-
1Academic Journal
المؤلفون: Gustavo F. Gustavo F., Cynthia Gonzales Castañeda, Diego Espinosa Guerinoni, Cristina Rojas Tubeh
المصدر: Acta Médica Peruana, Vol 24, Iss 3 (2024)
مصطلحات موضوعية: Glicólisis, Cáncer, Oncogenes, Medicine
وصف الملف: electronic resource
-
2Dissertation/ Thesis
المؤلفون: Guix Ràfols, Francesc Xavier
المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut
Thesis Advisors: Muñoz López, Francisco José
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: GAP, free radicals, fibrils, familiar AD, DHAP, cerebral cortex, BACE1, APH-1, antioxidants, amyloid-beta peptide, protein, amyloid precursor, alzheimer's disease, advanced glycation end products, acetylcholine, plaques, peroxinitrite, peròxid d'hidrogen, pèptid beta-amiloide, Pen2, òxid nítric sintasa, òxid nítric, oligomers, nitrotirosinasa, nicastrina, neurona, metilglioxal, malaltia d'alzheimer, hipocamp, glioxalase, glicolisis, helicoidals aparellats, filaments, fibriles, èstres oxidatiu, cortex cerebral, cabdells neurofibrilars, anió superòxid, AD familiar, AD esporàdic, acetilcolina, glycolysis, glyoxalase, hippocampus, hydrogen peroxide, methylglyoxal, neurofibrillary tangles, neuron, nicastrin, nitric oxide, nitric oxide synthase, nitrotyrosination, oxidative stress, pair helical filaments
Time: 616.8
وصف الملف: application/pdf
-
3Academic Journal
المؤلفون: Naranjo Silva, Juan Antonio, Palmay Paredes, Paul Gustavo, Jaramillo Rivadeneira, Kerly Samantha
المصدر: Revista Politécnica; Vol. 53 No. 1 (2024): Revista Politécnica ; 47-56 ; Revista Politécnica; Vol. 53 Núm. 1 (2024): Revista Politécnica ; Revista Politécnica; v. 53 n. 1 (2024): Revista Politécnica ; 2477-8990 ; 1390-0129 ; 10.33333/rp.vol53n1
مصطلحات موضوعية: Chemical Recycling, Glycolysis, Depolymerization, Catalyst Regeneration, poly-(ethylene terephthalate) (PET), Reciclaje químico, Despolimerización, Regeneración de Catalizadores, poli-(tereftalato de etileno) (PET), glicólisis
وصف الملف: application/pdf
Relation: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/1682/650; https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/1682
-
4Academic Journal
المؤلفون: Fernámdez, Giani Egana, Rodríguez Ricard, Mariano
المصدر: Investigación Operacional; Vol. 39 No. 1 (2018): Special Issue: Devoted to the 290th Onomastic of Universidad de La Habana 1728-2018. Dedicado al 290mo Aniversario de Universidad de La Habana 1728-2018 ; Investigación Operacional; Vol. 39 Núm. 1 (2018): Special Issue: Devoted to the 290th Onomastic of Universidad de La Habana 1728-2018. Dedicado al 290mo Aniversario de Universidad de La Habana 1728-2018 ; 2224-5405
مصطلحات موضوعية: non-degenerate Hopf bifurcation, pattern formation, asymptotic expansion, glyco- lysis model, reaction-diffusion, bifurcación de Hopf no degenerada, formación de patrones, desarrollo asintótico, modelo de glicólisis, reacci ́on-difusión
وصف الملف: application/pdf
-
5Academic Journal
المؤلفون: Olmedo, Patricio, Núñez-Lillo, Gerardo, Vidal, Juan, Leiva, Carol, Rojas, Bárbara, Sagredo, Karen, Arriagada, César, Defilippi, Bruno G., Pérez-Donoso, Alonso G., Meneses, Claudio, Carpentier, Sebastien C., Pedreschi, Romina, Campos-Vargas, Reinaldo
المصدر: Food Chemistry
مصطلحات موضوعية: vitis vinifera, metabolomics, proteomics, glycolysis, tca, metabolismo, proteómica, glicólisis
Relation: Olmedo, P.; Núñez-Lillo, G.; Vidal, J.; Leiva, C.; Rojas, B.; Sagredo, K.; Arriagada, C.; Defilippi, B.G.; Pérez-Donoso, A.G.; Meneses, C.; Carpentier, S.; Pedreschi, R.; Campos-Vargas, R. (2023) Proteomic and metabolomic integration reveals the effects of pre-flowering cytokinin applications on central carbon metabolism in table grape berries. Food Chemistry 411: 135498. ISSN: 0308-8146; https://hdl.handle.net/10568/128483; https://doi.org/10.1016/j.foodchem.2023.135498
