يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"gradient vector flow (GVF)"', وقت الاستعلام: 0.38s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    المساهمون: COMPUTER SCIENCE

    المصدر: Scopus

    Relation: Shivakumara, P., Phan, T.Q., Lu, S., Tan, C.L. (2013). Gradient vector flow and grouping-based method for arbitrarily oriented scene text detection in video images. IEEE Transactions on Circuits and Systems for Video Technology 23 (10) : 1729-1739. ScholarBank@NUS Repository. https://doi.org/10.1109/TCSVT.2013.2255396; http://scholarbank.nus.edu.sg/handle/10635/77864; 000325662200009

  9. 9
    Academic Journal

    المساهمون: 資訊工程學系, Department of Computer Science

    Relation: http://hdl.handle.net/11536/7840; JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING; WOS:000266547700001

  10. 10
  11. 11
  12. 12
    Dissertation/ Thesis

    المؤلفون: 王友俊, Wang, Yu-Chun

    المساهمون: 周瑞仁, 臺灣大學:生物產業機電工程學研究所

    Relation: Ballard, D. H., and C. M. Brown. 1982. Computer Vision. Prentice Hall, New Jersey. Bennett, N., R. Burridge, and N. Saito. 1999. A method to detect and characterize ellipses using the hough transform. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(7): 652-657. Borgefors, G. 1984. Distance transform in arbitrary dimension. Comp. Vis. Graph. Imag. Proc. 27: 321-345. Burt, P. J., T. H. Hong, and A. Rosenfeld. 1981. Segmentation and estimation of image region properties through cooperative hierarchical computation. IEEE Trans. on Systems, Man, and Cybernetics 11:802-809. Canny, J. 1986. A Computational Approach to Edge Detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 8: 679-698. Chen, C. M., H. S. Lu, and Y. C. Lin. 2000. An early vision-based snake model for ultrasound image segmentation. Ultrasound in Medicine and Biology 26(2): 273-285. Chen, Y. C., and S. C. Lee. 1995. A new method for quadratic curve detection using K-RANSAC with acceleration techniques. Pattern Recognition 28(8): 663-682. Cheng, Y. 1995. Mean shift, mode seeking, and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(8): 790-798. Chien, C. F., and T. T. Lin. 2002. Leaf area measurement of selected vegetable seedlings using elliptical Hough transform. Transactions of the ASAE 45(5): 1669-1677. Christoudias, C. M., B. Georgescu, and P. Meer. 2002. Synergism in low level vision. 16th International Conference on Pattern Recognition 4:150-155. Quebec City, Canada. Cohen, L. D., and I. Cohen. 1993. Finit-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(11): 1131-1147. Comaniciu, D., V. Ramesh, and P. Meer. 2000. Real-time tracking of non-rigid objects using mean shift. IEEE Conference on Computer Vision and Pattern Recognition 2:142-149. Hilton Head, SC. Comaniciu, D., and P. Meer. 2002. Mean shift, a robust approach toward feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 24: 603-619. Comaniciu, D. 2003. An algorithm for data-driven bandwidth selection. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(2): 281-288. Danielsson, P. E. 1980. Euclidean distance mapping. Comp. Graph. Imag. Proc. 14: 227-248. Fitzgibbon, A. W., M. Pilu, and R. B. Fischer. 1999. Direct least square fitting of ellipses. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5): 476-480. Fu, K. S., and J. K. Mui. 1981. A Survey on Image Segmentation. Pattern Recognition 13: 3-16. Fukunaga, K., and L. D. Hostetler. 1975. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Trans. on Information Theory IT-21: 32-40. Gath, I., and D. Hoory. 1995. Fuzzy clustering of elliptic ring-shaped clusters. Pattern Recognition Letter 16: 727-741 Gonzalez, R. C., and P. Wintz. 1987. Digital Image Processing (2nd. Ed). Addison-Wesley Harlick, R. M. 1978. Zero-Crossing of Second Directional Derivative Edge Operator. IEEE Trans. on Pattern Analysis and Machine Intelligence 6:58-68. Hjelmas, E., and B. K. Low. 2001. Face Detection: A Survey. Computer Vision and Image Understanding 83: 236–274. Horn, B. K. P., and B. G. Schunck. 1981. Determining optical flow. Artificial intelligence 17: 185-203. Hough, P. V. C. 1962. Method and means for recognizing complex patterns. U.S. Pattern 3069654. Hueckel, M. F. 1971. An Operator Which Locates Edges in Digitised Pictures. Journal of the ACM 18: 113-125. Karaman, M., A. Kutay, and H. Bozdagi. 1995. An adaptive speckle suppression filter for medical ultrasonic imaging. IEEE Trans. on Medical Imaging 14(2):283-292. Kass, M., A. Witkin, and D. Terzoulos. 