buscar-respuestas-en-la-antartida.html; Chiew, F. H. S., Peel, M. C., & Western, A. W. (2002). Application and testing of the simple rainfall-runoff model SIMHYD. In Mathematical models of small watershed hydrology and applications (pp. 335–367).; CIIFEN. (2016). Efecto Invernadero. http://www.ciifen.org/index.php?option=com_content&view=category&layout=blog&id=99&Itemid=342&lang=es; Clarke, L. E., Jacoby, H., Pitcher, H., Reilly, J., & Richels, R. (2007). Scenarios of Greenhouse Gas Emissions and Atmospheric. In Sub-report 2.1a of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research (p. 154).; Climate & Clean Air Coalition. (2020). Methane %7C Climate & Clean Air Coalition. https://www.ccacoalition.org/en/slcps/methane; Cole-Dai, J. (2010). Volcanoes and climate. Wiley Interdisciplinary Reviews: Climate Change, 1(6), 824–839. https://doi.org/10.1002/wcc.76; Comisión Europea. (2019). EDGAR - The Emissions Database for Global Atmospheric Research. https://edgar.jrc.ec.europa.eu/; Consorcio Ordenamiento Cuenca Risaralda. (2017). Morfometría. In Plan de Ordenación y Manejo de la Cuenca del Río Risaralda.; Corpocaldas. (2010a). Plan de Manejo. Reserva Forestal Protectora de las Cuencas Hidrográficas de Río Blanco y quebrada Olivares.; Corpocaldas. (2010b). PlAN DE MANEJO. RESERVA FORESTAL PROTECTORA DE LAS CUENCAS HIDROGRÁFICAS DE RÍO LANCO Y QUEBRADA OLIVARES. 145.; Corpocaldas. (2013). Síntesis del diagnóstico. In Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Chinchiná (p. 160). http://www.corpocaldas.gov.co/publicaciones/1508/2017/03-09/01-SintesisPOMCARioChinchina.pdf; Death, R. G., Fuller, I. C., & Macklin, M. G. (2015). Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology. Freshwater Biology, 60(12), 2477–2496. https://doi.org/10.1111/fwb.12639; Debortoli, N. S., Camarinha, P. I. M., Marengo, J. A., & Rodrigues, R. R. (2017). An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Natural Hazards, 86(2), 557–582. https://doi.org/10.1007/s11069-016-2705-2; Department of the Environment - Australian Government. (2013). Representative Concentration Pathways (RCP): Fact Sheet. http://www.climatechange.gov.au/sites/climatechange/files/documents/09_2013/WA - RCP Fact Sheet.pdf; Earth System CoG. (2016). Downscalling Methods. https://earthsystemcog.org/projects/downscalingmetadata/methods; Easterbrook, D. J. (2016). Greenhouse gases. In Evidence-Based Climate Science (pp. 163–173). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-804588-6.00009-4; Ebi, K. L., Hallegatte, S., Kram, T., Arnell, N. W., Carter, T. R., Edmonds, J., Kriegler, E., Mathur, R., O’Neill, B. C., Riahi, K., Winkler, H., van Vuuren, D. P., & Zwickel, T. (2014). A new scenario framework for climate change research: Background, process, and future directions. Climatic Change, 122(3), 363–372. https://doi.org/10.1007/s10584-013-0912-3; Ehhalt, D., & Prather, M. (2001). Atmospheric Chemistry and Greenhouse Gases. Climate Change 2001: The Scientific Basis. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Agriculture.+In+Climate+Change+2007:+Mitigation.+Contribution+of+Working+Group+III+to+the+Fourth+Assessment+Report+of+the+Intergovernmental+Panel+on+Climate+Change+[B.#0; Escoto Castillo, A., Sánchez Peña, L., & Gachuz Delgado, S. (2017). Trayectorias Socioeconómicas Compartidas (SSP): nuevas maneras de comprender el cambio climático y social. Estudios Demograficos y Urbanos, 32(3), 669–693. https://doi.org/10.24201/edu.v32i3.1684; European Network for Earth System Modelling. (2019, July 10). CMIP5 Models and Grid Resolution . https://portal.enes.org/data/enes-model-data/cmip5/resolution; Federación Nacional de Cafeteros de Colombia, & Centro Nacional de Investigaciones de Café. (2020). Anuario Meteorológico Cafetero 2019.; Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of climate models. In V. B. and P. M. M. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia (Ed.), Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Changehe Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Interg (pp. 741–866). Cambridge University Press.; Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C., & Zhang, X. (2021). Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2(2), 107–122. https://doi.org/10.1038/s43017-020-00128-6; Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri, S., … Riahi, K. (2017). The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 42, 251–267. https://doi.org/10.1016/j.gloenvcha.2016.06.004; Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai, H., Hijioka, Y., & Kainuma, M. (2017). SSP3: AIM implementation of Shared Socioeconomic Pathways. Global Environmental Change, 42, 268–283. https://doi.org/10.1016/j.gloenvcha.2016.06.009; Fujino, J., Nair, R., Kainuma, M., Masui, T., & Matsuoka, Y. (2016). Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model. The Energy Journal, 27(Special Issue: Multi-Greenhouse Gas Mitigation and Climate Policy), 343–353. https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17; Gangopadhyay, S., Clark, M., & Rajagopalan, B. (2005). Statistical downscaling using K-nearest neighbors. Water Resources Research, 41(2), 1–23. https://doi.org/10.1029/2004WR003444; Global Climate Observation System. (2018). Global Climate Indicators . https://gcos.wmo.int/en/global-climate-indicators; Gómez Tobón, L. A. (2009). Márgenes de inundación de la quebrada Olivares-Minitas para periodos de retorno de 5, 10, 25, 50, 100 y 200 años.; Goosse, H., Barriat, P. Y., Loutre, M. F., & Zunz, V. (2010). Energy Balance, Hydrological and Carbon Cycles. In Introduction to climate dynamics and climate modeling (pp. 25–57). Centre de recherche sur la Terre et le climat Georges Lemaître-UCLouvain. http://www.climate.be/textbook; Gutmann, E., Pruitt, T., Clark, M. P., Brekke, L., Arnold, J. R., Raff, D. A., & Rasmussen, R. M. (2014). An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resources Research, 50(9), 7167–7186. https://doi.org/10.1002/2014WR015559.Received; Hansen, J., Sato, M., Kharecha, P., & Von Schuckmann, K. (2011). Earth’s energy imbalance and implications. Atmospheric Chemistry and Physics, 11(24), 13421–13449. https://doi.org/10.5194/acp-11-13421-2011; Hausfather, Z. (2018, April 19). Explainer: How ‘Shared Socioeconomic Pathways’ explore future climate change %7C Carbon Brief. Carbon Brief. https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change; Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the earth’s orbit: Pacemaker of the ice ages. Science, 194(4270), 1121–1132. https://doi.org/10.1126/science.194.4270.1121; Hijioka, Y., Matsuoka, Y., Nishimoto, H., Masui, T., & Kainuma, M. (2008). Global GHG emission scenarios under GHG concentration stabilization targets. Journal of Global Environment Engineering, 13, 97–108.; Hwang, S., & Graham, W. D. (2013). Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation. Hydrology and Earth System Sciences, 17(11), 4481–4502. https://doi.org/10.5194/hess-17-4481-2013; IDEA, I. D. E. A. –. (2019). OPERACIÓN Y MANTENIMIENTO PREVENTIVO Y CORRECTIVO A LAS REDES HIDROMETEOROLÓGICAS, DE CALIDAD DEL AIRE Y SÍSMICA EN EL DEPARTAMENTO DE CALDAS.; IDEA Manizales. (2023). Geoportal-SIMAC. https://cdiac.manizales.unal.edu.co/geoportal-simac/; IDEAM. (2011). Evidencias de cambio climático en colombia con base en información estadística. Nota Técnica Del IDEAM, 47. http://www.ideam.gov.co/documents/21021/21138/Evidencias+de+Cambio+Climático+en+Colombia+con+base+en+información+estadística.pdf/1170efb4-65f7-4a12-8903-b3614351423f; IDEAM. (2013). Cambio Climático: Contexto nacional, avances y retos. Primer Foro Departamental de Cambio Climático.; IDEAM. (2014a). Mapa de cobertura de la tierra. Metodología CORINE Land Cover adaptada para Colombia durante el periodo 2010-2012.; IDEAM. (2014b). Radiación solar. http://www.ideam.gov.co/web/tiempo-y-clima/radiacion-solar; IDEAM. (2015a). Atlas de radiación solar, ultravioleta y ozono de Colombia. http://www.solarviews.com/span/sun.htm#stats; IDEAM. (2015b, May 15). Coberturas