-
6Dissertation/ Thesis
المؤلفون: Hernández Chinchilla, Josué
المساهمون: Boyacá Mendivelso, Luis Alejandro, Grupo de Investigación en Procesos Químicos y Bioquímicos
مصطلحات موضوعية: 660 - Ingeniería química::661 - Tecnología de químicos industriales, Depolimerización, PET, glicólisis, Polioles poliéster, Poliuretano, Depolymerization, glycolysis, Polyester polyols, Polyurethane
وصف الملف: xxi, 120 páginas; application/pdf
Relation: Achilias, D. S., Redhwi, H. H., Siddiqui, M. N., Nikolaidis, A. K., Bikiaris, D. N., & Karayannidis, G. P. (2010). Glycolytic depolymerization of PET waste in a microwave reactor. Journal of Applied Polymer Science, 118(5), 3066–3073. https://doi.org/10.1002/app.32737; ASTM C518-21. (2021). Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus 1. https://doi.org/10.1520/C0518-10; ASTM D 1621-16. (2023). Standard Test Method for Compressive Properties Of Rigid Cellular Plastics. www.astm.org; ASTM D 1622-20. (2020). Standard Test Method for Apparent Density of Rigid Cellular Plastics. https://doi.org/10.1520/D1622-08; ASTM D 2126-09. (2015). Standard Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging. https://doi.org/10.1520/D2126-09; ASTM D635. (2022). Rate of Burning and or Extent and Time of Burning of Plastics in a Horizontal Position.; ASTM D4274-16. (2016). Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols 1. https://doi.org/10.1520/D4274-16; ASTM D4672-18. (2018). Standard Test Method for Polyurethane Raw Materials: Determination of Water Content of Polyols 1. https://doi.org/10.1520/D4672-18; Bataineh, K. M. (2020). Life-Cycle Assessment of Recycling Postconsumer High-Density Polyethylene and Polyethylene Terephthalate. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/8905431; Chen, F., Wang, G., Shi, C., Zhang, Y., Zhang, L., Li, W., & Yang, F. (2013). Kinetics of glycolysis of poly(ethylene terephthalate) under microwave irradiation. Journal of Applied Polymer Science, 127(4), 2809–2815. https://doi.org/10.1002/app.37608; Chen, J. W., Chen, L. W., & Cheng, W. H. (1999). Kinetics of glycolysis of polyethylene terephthalate with zinc catalyst. Polymer International, 48(9), 885–888. https://doi.org/10.1002/(sici)1097-0126(199909)48:93.0.co;2-t; Clínica Jurídica de Medio Ambiente y Salud Pública. (2021). Situación actual de los plásticos en Colombia y su impacto en el medio ambiente. MASP.; Dinero. (2019, October 12). El negocio del reciclaje del PET: la metamorfosis de las botellas.; Elgegren, M., Tiravanti, G. J., Ortiz, B. A., Otero, M. E., Wagner, F., Cerrón, D. A., & Nakamatsu, J. (n.d.). RECICLAJE QUÍMICO DE DESECHOS PLÁSTICOS a a a CHEMICAL RECYCLING OF PLASTIC WASTES. In Rev Soc Quím Perú (Vol. 78, Issue 2).; Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. In Recycling (Vol. 2, Issue 4). MDPI AG. https://doi.org/10.3390/recycling2040024; Gunter Oertel. (1994). Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties (2nd ed., Vol. 1). Hanser-Gardner Publications.; Jankauskaitė, V., Macijauskas, G., & Lygaitis, R. (2008). Polyethylene Terephthalate Waste Recycling and Application Possibilities: a Review. In MEDŽIAGOTYRA) (Vol. 14, Issue 2).; Kaneyoshi Ashida. (2006). Polyurethane and Related Foams Chemistry and Technology (Taylor & Francis Group, Ed.; 1st ed., Vol. 1).; Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. In Angewandte Chemie - International Edition (Vol. 43, Issue 46, pp. 6250–6284). https://doi.org/10.1002/anie.200400655; Mihail