يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"geochemistry of diamond satellite minerals"', وقت الاستعلام: 0.30s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The study was supported by the Ministry of Science and Higher Education of the Russian Federation on state assignments IGM SB RAS, Novosibirsk (projects 122041400193-7 and 122041400237-8), DPMGI SB RAS (FUFG-2024-0007 project), Yakutsk, GI SB RAS, Ulan-Ude, and under support of Russian Science Foundation (grants 23-63-10017, 24-27-00411)., Исследование выполнено при поддержке Минобрнауки РФ по государственным заданиям ИГМ СО РАН, г. Новосибирск (проекты 122041400193-7 и 122041400237-8), ИГАБМ СО РАН (проект FUFG-2024-0007), г. Якутск, ГИ СО РАН, г. Улан-Удэ, и при поддержке Российского научного фонда (гранты 23-63-10017, 24-27-00411).

    المصدر: Geodynamics & Tectonophysics; Том 15, № 5 (2024); 0782 ; Геодинамика и тектонофизика; Том 15, № 5 (2024); 0782 ; 2078-502X

    وصف الملف: application/pdf

    Relation: https://www.gt-crust.ru/jour/article/view/1918/846; Afanasiev V.P., Ashchepkov I.V., Verzhak V.V., O’Brien H., Palessky S.V., 2013. PT Conditions and Trace Element Variations of Picroilmenites and Pyropes from Placers and Kimberlites in the Arkhangelsk Region, NW Russia. Journal of Asian Earth Sciences 70–71, 45–63. https://doi.org/10.1016/j.jseaes.2013.03.002.; Afanasiev V.P., Pokhilenko N.P., 2022. Approaches to the Diamond Potential of the Siberian Craton: A New Paradigm. Ore Geology Reviews 147, 104980. https://doi.org/10.1016/j.oregeorev.2022.104980.; Agee C.B., 1998. Crystal-Liquid Density Inversions in Terrestrial and Lunar Magmas. Physics of the Earth and Planetary Interiors 107 (1–3), 63–74. https://doi.org/10.1016/S0031-9201(97)00124-6.; Allan P., 2024. Major Element Indicator Mineral Chemistry of the Lulo Kimberlite Province, Lunda Norte, Angola. In: Extended Abstracts of the 12th International Kimberlite Conference (July 8–12, 2024, Yellowknife). 12IKC-123. https://doi.org/10.29173/ikc4137.; Ashchepkov I., Logvinova A., Spetsius Z., Downes H., 2023. Thermobarometry of Diamond Inclusions: Mantle Structure and Evolution beneath Archean Cratons and Mobile Belts Worldwide. Geosystems and Geoenvironment 2 (2), 10056. https://doi.org/10.1016/j.geogeo.2022.100156.; Ащепков И.В. Программа мантийных термометров барометров, использование: реконструкции и калибровки PT методов // Вестник Отделения наук о Земле РАН. 2011. № 3. NZ6008. https://doi.org/10.2205/2011NZ000138.; Ashchepkov I.V., Ntaflos T., Logvinova A.M., Spetsius Z.V., Vladykin N.V., 2017. Monomineral Universal Clinopyroxene and Garnet Barometers for Peridotitic, Eclogitic and Basaltic Systems. Geoscience Frontiers 8 (4), 775–795. https://doi.org/10.1016/j.gsf.2016.06.012.; Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Kostrovitsky S.I., Afanasiev V.P., Pokhilenko L.N., Kuligi S.S. et al., 2010. Structure and Evolution of the Lithospheric Mantle beneath Siberian Craton, Thermobarometric Study. Tectonophysics 485 (1–4), 17–41. https://doi.org/10.1016/j.tecto.2009.11.013.; Бабушкина С.