1988. Snake: Active contour models. International J. Computer Vision 1(4): 321-331. Kittler, J., and J. Illingworth. 1985. On threshold selection using clustering criteria. IEEE Trans. on Systems, Man, and Cybernetics 15:652-655. Kohler, R. A. 1981. A segmentation based on thresholding. Computer Vision, Graphics and Image Processing 15:319-338. Krishnapuram, R., H. Frigui, and O. Nasraoui. 1995. Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation-Part I. IEEE Trans. on Fuzzy Systems 3(1): 29-43 Lefebvre, F., G. Berger, and P. Laugier. 1998. Automatic detection of the boundary of the calcaneus from ultrasound parametric images using an active contour model: Clinical assessment. IEEE Trans. on Medical Imaging 17(1): 45-52. Levine, M. D., and A. Nazif. 1984. An optimal set of image segmentation rules. Pattern Recognition Letters 1:417-422. Mallat, S. G. 1989. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence 11:674-693. Meer, P. and B. Georgescu. 2001. Edge detection with embedded confidence. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(12):1351-1365. Pal, N. R. and S. K. Pal. 1993. A review on image segmentation techniques. Pattern recognition 26(9): 1277-1294. Park, J., and J. M. Keller. 2001. Snake on the watershed. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(10): 1201-1205. Pratt, W. K. 1983. Digital Image Processing. Wiley, New York. Ridler, T. W., and S. Calvard. 1978. Picture thresholding using an iterative selection method. IEEE Trans. on Systems, Man, and Cybernetics SMC-8: 630-632. Sahoo, P. K., S. Soltani, A. K. C. Wong, and Y. C. Chen. 1988. A survey of thresholding techniques. Computer Vision, Graphics and Image Processing 41:233-260. Sapiro, G., and D. L. Ringach. 1996. Anisotropic Diffusion on Multivalued Images with Applications to Color Filtering. IEEE Trans. on Image Processing 5(11): 1582–1586. Shashidhar, N. S., D. S. Jayas, T. G. Crowe, and N. R. Bulley. 1997. Processing of digital image of touching kernels by ellipse fitting. Canadian Agric. Eng. 39(2): 139-142. Shatadal, P., D. S. Jayas, and N. R. Bulley. 1995. Digital image analysis for software separation and classification of touching grains: I. Disconnect algorithm. Transactions of the ASAE 38(2): 635-643. Spann, M., and R. G. Wilson. 1985. A Quad-Tree Approach to Image Segmentation Which Combines Statistical and Spatial Information. Pattern Recognition 18(3/4):257-269. Tsai, W. H. 1985. Moment-preserving thresholding: a new approach. Comput. Vision, Graphics. Image Processing 29: 377-393. Taxt, T., P. J. Flynn, and A. K. Jain. 1989. Segmentation of document images. IEEE Trans. on Pattern Analysis and Machine Intelligence 11:1322-1329. Vincent, L., and P. Soille. 1991. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(6): 583-598. Visen, N. S., N. S. Shashidhar, J. Paliwal, and D. S. Jayas. 2001. Identification and segmentation of occluding groups of grain kernels in a grain sample image. J. Agric. Eng. Res. 79(2): 159-166. Wang, Y. C., and J. J. Chou. 2004. Automatic segmentation of touching rice kernels with active contour model. Transactions of the ASAE 47(5): 1803-1811. Wang, Y. C., and J. J. Chou. 2006. Segmentation of ellipse-like objects in an image with MFA approach. Journal of Agricultural Machinery 15(1): 15-24. (in Chinese) Wilson, R. G., and M. Spann. 1988. Image Segmentation and Uncertainty. Pattern Recognition and Image Processing Series. Research Studies Press Ltd. Xu, C., and J. L. Prince. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing 7(3): 359-363. Yang, F., and Tianzi Jiang. 2001. Cell image segmentation with kernel-based dynamic clustering and an ellipsoidal cell shape model. Journal of Biomedical Informatics. 34: 67-73 Yuen, H. K., J. Illingworth, and J. Kittler. 1989. Detecting partially occluded ellipses using the Hough transform. Image and Vision Computing 7(1): 31-37. Yuen, P. C., Y. Y. Wong, and C. S. Tong. 1996. Contour detection using enhanced snakes algorithm. Electronics Letters 32(3): 202-204. Yun, H. S., W. O. Lee, H. Chung, H. D. Lee, J. R. Son, K. H. Cho, and W. K. Park. 2002. A Computer Vision System for Rice Kernel Quality Evaluation. 2002 ASAE Annual Meeting. Paper number 023130. Zhu, S. C. and A. Yuille. 1996. Region growing: unifying snakes, region growing, and Bayes/MDL for Multiband image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(9): 884-900.; en-US; http://ntur.lib.ntu.edu.tw/handle/246246/52896