Ionescu. (2005). Chemistry and Technology of Polyols for Polyurethanes (Vol. 1). Rapra Technology Ltd.; Mohammadi, S., Bouldo, M. G., & Enayati, M. (2023). Controlled Glycolysis of Poly(ethylene terephthalate) to Oligomers under Microwave Irradiation Using Antimony(III) Oxide. ACS Applied Polymer Materials, 5(8), 6574–6584. https://doi.org/10.1021/acsapm.3c01071; Paberza, A., Fridrihsone-Girone, A., Abolins, A., & Cabulis, U. (2015). Polyols from recycled polyethylene terephthalate) flakes and rapeseed oil for polyurethane foams. Polimery/Polymers, 60(9), 572–578. https://doi.org/10.14314/polimery.2015.572; PlascticsEurope. (2020). Plásticos-Situación en 2020.; Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., & Sabeen, A. H. (2019). Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. In Journal of Cleaner Production (Vol. 225, pp. 1052–1064). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.04.019; Sheel, A., & Pant, D. (2019). Chemical Depolymerization of PET Bottles via Glycolysis. In Recycling of Polyethylene Terephthalate Bottles (pp. 61–84). Elsevier. https://doi.org/10.1016/b978-0-12-811361-5.00004-3; Shukla, S. R., & Harad, A. M. (2006). Aminolysis of polyethylene terephthalate waste. Polymer Degradation and Stability, 91(8), 1850–1854. https://doi.org/10.1016/j.polymdegradstab.2005.11.005; Shukla, S. R., & Kulkarni, K. S. (2002). Depolymerization of poly(ethylene terephthalate) waste. Journal of Applied Polymer Science, 85(8), 1765–1770. https://doi.org/10.1002/app.10714; Simón, D., Borreguero, A. M., de Lucas, A., & Rodríguez, J. F. (2018). Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. In Waste Management (Vol. 76, pp. 147–171). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2018.03.041; Statista Research Department. (2023, January 25). Production capacity of polyethylene terephthalate worldwide from 2014 to 2024. https://www.statista.com/statistics/242764/global-polyethylene-terephthalate-production-capacity/; Tayone, R. F., Silagan, M. S., Rose, E., Igdon, M. B., Edwin, E., Ortiz, R. R., & Ong, K. P. (2016). MICROWAVE-ASSISTED DEPOLYMERIZATION OF POST-CONSUMER PET BOTTLES FOR THE PRODUCTION OF RIGID THERMAL INSULATING POLYURETHANE FOAMS. In International Journal of Advances in Science Engineering and Technology (Vol. 4, Issue 2).; Thomson, T. (Tim). (2005). Polyurethanes as specialty chemicals : principles and applications. CRC Press.; Xin, J., Zhang, Q., Huang, J., Huang, R., Jaffery, Q. Z., Yan, D., Zhou, Q., Xu, J., & Lu, X. (2021). Progress in the catalytic glycolysis of polyethylene terephthalate. Journal of Environmental Management, 296. https://doi.org/10.1016/j.jenvman.2021.113267; https://repositorio.unal.edu.co/handle/unal/86460; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
7Academic Journal
المؤلفون: M. A. Del Ángel Hernández, A. B. Morales Cepeda, H. E. De Alva Salazar, J. L. Rivera Armenta
المصدر: Coloquio de Investigación Multidisciplinaria 2020, 8(1), 1400-1405, (2020-10-01)
مصطلحات موضوعية: reciclaje, esterificación, glicolisis, BHET, PET
Relation: https://zenodo.org/communities/cim; https://doi.org/10.5281/zenodo.6387104; https://doi.org/10.5281/zenodo.6387105; oai:zenodo.org:6387105
-
8Academic Journal
مصطلحات موضوعية: Adipose Tissue, Hypothalamus, Liver, Lipid Metabolism, Glycolysis, Signal Transduction, Animals, Glucose, Eating, Homeostasis, Humans, Gastric Mucosa, Ghrelin, ghrelina, animales, mucosa gástrica, glucosa, glicólisis, tejido adiposo, transducción de señales, metabolismo lipídico, hígado, humanos, hipotálamo, ingestión de alimentos, CHUS, IDIS
Relation: https://www.ncbi.nlm.nih.gov/pubmed/32784967; http://hdl.handle.net/20.500.11940/16725; 40220