Nacionales. http://www.ideam.gov.co/web/ecosistemas/coberturas-nacionales; IDEAM. (2023). Estudio Nacional del Agua (2022).; IDEAM, PNUD, MADS, DNP, & Cancillería. (2015). Escenarios de Cambio Climático para Precipitación y Temperatura para Colombia 2011-2100. Herramientas Científicas para la Toma de Decisiones – Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático.; IDEAM, PNUD, MADS, DNP, & Cancillería. (2016). Inventario nacional y departamental de Gases Efecto Invernadero – Colombia. Tercera Comunicación Nacional de Cambio Climático.; IDEAM, PNUD, MADS, DNP, & Cancillería. (2017). Resumen Ejecutivo. Tercera Comunicación Nacional de Colombia a la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC). Tercera Comunicación de Cambio Climático (F. IDEAM, PNUD, MADS, DNP, Cancillería, Ed.). https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/4617350_Colombia-NC3-1-RESUMEN EJECUTIVO TCNCC COLOMBIA A LA CMNUCC 2017.pdf; IDEAM, PNUD, MADS, & GEF. (2010). Resumen Ejecutivo. Segunda Comunicación ante la Convención Marco de las Naciones Unidas sobre Cambio Climático.; IIASA. (2018). SSP Database. International Institute for Applied Systems Analysis. https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=20; Instituto de Estudios Ambientales. (2020). Aforos líquidos en ríos y quebradas de Manizales y el departamento de Caldas 2017-2019. In Operación y mantenimiento preventivo y correctivo a las redes hidrometeorológicas, de calidad de aire y sísmica en el departamento de Caldas.; Instituto Geológico y Minero de España. (2015). Calibración y explotación del modelo agregado en HBV de las cuencas hidrológicas de los ríos Bérchules y Mecina en el ámbito de Sierra Nevada (Granada). http://info.igme.es/SidPDF/166000/950/166950_0000001.pdf; IPCC. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf; IPCC. (2012). Changes in Climate Extremes and their Impacts on the Natural Physical Environment. In C. B. Field, V. Barros, T. F. Stocker, & Q. Dahe (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Vol. 9781107025, pp. 109–230). Cambridge University Press. https://doi.org/10.1017/CBO9781139177245.006; IPCC. (2013a). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar5/wg1/; IPCC. (2013b). Summary for Policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.; IPCC. (2013c). What is a GCM? https://www.ipcc-data.org/guidelines/pages/gcm_guide.html; IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.; IPCC. (2019). The Ocean and Cryosphere in a Changing Climate. A Special Report of the Intergovernmental Panel on Climate Change (H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer, Eds.). https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/; IPCC. (2021a). Cambio Climático 2021: Bases físicas. In Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.; IPCC. (2021b). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.; IPCC. (2022). Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. www.ipcc.ch; IPCC. (2023). IPCC WGI Interactive Atlas. https://interactive-atlas.ipcc.ch/regional-synthesis#eyJ0eXBlIjoiQ0lEIiwic2VsZWN0ZWRJbmRleCI6WyJyaXZlcl9mbG9vZCIsImhlYXZ5X3ByZWNpcGl0YXRpb24iXSwic2VsZWN0ZWRWYXJpYWJsZSI6ImNvbmZpZGVuY2UiLCJzZWxlY3RlZENvdW50cnkiOiJOV1MiLCJtb2RlIjoiSEVYIiwiY29tbW9ucyI6eyJsYXQiOjk3NzIsImxuZyI6NDAwNjkyLCJ6b29tIjo0LCJwcm9qIjoiRVBTRzo1NDAzMCIsIm1vZGUiOiJjb21wbGV0ZV9hdGxhcyJ9fQ==; Jaramillo Robledo, Á. (2006). Evapotranspiración de referencia en la región andina de Colombia. Cenicafé.; Kim, H. Y., & Park, S. W. (1988). imulating daily inflow and release rates for irrigation reservoirs, 1; modelling inflow rates by a linear reservoir model. Journal of the Korean Society of Agricultural Engineers.; Koutsoyiannis, D. (2010). A random walk on water. Hydrology and Earth System Sciences, 14(3), 585–601. http://www.hydrol-earth-syst-sci.net/14/585/2010/; Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D., Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J. P., Luderer, G., Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., … Edenhofer, O. (2017). Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 42, 297–315. https://doi.org/10.1016/j.gloenvcha.2016.05.015; Kriegler, E., O’Neill, B. C., Hallegatte, S., Kram, T., Lempert, R. J., Moss, R. H., & Wilbanks, T. (2012). The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Global Environmental Change, 22(4), 807–822. https://doi.org/10.1016/j.gloenvcha.2012.05.005; Kriegler, E., O’Neill, B. C., Hallegatte, S., Kram, T., Lempert, R., Moss, R. H., & Wilbanks, T. J. (2010). Socio‐economic Scenario Development for Climate Change Analysis. CIRED Working Paper DT/WP No 2010‐23, October.; Ledley, T. S., Sundquist, E. T., Schwartz, S. E., Hall, D. K., Fellows, J. D., & Killeen, T. L. (1999). Climate change and greenhouse gases. Eos, Transactions American Geophysical Union, 80(39), 453–458. https://doi.org/10.1029/99EO00325; Lindsey, R. (2020, February 20). Climate Change: Atmospheric Carbon Dioxide . NOAA Climate.Gov. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide; Mann, M. E., Zhang, Z., Rutherford, S., Bradley R. S, Hughes, M. K., Shindell, D., & Felzer, B. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 1253–1256. https://doi.org/10.1126/science.1177303; Maurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D., & Cayan, D. R. (2010). The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrology and Earth System Sciences, 14(6), 1125–1138. https://doi.org/10.5194/hess-14-1125-2010; Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213–241. https://doi.org/10.1007/s10584-011-0156-z; Michigan State University. (2015, November 23). Greenhouse Gas Basics . https://www.canr.msu.edu/resources/greenhouse_gas_basics_spanish_e3148; Ministerio para la transición ecológica y el reto demográfico - Gobierno de España. (2020). Gases fluorados. https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/fluorados.aspx; Molnar, P. (2011). Calibration. Watershed Modelling.; Moncada, A., Angarita, H., & Pérez, C. (2020). Escenarios de cambio climático: Método k-NN. SEI Discussion Brief.; Montoya, C., & Ospina, G. (2004). Análisis del grado de susceptibilidad a la ocurrencia de procesos erosivos en la parte alta de la cuenca de la quebrada Olivares y análisis de amenaza por inundación en el tramo comprendido entre el sector de Aguas de Manizales y el puente que une los barrios Minitas-La Sultana. Universidad de Caldas.; Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., … Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=940991; Moss, Richard., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823; Naciones Unidas. (1992). Convención Marco de las Naciones Unidas sobre el Cambio Climático (Vol. 20489).; NASA. (2019a). Causes, Facts – Climate Change: Vital Signs of the Planet. https://climate.nasa.gov/causes/; NASA. (2019b). What Is the Sun’s Role in Climate Change? – Climate Change: Vital Signs of the Planet. https://climate.nasa.gov/blog/2910/what-is-the-suns-role-in-climate-change/; NASA. (2022). What is the greenhouse effect? – Climate Change: Vital Signs of the Planet. Global Climate Change. https://climate.nasa.gov/faq/19/what-is-the-greenhouse-effect/; NASA. (2023). ASF Data Search Vertex. EARTHDATA. https://search.asf.alaska.edu/#/; National Climate Change Adaptation Research Facility. (2017). What are the RCPs? In Coast Adapt. https://coastadapt.com.au/how-to-pages/how-to-use-climate-change-scenarios-to-evaluate-risk-plan-and-make-decisions; National Geographic. (2011). Greenhouse Effect - National Geographic Society. https://www.nationalgeographic.org/encyclopedia/greenhouse-effect/; National Oceanic and Atmospheric Administration. (2020a). ESRL Global Monitoring Division - Global Greenhouse Gas Reference Network. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html; National Oceanic and Atmospheric Administration. (2020b). NOAA/ESRL Global Monitoring Laboratory - The NOAA annual greenhouse gas index (AGGI). https://www.esrl.noaa.gov/gmd/aggi/aggi.html; Ocampo López, O. L. (2017). Modelación hidrológica y agronómica de los efectos del cambio y la variabilidad climática en la producción cafetera de Caldas. Universidad Nacional de Colombia.; Ocampo López, O. L., & Vélez Upegui, J. J. (2014). Análisis comparativo de modelos hidrológicos de simulación continua en cuencas de alta montaña: Caso del río Chinchiná. Revista Ingenierías Universidad de Medellín, 13(24), 43–58.; Oceana. (2020). Gases de efecto invernadero %7C Oceana EU. https://eu.oceana.org/es/node/46897; O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., & Solecki, W. (2015). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004; O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400. https://doi.org/10.1007/s10584-013-0905-2; Organización Meteorológica Mundial. (2019a). The Global Climate in 2015 - 2019. World Meteorological Organization, 1179, 32.; Organización Meteorológica Mundial. (2019b). WMO Statement on the State of the Global Climate in 2018.; Pabón, J. D. (2012). Cambio Climático en Colombia: Tendencias en la segunda mitad del siglo XX y escenarios posibles para el siglo XXI. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36(139), 261–278.; Parra Gómez, L. F. (2023). Gestión natural de inundaciones. Universidad Nacional de Colombia.; Peixoto, J. P., & Oort, A. H. (1992). Physics of climate. In Reviews of Modern Physics.; Pérez-Sánchez, J., Senent-Aparicio, J., Segura-Méndez, F., Pulido-Velazquez, D., & Srinivasan, R. (2019). Evaluating Hydrological Models for Deriving Water Resources in Peninsular Spain. Sustainability, 11(10), 2872. https://doi.org/10.3390/su11102872; Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., & Wallace, D. W. R. (2001). The carbon cycle and atmospheric carbon dioxide. In Cambridge University Press.; Program for Climate Model Diagnosis & Intercomparison. (2008, September 15). CMIP5 Overview. https://pcmdi.llnl.gov/mips/cmip5/; Rahman, M., Ningsheng, C., Mahmud, G. I., Islam, M. M., Pourghasemi, H. R., Ahmad, H., Habumugisha, J. M., Washakh, R. M. A., Alam, M., Liu, E., Han, Z., Ni, H., Shufeng, T., & Dewan, A. (2021). Flooding and its relationship with land cover change, population growth, and road density. Geoscience Frontiers, 12(6), 101224. https://doi.org/10.1016/j.gsf.2021.101224; Ramírez Cardona, J. L. (2015). Propuesta metodológica para la valoración ambiental de corrientes hídricas desde la perspectiva de la restauración fluvial. Caso de estudio quebrada Olivares-Minitas Manizales (Caldas). Universidad Nacional de Colombia.; Rampino, M. R., & Self, S. (1992). Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359(6390), 50–52. https://doi.org/https://doi.org/10.1038/359050a0; Rampino, M. R., Self, S., & Stothers, R. B. (1988). Volcanic winters. Annual Review of Earth and Planetary Sciences, 16(1), 73–99.; Rao, S., & Riahi, K. (2006). The Role of Non-CO₃ Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century. The Energy Journal, 27(Special Issue: Multi-Greenhouse Gas Mitigation and Climate), 177–200. https://doi.org/10.2307/23297081; Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74(7), 887–935. https://doi.org/10.1016/j.techfore.2006.05.026; Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009; Riebeek, H. (2011, June 16). The Carbon Cycle. Earth Observatory - NASA. https://earthobservatory.nasa.gov/features/CarbonCycle/page1.php; Robertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over Northeast Brazil using a hidden Markov model. Journal of Climate, 17(22), 4407–4424. https://doi.org/10.1175/JCLI-3216.1; Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191–219. https://doi.org/http://dx.doi.org/10.1029/1998RG000054; Semana. (2017, January 20). Efectos del cambio climático en Colombia. Revista Semana. https://www.semana.com/nacion/articulo/efectos-del-cambio-climatico-en-colombia/512637; Smith, S. J., & Wigley, T. M. L. (2006). Multi-Gas Forcing Stabilization with Minicam Published by : International Association for Energy Economics Linked references are available on JSTOR for this article : Multi-Gas Forcing Stabilization with Minicam. The Energy Journal Special Issue, 3, 373–392.; Sofia, G., Roder, G., Dalla Fontana, G., & Tarolli, P. (2017). Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction. Scientific Reports, 7(1), 40527. https://doi.org/10.1038/srep40527; Song, J. H., Her, Y., Park, J., & Kang, M. S. (2019). Exploring parsimonious daily rainfall-runoff model structure using the hyperbolic tangent function and Tank model. Journal of Hydrology, 574, 574–587. https://doi.org/10.1016/j.jhydrol.2019.04.054; Song, J. H., Kang, M. S., Song, I., & Jun, S. M. (2016). Water balance in irrigation reservoirs considering flood control and irrigation efficiency variation. Journal of Irrigation and Drainage Engineering, 142(2).; Spiegel, D. S., Raymond, S. N., Dressing, C. D., Scharf, C. A., & Mitchell, J. L. (2010). Generalized milankovitch cycles and long-term climatic habitability. Astrophysical Journal, 721(2), 1308–1318. https://doi.org/10.1088/0004-637X/721/2/1308; Stocker, T. F., Qin, D., Plattner, G.-K., Alexander, L. V., Allen, S. K., Bindoff, N. L., Bréon, F.-M., Church, J. A., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M., Hartmann, D. L., Jansen, E., Kirtman, B., Knutti, R., Kumar, K. K., … Xie, S.-P. (2013). Technical Summary. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 33–109). Cambridge University Press.; Stoner, A. M. K., Hayhoe, K., Yang, X., & Wuebbles, D. J. (2013). An asynchronous regional regression model for statistical downscaling of daily climate variables. International Journal of Climatology, 33(11), 2473–2494. https://doi.org/10.1002/joc.3603; Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1; Tett, S. F. B., Jones, G. S., Stott, P. a., Hill, D. C., Mitchell, J. F. B., Allen, M. R., Ingram, W. J., Johns, T. C., Johnson, C. E., Jones, A., Roberts, D. L., Sexton, D. M. H., & Woodage, M. J. (2002). Estimation of natural and anthropogenic contributions to 20th Century Temperature Change. Journal of Geophysical Research: Atmospheres, 107(D16), ACL 10-1-ACL 10-24. https://doi.org/https://doi.org/10.1029/2000JD000028; United States Environmental Protection Agency. (2020a). Global Greenhouse Gas Emissions Data - US EPA. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Reference 1; United States Environmental Protection Agency. (2020b). Overview of Greenhouse Gases - US EPA. https://www.epa.gov/ghgemissions/overview-greenhouse-gases; Universidad Politécnica de Valencia. (2006). AFINS 2.0. Departamento de Ingeniería Hidráulica y Medio Ambiente.; University Corporation for Atmospheric Research, & National Earth Science Teachers Association. (2006a). Carbon dioxide - UCAR. UCAR. https://scied.ucar.edu/carbon-dioxide; University Corporation for Atmospheric Research, & National Earth Science Teachers Association. (2006b). Methane - UCAR. UCAR. https://scied.ucar.edu/methane; van Vuuren, D. P., & Carter, T. R. (2014). Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the ol. Climatic Change, 122(3), 415–429. https://doi.org/10.1007/s10584-013-0974-2; van Vuuren, D. P., Den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., Van Ruijven, B., Wonink, S., & Van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81(2), 119–159. https://doi.org/10.1007/s10584-006-9172-9; van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z; van Vuuren, D. P., Eickhout, B., Lucas, P. L., & den Elzen, M. G. J. (2006). Long-Term Multi-Gas Scenarios to Stabilise Radiative Forcing — Exploring Costs and Benefits Within an Integrated Assessment Framework Published by : International Association for Energy Economics Stable URL : http://www.jstor.org/stable/23297082 Your use. The Energy Journal, 27(Multi-Greenhouse Gas Mitigation and Climate Policy), 201–233. https://doi.org/10.2307/23297082; van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., & Winkler, H. (2014). A new scenario framework for Climate Change Research: Scenario matrix architecture. Climatic Change, 122(3), 373–386. https://doi.org/10.1007/s10584-013-0906-1; van Vuuren, D. P., Riahi, K., Moss, R., Edmonds, J., Thomson, A., Nakicenovic, N., Kram, T., Berkhout, F., Swart, R., Janetos, A., Rose, S. K., & Arnell, N. (2012). A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 22(1), 21–35. https://doi.org/10.1016/j.gloenvcha.2011.08.002; van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., & Tabeau, A. (2017). Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 42, 237–250. https://doi.org/10.1016/j.gloenvcha.2016.05.008; Vélez Upegui, J. I. (2001). Desarrollo de un modelo hidrológico conceptual y distribuido orientado a la simulación de crecidas. Universidad de La Rioja.; Vélez Upegui, J. J., Zambrano Nájera, J., Jódar, J., & Martos Rosillo, S. (2022). Evaluación preliminar de los recursos hídricos para la Siembra de Agua en la cuenca del río Palomino (Colombia). En Siembra y Cosecha de Agua en Iberoamérica. Agencia Española de Cooperación Internacional para el Desarrollo.; Watson, R. T., Meira Filho, L. G., Sanhueza, E., & Janetos, A. (1992). Greenhouse gases: Sources and Sinks. Climate Change, 92, 25–46. https://doi.org/10.1016/b978-0-12-809665-9.09961-4; Watson, R. T., Rodhe, H., Oeschger, H., & Siegenthaler, U. (1990). Greenhouse gases and aerosols. Climate Change: The IPCC Scientific Assessment, 1, 17.; Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S. J., Janetos, A., & Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), 1183–1186. https://doi.org/10.1126/science.1168475; Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62(1–3), 189.; Wood, A. W., Maurer, E. P., Kumar, A., & Lettenmaier, D. P. (2002). Long‐range experimental hydrologic forecasting for the eastern. Journal of Geophysical Research: Atmospheres, 107(D20), ACL 6-1-ACL 6-15. https://doi.org/doi:10.1029/2001JD000659; Yates, D., Gangopadhyay, S., Rajagopalan, B., & Strzepek, K. (2003). A technique for generating regional climate scenarios using a nearest-neighbor algorithm. Water Resources Research, 39(7), 1–15. https://doi.org/10.1029/2002WR001769; Zhang, F., & Georgakakos, A. P. (2012). Joint variable spatial downscaling. Climatic Change, 111(3), 945–972. https://doi.org/10.1007/s10584-011-0167-9; https://repositorio.unal.edu.co/handle/unal/86068; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
5Academic Journal
المؤلفون: Ashraf Abdelkarim, Ahmed Gaber, Ibtesam Alkadi, Haya Alogayell
المصدر: Sustainability; Volume 11; Issue 21; Pages: 6003
مصطلحات موضوعية: land-use changes, wadi morphology, flood risk, Riyadh–Dammam train track, hydrological and hydraulic modeling, sustainable development
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Hazards and Sustainability; https://dx.doi.org/10.3390/su11216003
الاتاحة: https://doi.org/10.3390/su11216003
-
6Dissertation/ Thesis
المساهمون: Fernández Espinoza, Joel Manuel
المصدر: Universidad Peruana de Ciencias Aplicadas (UPC) ; Repositorio Académico - UPC
مصطلحات موضوعية: Río Mala, Vehículo Volador no Tripulado (VVNT), Modelamiento hidrológico e hidráulico, HEC-HMS, FLO-2D, Mapa de peligro, Mala River, UAV, Hydrological and hydraulic modeling, Hazard maps, http://purl.org/pe-repo/ocde/ford#2.00.00, https://purl.org/pe-repo/ocde/ford#2.01.01
وصف الملف: application/pdf; application/epub; application/msword
Relation: http://hdl.handle.net/10757/661069; 0000 0001 2196 144X
الاتاحة: http://hdl.handle.net/10757/661069
-
7
المؤلفون: Özcan, Orkan
المساهمون: Musaoğlu, Nebiye, İleri Teknolojiler Anabilim Dalı, Uydu Haberleşmesi Ve Uzaktan Algılama, Satellite Communication and Remote Sensing
مصطلحات موضوعية: Sakarya basin, Hidrolik ve Hidrolojik Modelleme, Jeoloji Mühendisliği, Geological Engineering, Taskın riski, Sakarya havzası, Hydrological and Hydraulic Modeling, Flood risk
وصف الملف: application/pdf
-
8Dissertation/ Thesis
المؤلفون: Özcan, Orkan
المساهمون: Musaoğlu, Nebiye, 299978, Uydu Haberleşmesi Ve Uzaktan Algılama, Satellite Communication and Remote Sensing
مصطلحات موضوعية: Sakarya havzası, Taskın riski, Hidrolik ve Hidrolojik Modelleme, Sakarya basin, Flood risk, Hydrological and Hydraulic Modeling
وصف الملف: application/pdf
Relation: http://hdl.handle.net/11527/12277
الاتاحة: http://hdl.handle.net/11527/12277