-
1Academic Journal
المؤلفون: V. P. Fetisov
المصدر: Litʹë i Metallurgiâ, Vol 0, Iss 1, Pp 51-54 (2024)
مصطلحات موضوعية: dispersion of perlite, lamellar perlite structure, cementite decay, deformation hardening mechanisms, mobility of dislocations, Mining engineering. Metallurgy, TN1-997
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Tuanwei Zhang, Tianxiang Bai, Renlong Xiong, Shunhui Luo, Hui Chang, Shiyu Du, Jinyao Ma, Zhiming Jiao, Shengguo Ma, Jianjun Wang, Zhihua Wang
المصدر: Metals, Vol 14, Iss 7, p 749 (2024)
مصطلحات موضوعية: medium-/high-entropy alloy, Si addition, high-temperature deformation, strain-hardening mechanisms, L12 precipitation, Mining engineering. Metallurgy, TN1-997
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: V. D. Sitdikov, E. D. Khafizova, M. V. Polenok, В. Д. Ситдиков, Э. Д. Хафизова, М. В. Поленок
المساهمون: The research was conducted with the support of the Russian Science Foundation Grant No. 23-29-00667, https://rscf.ru/project/23-29-00667, Исследование выполнено за счет гранта Российского научного фонда № 23-29-00667, https://rscf.ru/project/23-29-00667
المصدر: Izvestiya. Non-Ferrous Metallurgy; № 6 (2023); 35-43 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 6 (2023); 35-43 ; 2412-8783 ; 0021-3438
مصطلحات موضوعية: механизмы упрочнения, severe plastic deformation, strength, ductility, microstructure, phase composition, X-ray diffraction analysis, hardening mechanisms, интенсивная пластическая деформация, прочность, пластичность, микроструктура, фазовый состав, рентгеноструктурный анализ
وصف الملف: application/pdf
Relation: https://cvmet.misis.ru/jour/article/view/1554/704; https://cvmet.misis.ru/jour/article/view/1554/712; Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert C.J., Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Materialia. 2019;(97):1—22. https://doi.org/10.1016/j.actbio.2019.07.034; Huang S., Wang L., ZhengY., Qiao L., Yan Y. In vitro degradation behavior of novel Zn—Cu—Li alloys: Roles of alloy composition and rolling processing. Materials & Design. 2021;(212):110288. https://doi.org/10.1016/j.matdes.2021.110288; Li W., Dai Y., Zhang D., Lin J., Biodegradable Zn—0.5Li alloys with supersaturated solid solution-aging treatment for implant applications. Journal of Materials Research and Technology. 2023;(24):9292—9305. https://doi.org/10.1016/j.jmrt.2023.05.136; Yang L., Li X., Yang L., Zhu X., Wang M., Song Z., Liu H.H., Sun W., Dong R., Yue J. Effect of Mg contents on the microstructure, mechanical properties and cytocompatibility of degradable Zn—0.5Mn—xMg alloy. Journal of Functional Biomaterials. 2023;(14):195. https://doi.org/10.3390/jfb14040195; Ye L., Huang H., Sun C., Zhuo X., Dong Q., Liu H., Ju J., Xue F., Bai J., Jiang J. Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn—Mg binary alloys. Journal of Materials Research and Technology. 2022;(16):1673—1685. https://doi.org/10.1016/j.jmrt.2021.12.101; Yuan W., Xia D., Wu S., Zheng Y., Guan, Z., Rau J.V. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioactive Materials. 2022;(7):192—216. https://doi.org/10.1016/j.bioactmat.2021.05.018; García-Mintegui C., Córdoba L.C., Buxadera-Palomero J., Marquina A., Jiménez-Piqué E., Ginebra M.P., Cortina J.L., Pegueroles M. Zn—Mg and Zn—Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioactive Materials. 