-
9Academic JournalPreanalytical issues related to routine and diagnostic glucose tests: Results from a survey in Spain
المؤلفون: García del Pino Castro, Isabel, Bauça, Josep M, Gómez, Carolina, Caballero, Andrea, Llopis, María Antonia, Ibarz, Mercedes, Martínez, Débora, Ventura, Montserrat, Marzana, Itziar, Puente, Juan J, Segovia, Marta, Salas, Paloma, Gómez-Rioja, Rubén
مصطلحات موضوعية: Humans, Blood Glucose, Glycolysis, Diabetes Mellitus, Glucose, Blood Specimen Collection, extracción de muestras sanguíneas, glucosa, glicólisis, glucosa sanguínea, humanos, CHUAC
Relation: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904967/pdf/bm-30-1-010704.pdf; https://www.ncbi.nlm.nih.gov/pubmed/31839724; http://hdl.handle.net/20.500.11940/16268; 36134
-
10Academic Journal
المؤلفون: Ijurko Valeta, Carla, Romo González, Marta, García-Calvo, Clara, Sardina, José Luis, Sánchez Bernal, María Carmen, Sánchez Yagüe, Jesús, Elena-Herrmann, Bénédicte, Villaret, Joran, Garrel, Catherine, Mondet, Julie, Mossuz, Pascal, Hernández Hernández, Ángel
مصطلحات موضوعية: Acute myeloid leukaemia, NADPH oxidase, NOX2, CYBB, Metabolism, Leukemia, Reactive Oxygen Species, Glycolysis, Humans, humanos, leucemia, especies reactivas de oxígeno, glicólisis
Relation: https://doi.org/10.1016/j.freeradbiomed.2023.10.013; Angel Hernández-Hernández lab is supported by Spanish Government (PID2020-117692RB-I00), Regional Government of Castile & Leon (SA077P20) and Ramón Areces Foundation (CIV17A2822). Jose Luis Sardina lab is supported by Instituto de Salud Carlos III (CP19/00176). NMR analyses were carried out by the GEMELI platform, supported by the program IRICE from the Auvergne-Rhône-Alpes region and MSDAvenir funds (project ERiCAN).; Ijurko, C., Romo-González, M., García-Calvo, C., Sardina, J. L., Sánchez-Bernal, C., Sánchez-Yagüe, J., . & Hernández-Hernández, Á. (2023). NOX2 control over energy metabolism plays a role in acute myeloid leukaemia prognosis and survival. Free Radical Biology and Medicine, 209, 18-28. https://doi.org/10.1016/j.freeradbiomed.2023.10.013; http://hdl.handle.net/10366/155149
-
11Conference
المؤلفون: Fuentes, Cynthia Analía, Gallegos, María Victoria, Moyano, Darío Agustín, Peluso, Miguel Andrés, Cortizo, María Susana, Sambeth, Jorge Enrique
مصطلحات موضوعية: Ciencias Exactas, Química, polietilentereftalato, glicólisis, baterías agotadas, química verde
وصف الملف: application/pdf
-
12Conference
المؤلفون: Fuentes, Cynthia Analía, Marcoccia, Carla, Moyano, Darío Agustín, Peluso, María Leticia, Sambeth, Jorge Enrique
مصطلحات موضوعية: Química, Polietilentereftalato, Glicolisis, Reciclado, Baterías agotadas
وصف الملف: application/pdf; 338-343
-
13Academic Journal
المؤلفون: González Fernández, Lauro, Sánchez-Calabuig, M.J., Alves, M.G., Oliveira, P.F., Macedo, S., Gutiérrez-Adán, A., Rocha, Afonso Duarte dos Reis, Macías García, Beatriz
المساهمون: Universidad de Extremadura. Grupo de investigación "Señalización Intracelular y Tecnología de la Reproducción" (SINTREP), Universidad de Extremadura. Departamento de Fisiología, Universidade do Porto. Portugal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Centro de Cirugía de Mínima Invasión Jesús Usón. Cáceres
مصطلحات موضوعية: Maduración in vitro, Glicólisis, Resonancia magnética nuclear, Caballo, In vitro maturation, Glycolysis, Nuclear magnetic resonance, Horse, 3104.11 Reproducción
وصف الملف: 25 p.; application/pdf
Relation: http://www.publish.csiro.au/rd/RD16441; https://doi.org/10.1071/RD16441; http://hdl.handle.net/10662/6856; Reproduction, Fertility and Development; 297; 306; 30
-
14Academic Journal