А. Вещественные, петрологические и минералогические особенности кимберлитов в связи с ревизией геохронологических данных (на примере трубки Малокуонамская, Якутия) // «Геология алмазов – настоящее и будущее». Воронеж: Воронежский государственный университет, 2005. C. 725–732.; Bowen D.C., Ferraris R.D., Palmer C.E., Ward J.D., 2009. On the Unusual Characteristics of the Diamonds from Letšengla-Terae Kimberlites, Lesotho. Lithos 112 (2), 767–774. https://doi.org/10.1016/j.lithos.2009.04.026.; Brey G.P., Köhler T., 1990. Geothermobarometry in Four-Phase Lherzolites. II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology 31 (6), 1353–1378. https://doi.org/10.1093/petrology/31.6.1353.; Chatterjee A., Chalapathi Rao N.V., Pandey R., Pandey A., 2023. Mantle Transition Zone-Derived Eclogite Xenoliths Entrained in a Diamondiferous Mesoproterozoic (~1.1 Ga) Kimberlite from the Eastern Dharwar Craton, India: Evidence from a Coesite, K-Omphacite, and Majoritic Garnet Assemblage. Geological Magazine 160 (5), 874–887. https://doi.org/10.1017/S0016756822001315.; Chepurov A.I., Sonin V.M., Zhimulev E.I., Chepurov A.A., 2020. Preservation Conditions of CLIPPIR Diamonds in the Earth’s Mantle in a Heterogeneous Metal–Sulphide–Silicate Medium (Experimental Modeling). Journal of Mineralogical and Petrological Sciences 115 (3), 236–246. https://doi.org/10.2465/jmps.190818.; Chinn I., 2024. Deciphering the History of CLIPPIR Diamonds from Their Morphology and Surface Features. In: Extended Abstracts of the 12th International Kimberlite Conference (July 8–12, 2024, Yellowknife). 12IKC-4202. https://doi.org/10.29173/ikc4202.; Collerson K.D., Williams Q., Ewart A.E., Murphy D.T., 2010. Origin of HIMU and EM-1 Domains Sampled by Ocean Island Basalts, Kimberlites and Carbonatites: The Role of CO 2- Fluxed Lower Mantle Melting in Thermochemical Upwellings. Physics of the Earth and Planetary Interiors 181 (3–4), 112–131. https://doi.org/10.1016/j.pepi.2010.05.008.; Daver L., Bureau H., Boulard E., Gaillou E., Cartigny P., Pinti D.L., Belhadj O., Guignot N., Foy E., Estèv I., Baptiste B., 2022. From the Lithosphere to the Lower Mantle: An AqueousRich Metal-Bearing Growth Environment to Form Type Iib Blue Diamonds. Chemical Geology 613, 121163. https://doi.org/10.1016/j.chemgeo.2022.121163.; Dawson J.B., Stephens W.E., 1975. Statistical Classification of Garnets from Kimberlites and Xenoliths. The Journal of Geology 83 (5), 589–607. https://doi.org/10.1086/628143.; Foley S.F., 2011. A Reappraisal of Redox Melting in the Earth’s Mantle as a Function of Tectonic Setting and Time. Journal of Petrology 52 (7–8), 1363–1391. https://doi.org/10.1093/petrology/egq061.; Гаранин В.К., Кудрявцева Г.П., Марфунин А.С., Михайличенко О.А. Включения в алмазе и алмазоносные породы. М.: Изд-во МГУ, 1991. 240 с.; Gasparik T., 2002. Experimental Investigation of the Origin of Majoritic Garnet Inclusions in Diamonds. Physics and Chemistry of Minerals 29, 170–180. https://doi.org/10.1007/s00269-001-0223-5.; Граханов С.А., Голобурдина М.Н., Иванов А.С., Ащепков И.В. Минералого-петрографическая характеристика алмазоносных образований Булкурской антиклинали, Республика Саха (Якутия) // Региональная геология и металлогения. 2024. № 98. С. 41–63.; Граханов С.А., Зарукин Р.А., Богуш И.Н., Ядренкин А.В. Открытие верхнетриасовых россыпей алмазов в акватории Оленёкского залива моря Лаптевых // Отечественная геология. 2009. №. 