2021;6(12):4430—4446. https://doi.org/10.1016/j.bioactmat.2021.04.015; Tong X., Zhang D., Zhang X., Su Y., Shi Z., Wang K., Lin J., Li Y., Lin J., Wen C. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn—5Ge alloy for biodegradable implant materials. Acta Biomaterialia. 2018;(82):197—204. https://doi.org/10.1016/j.actbio.2018.10.015; Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications. 2020;(11):401. https://doi.org/10.1038/s41467-019-14153-7; Li Zh., Shi Zh.-Zh., Hao Y., Li H., Zhang H., Liu X., Wang L.-N. Insight into role and mechanism of Li on the key aspects of biodegradable Zn—Li alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity. Materials Science and Engineering: C. 2020; (114):111049. https://doi.org/10.1016/j.msec.2020.111049; Ye L., Liu H., Sun C., Zhuo X., Ju J.; Xue F., Bai J., Jiang J., Xin Y. Achieving high strength, excellent ductility, and suitable biodegradability in a Zn—0.1Mg alloy using room-temperature ECAP. Journal of Alloys and Compounds. 2022;(926):166906. https://doi.org/10.1016/j.jallcom.2022.166906; Zhao S., McNamara C.T., Bowen P.K., Verhun N., Braykovich J.P., Goldman J., Drelich J.W. Structural characteristics and in vitro biodegradation of a novel Zn—Li alloy prepared by induction melting and hot rolling. Metallurgical and Materials Transactions A. 2017;(48):1204—1215. https://doi.org/10.1007/s11661-016-3901-0; Liu H., Ye L., Ren K., Sun C., Zhuo X., Yan K., Ju J., Jiang J., Xue F., Bai J. Evolutions of CuZn5 and Mg2Zn11 phases during ECAP and their impact on mechanical properties of Zn—Cu—Mg alloys. Journal of Materials Research and Technology. 2022;(21):5032—5044. https://doi.org/10.1016/j.jmrt.2022.11.095; Huang H., Liu H., Wang L., Yan K., Li Y., Jiang J., Ma A., Xue F., Bai J. Revealing the effect of minor Ca and Sr additions on microstructure evolution and mechanical properties of Zn—0.6 Mg alloy during multi-pass equal channel angular pressing. Journal of Alloys and Compounds. 2020;(844):155923. https://doi.org/10.1016/j.jallcom.2020.155923; Polenok M.V., Khafizova E.D., Islamgaliev R.K. Influence of severe plastic deformation on the mechanical properties of pure zinc. Frontier Materials & Technologies. 2022;(3—2):25—31. https://doi.org/10.18323/2782-4039-2022-3-2-25-31; Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress Materials Science. 2000;45(2):103—189. https://doi.org/10.1016/S0079-6425(99)00007-9; Rietveld H.M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. 1969;2(2):65—71. https://doi.org/10.1107/S0021889869006558; Pelton A. The Li—Zn (Lithium—Zinc) system. Journal of Phase Equilibria. 1991;(12):42—45. https://doi.org/10.1007/BF02663672; Liu S., Kent D., Doan N., Dargusch M., Wang G. Effects of deformation twinning on the mechanical properties of biodegradable Zn—Mg alloys. Bioactive Materials. 2018;4(1):8—16. https://doi.org/10.1016/j.bioactmat.2018.11.001; Zhang Y., Yan Y., Xu X., Lu Y., Chen L., Li D., Dai Y., Kang Y., Yu K., Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn—0.8%Li—(Mg, Ag) alloys for guided bone regeneration. Materials Science and Engineering: C. 2019;(99):1021—1034. https://doi.org/10.1016/j.msec.2019.01.120; Shi Z.Z., Gao X.X., Zhang H.J., Liu X.F., Li H.Y., Zhou C., Yin Y.X., Wang L.N. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties. Bioactive Materials. 2020;5(2):210—218. https://doi.org/10.1016/j.bioactmat.2020.02.010; Li Zh., Shi Zh.-Zh., Zhang H.-J., Li H.-F., Feng Y., Wang L.-N. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn—Li alloy. Journal of Materials Research and Technology. 2021; 80:50—65. https://doi.org/10.1016/j.jmst.2020.10.076; Sitdikov V.D., Kulyasova O.B., Sitdikova G.F., Islamgaliev R.K., Yufeng J. Structural-phase transformations in a Zn—Li—Mg alloy subjected to severe plastic deformation by torsion. Frontier Materials & Technologies. 2022;(3—2): 44—55. https://doi.org/10.18323/2782-4039-2022-3-2-44-55; Zhuo X., Wu Y., Ju J., Liu H., Jiang J., Hu Z., Bai J., Xue F. Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. Journal of Materials Research and Technology. 2022;(17):244—269. https://doi.org/10.1016/j.jmrt.2022; Demirtas M., Yanar H., Saray O., Pürçek G. Room temperature superplasticity in fine/ultrafine-grained Zn—Al alloys with different phase compositions. Defect and Diffusion Forum. 2018;(85):72—77. https://doi.org/10.4028/www.scientific.net/ddf.385.72; Kumar P., Xu C., Langdon T.G. Mechanical characteristics of a Zn—22%Al alloy processed to very high strains by ECAP. Materials Science and Engineering A. 2006; (429): 324—328. https://doi.org/10.1016/j.msea.2006.05.044; Zhu Y.T., Wu X.L. Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters. 2019;(7): 393—398. https://doi.org/10.1080/21663831.2019.1616331; https://cvmet.misis.ru/jour/article/view/1554
-
4Academic Journal
المؤلفون: Shahir Mohd Yusuf, Nurainaa Mazlan, Nur Hidayah Musa, Xiao Zhao, Ying Chen, Shoufeng Yang, Nur Azmah Nordin, Saiful Amri Mazlan, Nong Gao
المصدر: Metals; Volume 13; Issue 2; Pages: 400
مصطلحات موضوعية: interfacial microstructures, hardening mechanisms, multi-material selective laser melting
وصف الملف: application/pdf
Relation: Additive Manufacturing; https://dx.doi.org/10.3390/met13020400
الاتاحة: https://doi.org/10.3390/met13020400
-
5Academic Journal
المؤلفون: Hongzhuang Zhang, Mengtao Xu, Punit Kumar, Changyou Li, Weibing Dai, Zhendong Liu, Zhenyuan Li, Yimin Zhang
المصدر: Virtual and Physical Prototyping, Vol 16, Iss 2, Pp 125-145 (2021)
مصطلحات موضوعية: additive manufacturing, fatigue resistance, microstructure, working hardening mechanisms, Science, Manufactures, TS1-2301
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Berbenni, Stéphane, Lebensohn, Ricardo A.
المصدر: Comptes Rendus. Physique, Vol 22, Iss S3, Pp 295-312 (2021)
مصطلحات موضوعية: Hardening mechanisms, Geometrically-necessary dislocations, Bauschinger effect, Size effect, FFT, Physics, QC1-999
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: M. N. Safonova, E. A. Arkhangelskaya, A. A. Fedotov
المصدر: Advanced Engineering Research, Vol 19, Iss 2, Pp 113-119 (2019)
مصطلحات موضوعية: bond, metal matrix, composite, hardener, ultrafine particles, hardening mechanisms, Materials of engineering and construction. Mechanics of materials, TA401-492
وصف الملف: electronic resource
-
8Academic Journal
المؤلفون: V. G. Shepelevich, O. N. Belaya, E. Yu. Neumerzhytskaya, В. Г. Шепелевич, О. Н. Белая, Е. Ю. Неумержицкая