المؤلفون: Simón Herrero, Diego, Lucas Martínez, Antonio de, Rodríguez Romero, Juan Francisco, Borreguero Simón, Ana María
مصطلحات موضوعية: Polyurethane, High resilience, Glycolysis, Dispersion polyol, Crude glycerol, Poliuretano, Alta resiliencia, Glicólisis, Polio de dispersión, Glicerol crudo
وصف الملف: application/pdf
Relation: Polymer Degradation and Stability. 2016, 133, 119-130.; http://hdl.handle.net/10578/29979
-
15Dissertation/ Thesis
المؤلفون: Arroyo Ruiz, Antonio Rufino
المساهمون: Beltrán de Heredia Rentería, Juan, Rodríguez López, Mario, Universidad de Valladolid. Facultad de Medicina
مصطلحات موضوعية: Páncreas - Cirugía, Procedimiento de Whipple, Tumores de cabeza de páncreas, Morbilidad postoperatoria, Hipoxia tisular, Glicolisis anaerobia, Duodenopancreatectomía, Pancreas, 3213 Cirugía
وصف الملف: application/pdf
Relation: https://uvadoc.uva.es/handle/10324/54786
-
16Dissertation/ Thesis
المؤلفون: Ayalde Valderrama, Manuela
المساهمون: Salcedo Galán, Felipe
مصطلحات موضوعية: Reciclaje químico, Glicólisis, PET, BHET, FTIR, Ingeniería
وصف الملف: 60 páginas; application/pdf
Relation: [1] A. L. Andrady and M. A. Neal, Applications and societal benefits of plastics, Philos. Trans. R. Soc. , 2009, doi:10.1098/rstb.2008.0304.; [2] P. Clunies-Ross, Plastics in the Environment, R. Soc. Te Ap¿rangi, vol. 35, no. 4, pp. 230-230, 2019, doi:10.2307/4444330.; [3] ASTM D883, Standard Terminology relating to Plastics, 2020.; [4] N. L. Thomas, J. Clarke, A. R. McLauchlin, and S. G. Patrick, Oxo-degradable plastics: Degradation, environmental impact and recycling, Proc. Inst. Civ. Eng. Waste Resour. Manag., vol. 165, no. 3, pp. 133-140, Aug. 2012, doi:10.1680/WARM.11.00014.; [5] L. Filiciotto and G. Rothenberg, Biodegradable Plastics: Standards, Policies, and Impacts, ChemSusChem, vol. 14, no. 1, pp. 56-72, 2021, doi:10.1002/cssc.202002044.; [6] V. Menicagli, E. Balestri, F. Vallerini, A. Castelli, and C. Lardicci, Adverse effects of nonbiodegradable and compostable plastic bags on the establishment of coastal dune vegetation: First experimental evidences, Environ. Pollut., vol. 252, pp. 188-195, 2019, doi:10.1016/j.envpol.2019.05.108.; [7] E. Balestri, V. Menicagli, V. Ligorini, S. Fulignati, A. M. Raspolli Galletti, and C. Lardicci, Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test, Ecol. Indic., vol. 102, no. November 2018, pp. 569-580, 2019, doi:10.1016/j.ecolind.2019.03.005.; [8] A. D5338, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions , Incorporating thermophilic temperatures, vol. 15, no. Reapproved, pp. 4-9, 2021, doi:10.1520/D5338-15R21.Copyright.; [9] T. Thiounn and R. C. Smith, Advances and approaches for chemical recycling of plastic waste, J.Polym. Sci., vol. 58, no. 10, pp. 1347-1364, May 2020, doi:10.1002/POL.20190261.; [10] J. F. Bermudez, A. M. Montoya-Ruiz, and J. F. Saldarriaga, Assessment of the current situation of informal recyclers and recycling: Case study Bogotá, Sustain., vol. 11, no. 22, 2019, doi:10.3390/su11226342.; [11] C. J. de M. A. Y. salud publica (MASP) Green Peace, Situación actual de Colombia y su impacto en el medio ambiente, Green Peace, p. 14, 2019, [Online]. Available: http://greenpeace.co/pdf/2019/gp_informe_plasticos_colombia_02.pdf.; [12] M. Filella, Antimony and PET bottles: Checking facts, Chemosphere, vol. 261, p. 127732, 2020, doi:10.1016/j.chemosphere.2020.127732.; [13] C. W. Tan et al., Modelling of the injection stretch blow moulding of PET containers via a Pressure-Volume-time (PV-t) thermodynamic relationship, Int. J. Mater. Form., vol. 1, no. SUPPL. 