يعرض 1 - 20 نتائج من 62 نتيجة بحث عن '"graph convolutional networks (GCN)"', وقت الاستعلام: 0.61s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
  17. 17
    Dissertation/ Thesis

    المؤلفون: Mendoza Chirinos, Juliana

    المساهمون: Pérez Bernal, Juan Fernando, Medina Sánchez, Pablo Alexander, Bravo Vega, Carlos Andrés

    وصف الملف: 20 páginas; application/pdf

    Relation: D. Martínez-Bello, A. López-Quílez and A. T. Prieto, ‘Spatiotemporal modeling of relative risk of dengue disease in colombia,’ Stochastic Environmental Research and Risk Assessment, vol. 32, pp. 1587–1601, 6 Jun. 2018, issn: 14363259. doi:10.1007/s00477-017-1461-5.; I. N. de Salud, Boletín epidemiológico semanal semana epidemiológica 12, 2024. [Online]. Available: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2024_Bolet%C3%ADn_epidemiologico_semana_12.pdf.; K. Roster and F. A. Rodrigues, ‘Neural networks for dengue prediction: A systematic review,’ arXiv preprint arXiv:2106.12905, 2021.; S. Deng, S. Wang, H. Rangwala, L. Wang and Y. Ning, ‘Cola-gnn: Cross-location attention based graph neural networks for long-term ili prediction,’ Association for Computing Machinery, Oct. 2020, pp. 245– 254, isbn: 9781450368599. doi:10.1145/3340531.3411975.; V. B. Nguyen, T. S. Hy, L. Tran-Thanh and N. Nghiem, ‘Predicting covid-19 pandemic by spatio-temporal graph neural networks: A new zealand’s study,’ May 2023. [Online]. Available: http://arxiv.org/abs/2305.07731.; Z. Liu, G. Wan, B. A. Prakash, M. S. Y. Lau and W. Jin, ‘A review of graph neural networks in epidemic modeling,’ Mar. 2024. [Online]. Available: http://arxiv.org/abs/2403.19852.; S. Job, X. Tao, T. Cai et al., ‘Exploring causal learning through graph neural networks: An in-depth review,’ Nov. 2023. [Online]. Available: http://arxiv.org/abs/2311.14994.; J. C. Walrand and H. S. V. Pravin, Optimal causal coding-decoding poblems, 1983.; M. de Salud y Protección Social-Federación Médica Colombiana, Dengue - memorias, 2012.; J. C. Castrillón, J. C. Castaño and S. Urcuqui, ‘Dengue en colombia: Diez años de evolución,’ Revista Chilena de Infectologia, vol. 32, pp. 142–149, 2 2014. doi: http://dx.doi.org/10 .4067/S0716-10182015000300002. [Online]. Available: www.sochinf.cl.; [11] K.-T. Kuo, D. Moukheiber, S. C. Ordonez et al., ‘Denguenet: Dengue prediction using spatiotemporal satellite imagery for resource-limited countries,’ Jan. 2024. [Online]. Available: http://arxiv.org/abs/2401.11114.; D. A. Martínez-Bello, A. López-Quílez and A. T. Prieto, ‘Spatio-temporal modeling of zika and dengue infections within colombia,’ International Journal of Environmental Research and Public Health, vol. 15, 7 Jul. 2018, issn: 16604601. doi:10.3390/ijerph15071376.; L. Wang, A. Adiga, J. Chen, A. Sadilek, S. Venkatramanan and M. Marathe, Causalgnn: Causal-based graph neural networks for spatio-temporal epidemic forecasting, 2022. [Online]. Available: www.aaai.org.; C. Fritz, E. Dorigatti and D. Rügamer, ‘Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly covid-19 cases in germany,’ Scientific Reports, vol. 12, 1 Dec. 2022, issn: 20452322. doi:10.1038/s41598-022-07757-5.; IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales, DHIME - Sistema de Información Hidrológica, Accessed: 2024-04-15, 2024. [Online]. Available: http://dhime.ideam.gov.co/atencionciudadano/.; INS - Instituto Nacional de Salud, Portal SIVIGILA, Accessed: 2024-04-15, 2024. [Online]. Available: https://portalsivigila.ins.gov.co/.; DANE - Departamento Administrativo Nacional de Estadística, Estadísticas por Tema, Accessed: 2024-04-15, 2024. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema.; I. N. d. S. Ministerio de Salud y Protección Social, Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia. Bogotá, Colombia: Ministerio de Salud y Protección Social, 2017. [Online]. Available: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/INV/Dengue%20en%20Colombia.pdf.; Departamento Administrativo Nacional de Estadística (DANE). ‘Medida de pobreza multidimensional de fuente censal.’ Accessed: 2024-04-15. (2024), [Online]. Available: https://www.dane.gov.co/index.php/estadisticas- por- tema/pobreza-y-condiciones-de-vida/pobreza-y- desigualdad/medida- de-pobreza-multidimensional-de-fuente-censal.; Y. Hu, A. Huber, J. Anumula and S.-C. Liu, Overcoming the vanishing gradient problem in plain recurrent networks, 2019. arXiv: 1801.06105 [cs.NE]. [Online]. Available: https://arxiv.org/abs/1801.06105.; V. Urošević and S. Dimitrijević, ‘Optimum input sequence size for a sliding window-based lstm neural network used in short-term electrical load forecasting,’ in 2021 29th Telecommunications Forum (TELFOR), 2021, pp. 1–4. doi:10.1109/TELFOR52709.2021.9653206.; M. Shi, Y. Tang, X. Zhu, Y. Zhuang, M. Lin and J. Liu, ‘Feature-attention graph convolutional networks for noise resilient learning,’ IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 7719–7731, 2022. doi:10.1109/TCYB.2022.3143798.; A. Hart, J. Smith and C. Lee, ‘Improving graph networks through selection-based convolution,’ in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, pp. 1234–1243. [Online]. Available: https://openaccess.thecvf.com/content/ WACV2024/papers/Hart_Improving_Graph_Networks_Through_Selection-Based_Convolution_WACV_2024_paper.pdf.; X. Gong and W. Cheng, ‘Exploiting edge features for graph neural networks,’ in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5674–5683. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2019/papers/Gong_Exploiting_Edge_Features_for_Graph_Neural_Networks_CVPR_2019_paper.pdf.; J. Lu, Y. Tian, S. Wang, M. Sheng and X. Zheng, Pearnet: A pearson correlation-based graph attention network for sleep stage recognition, 2022. arXiv: 2209.13645 [eess.SP]. [Online]. Available: https://arxiv.org/abs/2209.13645.; S. Huang, Y. Zhang, G. Peng et al., ‘Mf-gcn-lstm: A cloud-edge distributed framework for key positions prediction in grid projects,’ Journal of Cloud Computing, vol. 11, no. 1, p. 55, 2022. doi:10.1186/s13677-022-00310-9. [Online]. Available: https://doi.org/10.1186/s13677-022-00310-9.; X. Ren and S. Yuan, ‘Gcn-lstm combined model for urban link mean speed prediction in the regional traffic network,’ in 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2022, pp. 1–7. doi:10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927766.; https://hdl.handle.net/1992/75226; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/

  18. 18
  19. 19
    Academic Journal
  20. 20
    Academic Journal