-
1Academic Journal
المؤلفون: Yao Sun, Jiaming Miao, Xinyi Fan, Kan Zhang, Tierui Zhang
المصدر: Small Structures, Vol 5, Iss 7, Pp n/a-n/a (2024)
مصطلحات موضوعية: biomass derivatives, electrochemicals, high‐value‐added chemicals, Physics, QC1-999, Chemistry, QD1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2688-4062
-
2Academic Journal
المؤلفون: Xixue He, Xinyu Wang, Hao Xu
المصدر: Catalysts, Vol 14, Iss 9, p 560 (2024)
مصطلحات موضوعية: carbon dioxide hydrogenation reaction, clean energy, high-value-added chemicals, cobalt-based catalysts, Chemical technology, TP1-1185, Chemistry, QD1-999
Relation: https://www.mdpi.com/2073-4344/14/9/560; https://doaj.org/toc/2073-4344; https://doaj.org/article/367253b3cb8d4a90bd3800fdf4f00fdf
-
3Academic Journal
المؤلفون: Ziyang Xu, Guangwei Zhang, Kangjun Wang
المصدر: Catalysis Communications, Vol 175, Iss , Pp 106608- (2023)
مصطلحات موضوعية: Biotransformation, Hemicellulose, Xylose and its derivatives, High value-added chemicals, Chemistry, QD1-999
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Haiqiang Wang, Qijun Tang, Zhongbiao Wu
مصطلحات موضوعية: Biochemistry, Sociology, Biological Sciences not elsewhere classified, Chemical Sciences not elsewhere classified, photocatalysis processes, B-doped g-C 3 N 4, time-resolved photoluminescence, Enhanced Photocatalytic CO 2 Reduction, Several characterizations, boron-doped graphitic carbon nitride, few-layer Ti 3 C 2 MXene, carbon dioxide, cycling experiment, MXene-based photocatalysts, high-value-added chemicals, CH 4 yields, CO 2, greenhouse effect, energy crisis, BCN, 8.9- times, charge transport, FLTC, photoinduced carriers, boron dopants, photocatalytic activity, g-C 3 N 4, photocatalytic CO 2 reduction, socio, geo
-
5
المؤلفون: Vittorio Loddo, Giuseppe Marcì, Francesco Parrino, Elisa I. García-López, Marianna Bellardita, Leonardo Palmisano
المساهمون: Parrino, F., Bellardita, M., García-López, E.I., Marcì, G., Loddo, V., Palmisano, L.
مصطلحات موضوعية: high value-added chemicals, photocatalyst features, reactor configuration optimization, selective photocatalysis, selectivity enhancement, Catalysis, Chemistry (all), 02 engineering and technology, 010402 general chemistry, 01 natural sciences, Catalysi, Molecule, selective photocatalysi, Settore ING-IND/24 - Principi Di Ingegneria Chimica, Chemistry, General Chemistry, 021001 nanoscience & nanotechnology, photocatalyst feature, 0104 chemical sciences, Chemical engineering, Photocatalysis, Settore CHIM/07 - Fondamenti Chimici Delle Tecnologie, 0210 nano-technology, high value-added chemical
-
6
المؤلفون: 黃詩芸, Huang, Shih-Yun
المساهمون: 淡江大學化學工程與材料工程學系碩士班, 陳錫仁, Chen, Hsi-Jen
مصطلحات موضوعية: 酒精燃料, 程序設計與整合, 高值化學品, 共沸蒸餾, 變壓蒸餾, 滲透蒸發, 經濟評估, 合成氣, Ethanol Fuel, Process Design and Integration, High-value Added Chemicals, Azeotropic Distillation, Pressure-Swing Distillation, pervaporation, Economic Evaluation, Syngas