المصدر: Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series; Том 64, № 4 (2019); 391-397 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 64, № 4 (2019); 391-397 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2019-64-4
مصطلحات موضوعية: механизмы упрочнения, lead, tin, microcrystalline structure, fine-dispersed structure, texture, microhardness, hardening mechanisms, свинец, олово, микрокристаллическая структура, мелкодисперсная структура, текстура, микротвердость
وصف الملف: application/pdf
Relation: https://vestift.belnauka.by/jour/article/view/528/426; Мальцев, М. В. Металлография цветных промышленных металлов и сплавов / М. В. Мальцев. – М.: Металлургия, 1970. – 364 с.; Андрющенко, М. Бессвинцовая пайка. Альтернативные сплавы / М. Андрющенко // Электроника: наука, техника, бизнес. – 2004. – № 5. – С. 47–49.; Ochoa, F. The effects of cooling rate on microstructure and mechanical behavior of Sn-3.5 Ag solder / F. Ochoa, J. J. Williams, N. Chawla // JOM. – 2003. – Vol. 55, iss. 6. – P. 56–60. https://doi.org/10.1007/s11837-003-0142-7; Hui-Wei, Miao. Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints / Miao Hui-Wei, Duh Jenq-Gong // J. Mater. Sci. – Mater. Electron. – 2000. – Vol. 11, iss.8. – P. 609–618. https://doi.org/10.1023/A:1008928729212.; Высокоскоростное затвердевание расплавов: теория, технология и материалы / В. А. Васильев [и др.]. – М.: СП Интермет Инжиниринг, 1998. – 400 с.; Мирошниченко, И. С. Закалка из жидкого состояния / И. С. Мирошниченко. – М.: Металлургия, 1982. – 168 с.; Шепелевич, В. Г. Быстрозатвердевшие легкоплавкие сплавы / В. Г. Шепелевич. – Минск: БГУ, 2015. – 192 с.; Русаков, А. А. Металлография металлов / А. А. Русаков. – М.: Атомиздат, 1977. – 400 с.; Салтыков, С. А. Стереометрическая металлография / С. А. Салтыков. – М.: Металлургия, 1976. – 272 с.; Шепелевич, В. Г. Микроструктура и механические свойства эвтектического сплава системы олово–свинец, полученного высокоскоростным затвердеванием / В. Г. Шепелевич, О. Н. Белая, М. В. Гольцев // Приборостроение-2018: материалы Междунар. науч.-техн. конф., Минск, 14–16 нояб. 2018 г. / БНТУ; редкол.: О. К. Гусев [и др.]. – Минск, 2018. – С. 262–264.; Шепелевич, В. Г. Микроструктура быстроохлажденных из расплава сплавов системы олово–свинец / В. Г. Шепелевич, О. Н. Белая, Е. Ю. Неумержицкая // Прикладные проблемы оптики, информатики, радиофизики и физики конденсированного состояния: материалы Междунар. науч.-практ. конф., Минск, 11–12 мая 2017 г. / НИУ «Ин-т приклад. физ. проблем им. А. Н. Севченко» Белорус. гос. ун-та; редкол.: В. И. Попечиц [и др.]. – Минск, 2017. – С. 293–295.; Разработка процессов получения и применения сплавов припоев в дисперсном состоянии с микрокристаллической или аморфной структурой / И. Н. Пашков [и др.] // Металлургия. – 2010. – № 6. – С. 43–45.; Циглер, Г. Экстремальные принципы термодинамически необратимых процессов и механики сплошной среды / Г. Циглер. – М.: Мир, 1966. – 136 с.; Глазов, В. М. Химическая термодинамика и фазовые равновесия / В. М. Глазов, Л. М. Павлова. – М.: Металлургия, 1988. – 560 с.; https://vestift.belnauka.by/jour/article/view/528
-
9Academic Journal
المؤلفون: Fedoseeva, A. E., Nikitin, I. S., Dudova, N. R., Kaibyshev, R. O.