1, pp. 799-802, 2008, doi:10.1007/s12289-008-0296-5.; [14] PlascticEurope-Association of Plastics Manufactures, Plastics - the Facts 2020, PlasticEurope, pp. 1-64, 2020, [Online]. Available: https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020.; [15] R. Geyer, J. R. Jambeck, and K. L. Law, Production, use, and fate of all plastics ever made, Sci. Adv., vol. 3, no. 7, pp. 19-24, 2017.; [16] J. Jiang et al., From plastic waste to wealth using chemical recycling: A review, J. Environ. Chem. Eng., vol. 10, no. 1, p. 106867, Feb. 2022, doi:10.1016/J.JECE.2021.106867.; [17] M. Shen et al., Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant, Sci. Total Environ., vol. 779, p. 146528, Jul. 2021, doi:10.1016/J.SCITOTENV.2021.146528.; [18] C. Bach, X. Dauchy, M. C. Chagnon, and S. Etienne, Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed, Water Res., vol. 46, no. 3, pp. 571-583, 2012, doi:10.1016/j.watres.2011.11.062.; [19] A. C. Espinosa-López et al., Microwave-assisted esterification step of poly(ethylene terephthalate) (PET) synthesis through ethylene glycol and terephthalic acid, Polym. Bull., vol. 76, no. 6, pp. 2931-2944, 2019, doi:10.1007/s00289-018-2521-9.; [20] A. L. Jadhav, R. S. Malkar, and G. D. Yadav, Zn-and Ti-Modified Hydrotalcites for Transesterification of Dimethyl Terephthalate with Ethylene Glycol: Effect of the Metal Oxide and Catalyst Synthesis Method, ACS Omega, vol. 5, no. 5, pp. 2088-2096, 2020, doi:10.1021/acsomega.9b02230.; [21] A. Villalobos Hernández, Estudio del agrietamiento por tensión ambiental de envases de PET, Centro de investigación en química aplicada, 2018.; [22] A. C. Espinosa López, Estudio del proceso de polimerización por microondas del polietilentereftalato y del nanohíbrido PET/TiO2, Centro de investigación en química aplicada,2018.; [23] F. I. Chowdhury, Sustainable resin systems for polymer composites, in Advances in Sustainable Polymer Composites, Woodhead Publishing, 2021, pp. 89-108.; [24] K. Ghosal and C. Nayak, Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions - hope vs . hype, Mater. Adv., 2022, doi:10.1039/d1ma01112j.; [25] A. M. Al-Sabagh, F. Z. Yehia, G. Eshaq, A. M. Rabie, and A. E. ElMetwally, Greener routes for recycling of polyethylene terephthalate, Egypt. J. Pet., vol. 25, no. 1, pp. 53-64, 2016, doi:10.1016/j.ejpe.2015.03.001.; [26] I. Vollmer et al., Beyond Mechanical Recycling:Giving New Life to Plastic Waste, doi:10.1002/anie.201915651.; [27] M. Saad Qureshi et al., Pyrolysis of plastic waste: Opportunities and challenges, 2020, doi:10.1016/j.jaap.2020.104804.; [28] A. R. Rahimi and J. M. Garciá, Chemical recycling of waste plastics for new materials production, Nat. Rev. Chem., vol. 1, Jan. 2017, doi:10.1038/S41570-017-0046.; [29] M. Han, Depolymerization of PET Bottle via Methanolysis and Hydrolysis, Recycl. Polyethyl. Terephthalate Bottles, pp. 85-108, Jan. 2019, doi:10.1016/B978-0-12-811361-5.00005-5.; [30] S. D. Mancini and M. Zanin, Post consumer pet depolymerization by acid hydrolysis, Polym. - Plast. Technol. Eng., vol. 46, no. 2, pp. 135-144, Feb. 2007, doi:10.1080/03602550601152945.; [31] M. J. Kang, H. J. Yu, J. Jegal, H. S. Kim, and H. G. Cha, Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst, Chem. Eng. J., vol. 398, no. May, p.125655, 2020, doi:10.1016/j.cej.2020.125655.; [32] G. P. Karayannidis, A. P. Chatziavgoustis, and D. S. Achilias, Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis, Adv. Polym. Technol., vol. 21, no. 4, pp. 250-259, Dec. 2002, doi:10.1002/ADV.10029.; [33] S. R. Shukla and A. M. Harad, Aminolysis of polyethylene terephthalate waste, Polym. Degrad. Stab., vol. 91, no. 8, pp. 1850-1854, Aug. 