Relation: 參考文獻 【1】 台灣電力公司,每日電力供需資訊,引用日期(18/06/2014)。 http://www.taipower.com.tw/content/new_info/new_info_in.aspa?LinkID=11 【2】 經濟部能源局台灣2050能源供需情境模擬系統,引用日期(18/06/2014)。 http://my2050.twenergy.org.tw/ 【3】 古森本,生質能源作物之開發與潛力,農業生技產業季刊,第十三期,第46-53頁(2008)。 【4】 Lichts F. O., The World of Biofuel in 2012, World Ethanol & Biofuels Report(2012). 【5】 REN21, Renewables 2011 Global Status Report, Paris, France(2011). 【6】 Rajagopalan S., R. P. Datar, and R. S. Lewis, Formation of Ethanol from Carbon Monoxide Via a New Microbial Catalyst, Biomass Bioenergy, 23(6):487-493(2002). 【7】 Roberts G. W., M. A. Marquez, and M. S. McCutchen, Alcohol Synthesis in a High-temperature Slurry Reactor, Catal. Today, 36(3):255-263(1997). 【8】 Zhang Y., X. San, N. Tsubaki, Y. Tan, and J. Chen, Novel Ethanol Synthesis Method Via C1 Chemicals Without Any Agriculture Feedstocks, Ind. Eng. Chem. Res., 49, 5485-5488(2010). 【9】 Haro P., P. Ollero, A.L. Villanueva Perales, and C. Reyes Valle, Technoeconomic Assessment of Lignocellulosic Ethanol Production Via DME(Dimethyl Ether)Hydrocarbonylation, Energy, 44, 891-901(2012). 【10】 Mei D., R. Rousseau, S. M. Kathmann, V. A. Glezakou, M. H. Engelhard, W. Jian, C. Wang, M. A. Gerber, J. F. White, and D. J. Stevens, Ethanol Synthesis from Syngas over Rh-based/SiO2 catalysts: A Combinedexperimental and Theoretical Modeling Study, J. Catal., 271, 325-342(2010). 【11】 Chiang S. W., C. C. Chang, H. Y. Chang, and C. Y. Chang, Production of Synthetic Alcohol from Syngas Using MoS2/γ-Al2O3, Bioenergy Technology, World Renewable Energy Congress 2011, Linkoping, Sweden, 537-545(2011). 【12】 Chiang S. W., C. C. Chang, J. L. Shie, C. Y. Chang, D. R. Ji, J. Y. Tseng, C. F. Chang, and Y. H. Chen, Synthesis of Alcohols and Alkanes from CO and H2 over MoS2/γ-Al2O3 Catalyst in a Packed Bed with Continuous Flow, Energies, 5, 4147-4164(2012). 【13】 Yang L., and P. Liu, Ethanol Synthesis from Syngas on Transition Metal-DopedRh(111)Surfaces: A Density Functional Kinetic Monte CarloStudy, Top. Catal., 57, 125 – 134(2014). 【14】 Younesi H., G. Najafpour, A. R. Mohameda, Ethanol and Acetate Production from Synthesis Gas Via Fermentation Processes Using Anaerobic Bacterium, Clostridium ljungdahlii, Biochem. Eng. J., 27, 110–119(2005). 【15】 朱錫璋,通霄發電廠,源雜誌-通霄發電廠專輯,第八十八期,第4-12頁(2011)。 【16】 許哲維,煤炭氣化複循環發電系統之整合設計暨其應用,淡江大學化學工程與材料工程所碩士論文,台灣,新北市淡水區英專路151號,第62頁(2008) 【17】 姚強,21世紀可持續能源技術-潔淨煤技術,化學工業出版社,第23-218頁(2005) 【18】 Turton, R., R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz and D. Bhattacharyya, “Analysis, Synthesis, and Design of Chemical Processes,” 4th ed., Prentice Hall, New Jersey, U.S.A.(2012). 【19】 SuperTarget, SUPERTARGET User’s Guide, Linnhoff March Ltd., Cheshire, U.K.(2010). 【20】 Smith, R., “Chemical Process Design and Integration,” 2nd ed., John Wiley & Sons Ltd., West Sussex, U. K.(2005). 【21】 Seider, W. D., J. D. Seader, D. R. Lewin, and S. Widagdo, “Product and Process Design Principles Synehesis,” Analysis and Evaluation, 3rd ed., John Wiley & Sons. Inc., Hoboken, N. J.(2010). 【22】 林承澤,工業酒精與生質酒精之製造暨其純化:化工程序合成與設計,碩士論文,淡江大學,臺北(2010)。 