مصطلحات موضوعية: technique, metal science, steels, martensite steels, hardening mechanisms, creep, creep limit, mechanical properties, tension tests
Relation: Analysis of mechanical properties for the heat resistant CO-modified 12 and 9% CR steels / A.E. Fedoseeva [et al.] // Physics of Metals and Metallography. - 2020. - Vol.121, №8.-P. 1233-1239. - Doi:10.1134/S0031918X20120054. - Refer.: p. 1238-1239.; http://dspace.bsu.edu.ru/handle/123456789/43877
-
10Academic Journal
المؤلفون: Ivan Gutierrez-Urrutia
المصدر: ISIJ International. 2021, 61(1):16
-
11Academic Journal
المؤلفون: Goodfellow, AJ, Kelleher, J, Jones, NG, Dye, D, Hardy, MC, Stone, HJ
المساهمون: Engineering & Physical Science Research Council (E
المصدر: 329 ; 318
مصطلحات موضوعية: Science & Technology, Technology, Materials Science, Multidisciplinary, Metallurgy & Metallurgical Engineering, Nickel-based superalloys, Neutron diffraction, Compression test, Load partitioning, HIGH-VOLUME FRACTION, NEUTRON-DIFFRACTION, STRENGTHENING MECHANISMS, TEMPERATURE-DEPENDENCE, DEFORMATION MECHANISMS, HARDENING MECHANISMS, PLASTIC-DEFORMATION, LATTICE MISMATCH, NICKEL, STRAIN, 0912 Materials Engineering, 0913 Mechanical Engineering, 0204 Condensed Matter Physics, Materials
Relation: Acta Materialia; http://hdl.handle.net/10044/1/75982; RG75356
-
12Academic Journal
المؤلفون: Rodríguez, J. S., Duran, J. F., Aguilar, Y., Alcazar, G. A. Perez, Toro, A., Zambrano, O. A.
مصطلحات موضوعية: Fe-Mn-Al-C steels, abrasive wear, strain hardening mechanisms, stacking fault energy
وصف الملف: text
Relation: Tribology International, Volume: 180, Issue: C, Publication date: 2023-01-23, Pages: 1–11
-
13Report
المؤلفون: Zhang SD(张胜德), Yang MX(杨沐鑫), Wu XL(武晓雷), Yuan FP(袁福平)
المساهمون: Yuan, Fuping
مصطلحات موضوعية: Heterogeneous grain structures, Fracture toughness, Strain hardening, Microband-induced, plasticity, Ductility, Mn austenitic steels, STRAIN-HARDENING MECHANISMS, HIGH-TENSILE DUCTILITY, INDUCED PLASTICITY, MICROSTRUCTURE EVOLUTION, DEFORMATION, BEHAVIOR, ALLOY, STATE, Materials Science, Multidisciplinary, 二类/Q1
Relation: MATERIALS & DESIGN; http://dspace.imech.ac.cn/handle/311007/91451; http://dspace.imech.ac.cn/handle/311007/91452
-
14
المصدر: Reporter of the Priazovskyi State Technical University. Section: Technical sciences; No. 43 (2021): Reporter of the Priazovskyi State Technical University. Section: Technical sciences; 47-57
Вестник Приазовского государственного технического университета. Серия: Технические науки; № 43 (2021): Вестник ПГТУ. Серия: Технические науки; 47-57
Вісник Приазовського Державного Технічного Університету. Серія: Технічні науки; № 43 (2021): Вісник ПДТУ. Серія: Технічні науки; 47-57مصطلحات موضوعية: теорія міцності, механізми зміцнення, вуглецеві та інструментальні сталі, тверді сплави, плазмове модифікування (наноструктурування), strength theory, hardening mechanisms, carbon and tool steels, hard alloys, plasma modification (nanostructuring)
وصف الملف: application/pdf
-
15Conference
المؤلفون: Karpuz, Pinar, Simsir, Caner, Gür, Cemil Hakan, Kim, Hyoung Seop
المصدر: 4th International Conference on Nanomaterials by Severe Plastic Deformation
مصطلحات موضوعية: Equal channel angular pressing, Hardening mechanisms, Bauschinger effect, Finite element modeling