2006, doi:10.1016/J.POLYMDEGRADSTAB.2005.11.005.; [34] N. Tarannum et al., Chemical depolymerization of recycled PET to oxadiazole and hydrazone derivatives: Synthesis, characterization, molecular docking and DFT study, J. King Saud Univ. - Sci., vol. 34, no. 1, p. 101739, 2022, doi:10.1016/j.jksus.2021.101739.; [35] T. Spychaj, E. Fabrycy, S. Spychaj, and M. Kacperski, Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate) %7C Request PDF, J. Mater. Cycles Waste Manag., 2001, Accessed: May 18, 2022. [Online]. Available: https://www.researchgate.net/publication/225105600_Aminolysis_and_aminoglycolysis_of_was te_polyethylene_terephthalate.; [36] P. Gupta and S. Bhandari, Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis, Recycl. Polyethyl. Terephthalate Bottles, pp. 109-134, Jan. 2019, doi:10.1016/B978- 0-12-811361-5.00006-7.; [37] A. Mittal, R. K. Soni, K. Dutt, and S. Singh, Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis, J. Hazard. Mater., vol. 178, no. 1-3, pp. 390-396, Jun. 2010, doi:10.1016/J.JHAZMAT.2010.01.092.; [38] Z. T. Laldinpuii et al., Methanolysis of PET Waste Using Heterogeneous Catalyst of Bio-waste Origin, J. Polym. Environ., vol. 30, no. 4, pp. 1600-1614, Apr. 2022, doi:10.1007/S10924-021- 02305-0.; [39] D. D. Pham and J. Cho, Low-energy catalytic methanolysis of poly(ethyleneterephthalate), Green Chem., vol. 23, no. 1, pp. 511-525, Jan. 2021, doi:10.1039/D0GC03536J.; [40] S. Lalhmangaihzuala, Z. Laldinpuii, C. Lalmuanpuia, and K. Vanlaldinpuia, Glycolysis of poly(Ethylene terephthalate) using biomass-waste derived recyclable heterogeneous catalyst, Polymers (Basel)., vol. 13, no. 1, pp. 1-13, 2021, doi:10.3390/polym13010037.; [41] C. T. Pham et al., The advancement of bis(2-hydroxyethyl)terephthalate recovered from postconsumer poly(ethylene terephthalate) bottles compared to commercial polyol for preparation of high performance polyurethane, J. Ind. Eng. Chem., vol. 93, pp. 196-209, Jan. 2021, doi:10.1016/J.JIEC.2020.09.024.; [42] G. Guclu, A. Kasgoz, S. Osbudak, S. Ozgumus, and M. Orbay, Glycolysis of poly(ethylene terephthalate) wastes in xylene. Journal of Applied Polymer Science, 69(12), 2311-2319 %7C 10.1002/(sici)1097-4628(19980919)69:123.0.co;2-b,¿ 1997, Accessed: May 19,2022. [Online]. Available: https://sci-hub.se/https://doi.org/10.1002/(SICI)1097- 4628(19980919)69:12%3C2311::AID-APP2%3E3.0.CO;2-B.; [43] M. Imran, B. K. Kim, M. Han, B. G. Cho, and D. H. Kim, Sub-and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET), Polym. Degrad. Stab., vol. 95, no. 9, pp. 1686-1693, 2010, doi:10.1016/j.polymdegradstab.2010.05.026.; [44] N. D. Pingale and S. R. Shukla, Microwave assisted ecofriendly recycling of poly (ethylene terephthalate) bottle waste, Eur. Polym. J., vol. 44, no. 12, pp. 4151-4156, Dec. 2008, doi:10.1016/J.EURPOLYMJ.2008.09.019.; [45] L. Bartolome, M. Imran, B. Gyoo, W. A., and D. Hyun, Recent Developments in the Chemical Recycling of PET, Mater. Recycl. - Trends Perspect., no. March, 2012, doi:10.5772/33800.; [46] H. Wang, Z. Li, Y. Liu, X. Zhang, and S. Zhang, Degradation of poly(ethylene terephthalate) using ionic liquids, Green Chem., vol. 11, no. 10, pp. 1568-1575, Oct. 2009, doi:10.1039/B906831G.; [47] G. Park, L. Bartolome, K. G. Lee, S. J. Lee, D. H. Kim, and T. J. Park, One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate), Nanoscale, vol. 4, no. 13, pp. 3879-3885, Jul. 2012, doi:10.1039/C2NR30168G.; [48] G. Editors et al., Process Simulation of Bis (2-hydroxyethyl) terephthalate and Its Recovery Using Two-stage Evaporation Systems, Chem. Eng. Trans., vol. 63, 2018, doi:10.3303/CET1863110.; [49] T. Yoshioka, N. Okayama, and A. Okuwaki, Kinetics