【23】 Abu-Elshah, S. I. and W. L. Luyben, “Design and Control of a Two-Column Azeotropic Distillation System,”Ind. Eng. Chem. Process Des. Dev., 24, 132-140(1985). 【24】 林天元,變壓蒸餾塔之原理與設計,化工技術,第14卷,第7期,第96-104頁(2006)。 【25】 王大銘,滲透蒸發技術之發展,國立台灣大學「台大工程」學刊,第84期,第119-127頁(2002)。 【26】 Huang, R. Y. M., “Pervaporation Membrane Separation Processes, Elsevier, ”New York, 391-431(1991). 【27】 王銘忠,化工製程模擬之熱力學模式,化工,第58卷,第3期,第70-84頁(2011)。 【28】 Hohmann, E. C., “Optimum Networks for Heat Exchange,” Ph. D. Thesis, University of Southern California, U. S. A.(1971). 【29】 Linnhoff, B., and J. R. Flower, “Synthesis of Heat Exchanger Networks - 1 : Systematic Generation of Energy Optimal Networks,” AIChE J., 24, 633-642(1978). 【30】 Ahmad, S., B. Linnhoff and R. Smith,“Cost Optimum Heat Exchanger Networks - 2 : Targets and Design for Detailed Capital Cost Models,” Comput. Chem. Eng., 14, 751-767(1990). 【31】 Linnhoff, B., “Pinch Analysis - A State-of-the-Art Overview,” Trans. IChemE., Part A, 71, 503-522(1993). 【32】 Aspen Plus, Physical Property Methods and Models Reference Manual, Aspen Tech., Boston, MA, U.S.A.(2006). 【33】 He J., and W. N. Zhang, Personal Review: Research on ethanol synthesis from syngas, Journal of Zhejiang University SCIENCE A, 9(5), 714 – 719(2008) 【34】 Tien-Thaoa N., Alamdari H., Zahedi-Niaki M. H., Kaliaguine S., LaCo1-xCuxO3-delta Perovskite Catalysts for Higher Alcohol Synthesis, ACAGE4, General 311, 204–212(2006). 【35】 呂維明、錢義隆、黃孝平、余政靖,化工程序設計概論,高立圖書出版,第25頁(2011) 【36】 Edgar, T. F., D. M. Himmelblau, and L. S. Lasdon, Optimization of Chemical Process, 2nd ed., McGraw-Hill, New York, U.S.A.(2003) 【37】 Java Applet JSTOICH,引用日期(23/04/2014)http://www.chemical-stoichiometry.net/japp.htm 【38】 Alfonsi, K., J. Colberg, , P. J. Dunn, T. Fevig, S. Jennings, T. A. Johnson, H. P. Kleine, C. Knight, M.A. Nagy, D.A. Perry, and M. Stefaniak, Green Chemistry Tools to Influence a Medicinal Chemistry and Research Chemistry Based Organisation, Green Chem., 10, p.31-36(2008) 【39】 Ryan, P., and M. Doherty, Design/Optimization of ternary heterogenous azeotropic distillation sequences, AICHE J, 35(10), 1592-1601(1989). 【40】 Pham, H. N., and M. Doherty, Design and Synthesis of Heterogenous Azeotropic Distillation-II. Residue Curve Map, Chem. Eng. Sci., 45, 1837-1843(1990) 【41】 S. Widagdo, and W. D. Seider, Azeotropic Distillation, AICHE J, 42(1), 96-130(1996) 【42】 Luyben, W. L., Distillation Design and Control Using Aspen Simulation, 2nd ed.,Wiley,New York, p.105-109(2013) 【43】 林天元,變壓蒸餾之原理與設計,化工技術,第十四卷,第七期,第96-104頁(2006)。 【44】 Luyben, W. L., “Control of a Column/Pervaporation Process for Separating the Ethanol/Water Azeotrope,” Ind. Eng. Chem. Res., 48, 3484-3495,(2009). 【45】 Sander, U., and P. Soukup, “Design and Operation of a Pervaporation Plant for Ethanol Dehydration,” J. Membr. Sci., 36, 463-475(1988). 【46】 曾益民,生質酒精汽油之發展,永續產業發展月刊,第35期,第22-23頁(2007)。 【47】 簡士傑,木薯酒精燃料之程序合成與設計,碩士論文,淡江大學,臺北(2013)。; U0002-1808201420202700; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102512; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/102512/-1/index.html