Relation: Karpuz P., Simsir C., GÜR C. H. , Kim H. S. , "Finite element investigation of the effect of hardening behavior of alloys on equal channel angular pressing performance", 4th International Conference on Nanomaterials by Severe Plastic Deformation, Goslar, Almanya, 18 - 22 Ağustos 2008, ss.1021-1026; 56349152748; https://hdl.handle.net/11511/37312; WOS:000259440800166
-
16Academic Journal
مصطلحات موضوعية: technique, metallurgy, alloys, nickel, alloying, impurities, hardening mechanisms
Relation: Rare-Earth metals (REMs) in nickel aluminide-based alloys: : II. Effect of a REM on the phase composition of a multicomponent Ni 3Al-based alloy / K.B. Povarova, A.A. Drozdov, N.K. Kazanskaya et al. // Russian Metallurgy (Metally). - 2008. - Vol.2008, №5.-P. 398-405. - doi:10.1134/S0036029508050078.; http://dspace.bsu.edu.ru/handle/123456789/1963; Russian Metallurgy (Metally); 2008; 398; 405
-
17Academic Journal
المؤلفون: Needleman, A, Van der Giessen, E, Deshpande, VS
المصدر: Needleman , A , Van der Giessen , E & Deshpande , VS 2006 , ' Statistical aspects of discrete dislocation plasticity ' , Scripta Materialia , vol. 54 , no. 5 , pp. 729-733 . https://doi.org/10.1016/j.scriptamat.2005.10.051
مصطلحات موضوعية: dislocation, theory, micromechanical modeling, HARDENING MECHANISMS, SINGLE-CRYSTALS, GRADIENT THEORY, THIN-FILMS, DYNAMICS, SCALE, FCC, SIMULATIONS, BEHAVIOR, TENSION
وصف الملف: application/pdf
-
18
المؤلفون: Amy Goodfellow, Howard J. Stone, Joe Kelleher, Nick Jones, Mark Hardy, David Dye
المساهمون: Jones, Nick [0000-0002-1851-2261], Stone, Howard [0000-0002-9753-4441], Apollo - University of Cambridge Repository, Engineering & Physical Science Research Council (E
مصطلحات موضوعية: Technology, STRAIN, Materials science, PLASTIC-DEFORMATION, Polymers and Plastics, Materials Science, NICKEL, Neutron diffraction, 0204 Condensed Matter Physics, Materials Science, Multidisciplinary, DEFORMATION MECHANISMS, 02 engineering and technology, HARDENING MECHANISMS, 01 natural sciences, Physics::Geophysics, Condensed Matter::Materials Science, 0103 physical sciences, STRENGTHENING MECHANISMS, Composite material, 0912 Materials Engineering, Nickel-based superalloys, Materials, Strengthening mechanisms of materials, 010302 applied physics, Science & Technology, Compression test, Metals and Alloys, Intergranular corrosion, 021001 nanoscience & nanotechnology, Load partitioning, Electronic, Optical and Magnetic Materials, Superalloy, NEUTRON-DIFFRACTION, HIGH-VOLUME FRACTION, TEMPERATURE-DEPENDENCE, Deformation mechanism, Ceramics and Composites, Metallurgy & Metallurgical Engineering, Interphase, Crystallite, LATTICE MISMATCH, Deformation (engineering), 0210 nano-technology, 0913 Mechanical Engineering
وصف الملف: application/vnd.openxmlformats-officedocument.wordprocessingml.document
-
19
المؤلفون: RAFAEL DE ARAUJO SILVA
Thesis Advisors: IVANI DE SOUZA BOTT
مصطلحات موضوعية: [pt] ACO API X80, [en] API X80 STEEL, [pt] CURVAMENTO A QUENTE, [en] HOT BENDING, [pt] REVENIMENTO, [en] TEMPERING, [pt] MECANISMOS DE ENDURECIMENTO, [en] HARDENING MECHANISMS
-
20Academic Journal
المؤلفون: RAFAEL DE ARAUJO SILVA
المساهمون: IVANI DE SOUZA BOTT
مصطلحات موضوعية: [pt] ACO API X80, [en] API X80 STEEL, [pt] CURVAMENTO A QUENTE, [en] HOT BENDING, [pt] REVENIMENTO, [en] TEMPERING, [pt] MECANISMOS DE ENDURECIMENTO, [en] HARDENING MECHANISMS