of Hydrolysis of PET Powder in Nitric Acid by a Modified Shrinking-Core Model, Ind. Eng. Chem. Res., vol. 37, no. 2, pp. 336-340, 1998, doi:10.1021/IE970459A.; [50] S. Kandasamy, A. Subramaniyan, G. Ramasamy, A. R. Ahamed, N. Manickam, and B. Dhandapani, Study of alkaline hydrolysis of post consumed polyethylene terephthalate waste, AIP Conf. Proc., vol. 2240, May 2020, doi:10.1063/5.0011020.; [51] L. M. Labban, M. J. Mouzik, and A. D. A. S. Othman, Comparison of Sodium and Potassium Content in Fresh Produce and their Contribution to The Daily Intake, ADR journals, 2017, Accessed: May 27, 2022. [Online]. Available: https://www.researchgate.net/publication/322635434_Comparison_of_Sodium_and_Potassium _Content_in_Fresh_Produce_and_their_Contribution_to_The_Daily_Intake.; [52] A. H. Yasir, A. S. Khalaf, and M. N. Khalaf, Preparation and Characterization of Oligomer from Recycled PET and Evaluated as a Corrosion Inhibitor for C-Steel Material in 0.1 M HCl, Open J. Org. Polym. Mater., vol. 07, no. 01, pp. 1-15, 2017, doi:10.4236/OJOPM.2017.71001.; [53] A. A. Syariffuddeen, A. Norhafizah, and A. Salmiaton, Glycolysis Of Poly (Ethylene Terephthalate) (PET) Waste Under Conventional Convection-Conductive Glycolysis, Accessed: May 27, 2022. [Online]. Available: www.ijert.org.; [54] Y. Kong and J. N. Hay, Multiple melting behaviour of poly(ethylene terephthalate), Polymer (Guildf)., vol. 44, no. 3, pp. 623-633, Dec. 2002, doi:10.1016/S0032-3861(02)00814-5.; [55] C. V. G. Silva et al., PET glycolysis optimization using ionic liquid [Bmin]ZnCl 3 as catalyst and kinetic evaluation, Polimeros, vol. 28, no. 5, pp. 450-459, 2018, doi:10.1590/0104-1428.00418.; http://hdl.handle.net/1992/60421; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
الاتاحة: http://hdl.handle.net/1992/60421
-
17Book
المصدر: instname:Universidad del Rosario
مصطلحات موضوعية: Bioquímica, Lípidos-Metabolismo, Hidratos de carbono, Biología, Aminoácidos, Bioenergética, Células, Glicolisis, Hidratos de carbono::Metabolismo, Lípidos::Metabolismo, Proteínas, QU 4 G245b2 2a. Ed
وصف الملف: application/pdf
Relation: 958-8298-90-0; http://repository.urosario.edu.co/handle/10336/859
-
18
المساهمون: Amaya Pinos, Jorge Braulio
مصطلحات موضوعية: DESPOLIMERIZACIÓN, POLIETILENO - GLICÓLISIS, ALMIDÓN DE PLÁTANO, ÓXIDO DE ZINC, BHET - BIODEGRADACIÓN, INGENIERÍA AMBIENTAL
وصف الملف: application/pdf
-
19Academic Journal
المؤلفون: Bonvento, Gilles, Bolaños Hernández, Juan Pedro
مصطلحات موضوعية: Astrocyte-neuron metabolic, NAD, Pyruvate Dehydrogenase Complex, Glucose, Glycolysis, Animals, Carbon Dioxide, Citrate (si)-Synthase, Carbon Isotopes, Fatty Acids, Lactates, Pyruvates, Mice, citrato (si)-sintasa, ácidos grasos, lactatos, animales, ratones, isótopos del carbono, piruvatos, dióxido de carbono, glucosa, glicólisis, complejo de la piruvato deshidrogenasa
Relation: https://doi.org/10.1016/j.cmet.2021.07.006; PID2019-105699RB-I00; Bonvento, G., & Bolanos, J. P. (2021). Astrocyte-neuron metabolic cooperation shapes brain activity. Cell metabolism, 33(8), 1546-1564. https://doi.org/10.1016/j.cmet.2021.07.006; http://hdl.handle.net/10366/154488; PMID: 34348099
-
20Dissertation/ Thesis
المؤلفون: Olmo Sanz, Joane del
المساهمون: Martínez Chantar, María L., Goikoetxea-Usandizaga, Naroa, Iruzubieta Coz, Paula, Universidad de Cantabria
مصطلحات موضوعية: Carcinoma hepatocelular (CHC), Mitocondria, Metabolismo, Fosforilación oxidativa (OXPHOS), Glicólisis, Proliferación, Migración, Proteína J controlada por la metilación (MCJ), Especies reactivas de oxígeno (ROS)
Relation: https://hdl.handle.net/10902/33328
الاتاحة: https://hdl.handle.net/10902/33328