1. С. 53–61.; Grakhanov S.A., Zinchuk N.N., Sobolev N.V., 2015. The Age of Predictable Primary Diamond Sources in the Northeastern Siberian Platform. Doklady Earth Sciences 465, 1297– 1301. https://doi.org/10.1134/S1028334X15120193.; Griffin W.L., Fisher N.I., Friedman J., Ryan C.G., O’Reilly S.Y., 1999a. Cr-Pyrope Garnets in the Lithospheric Mantle. I. Compositional Systematics and Relations to Tectonic Setting. Journal of Petrology 40 (5), 679–704. https://doi.org/10.1093/petroj/40.5.679.; Griffin W.L., O’Reilly S.Y., 2007. Cratonic Lithospheric Mantle: Is Anything Subducted? Episodes 30 (1), 43–53. https://doi.org/10.18814/epiiugs/2007/v30i1/006.; Griffin W.L., Ryan C.G., Kaminsky F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P., 1999b. The Siberian Lithosphere Traverse: Mantle Terranes and the Assembly of the Siberian Craton. Tectonophysics 310 (1–4), 1–35. https://doi.org/10.1016/S0040-1951(99)00156-0.; Gu T., Pamato M.G., Novella D., Alvaro M., Fournelle J., Brenker F.E., Wang W., Nestola F., 2022. Hydrous Peridotitic Fragments of Earth's Mantle 660 km Discontinuity Sampled by a Diamond. Nature Geoscience 15, 950–954. https://doi.org/10.1038/s41561-022-01024-y.; Gudmundsson G., Wood B.J., 1995. Experimental Tests of Garnet Peridotite Oxygen Barometry. Contributions to Mineralogy and Petrology 119, 56–67. https://doi.org/10.1007/BF00310717.; Gurney J., Moore R., 1991. Geochemical Correlations between Kimberlitic Indicator Minerals and Diamonds as Applied to Exploration. In: Extended Abstracts of the Fifth International Kimberlite Conference (June, 1991, Araxá, Brazil). Vol. 5. CPRM, p. 125–126. https://doi.org/10.29173/ikc2486.; Иванов А.С. Метод расчета минеральных парагенезисов в кимберлитах // Математические исследования в естественных науках: Материалы XIII Всероссийской (с международным участием) научной школы (17–18 октября, 2016 г.). Апатиты, 2016. С. 173–182.; Иванов А.С. Пузырьковые диаграммы состава пиропов // Геология и минеральносырьевые ресурсы северо-востока России: Материалы X Всероссийской научно-практической конференции с международным участием (08–10 апреля 2020 г.). Якутск: Изд-во СВФУ, 2020. C. 343–346.; Калашникова Т.В., Соловьева Л.В., Костровицкий С.И. Геохимические характеристики эклогитов и клинопироксенитов из кимберлитовых трубок Сибирского кратона // Петрология и геодинамика геологических процессов: Материалы XIII Всероссийского петрографического совещания (с участием зарубежных ученых) (06‒13 сентября 2021 г.). Иркутск: Изд-во Института географии им. В.Б. Сочавы СО РАН, 2021. Т. 2. С. 10–12.; Kalra H., Dongre A., Vyas S., 2024. On the Possible Primary Sources of Koh-i-Noor and Other Golkonda Diamonds. Journal of Earth System Science 133, 51. https://doi.org/10.1007/s12040-024-02260-z.; Kaminsky F., 2012. Mineralogy of the Lower Mantle: A Review of "Super-Deep" Mineral Inclusions in Diamond. Earth-Science Reviews 110 (1–4), 127–147. https://doi.org/10.1016/j.earscirev.2011.10.005.; Kaminsky F.V., Belousova E.A., 2009. Manganoan Ilmenite as Kimberlite/Diamond Indicator Mineral. Russian Geology and Geophysics 50 (12), 1212–1220. https://doi.org/10.1016/j.rgg.2009.11.019.; Kargin A.V., 2021. Multistage Mantle Metasomatism During the Generation of Kimberlite Melts: Evidence from Mantle Xenoliths and Megacrysts of the Grib Kimberlite, Arkhangelsk, Russia. Petrology 29, 221–245. https://doi.org/10.1134/S0869591121030024.; Kargin A.V., Golubeva Y.Y., 2017. Geochemical Typification of Kimberlite and Related Rocks of the North Anabar Region, Yakutia. Doklady Earth Sciences 477, 1291–1294. https://doi.org/10.1134/S1028334X17110022.; Kennedy C.S., Kennedy G.C., 1976. The Equilibrium Boundary between Graphite and Diamond. Journal of Geophysical Research 8 (14), 2467–2470. https://doi.org/10.1029/JB081I014P02467.; Корнилова В.П., Специус З.В., Помазанский В.С. Петрографо-минералогические особенности и целесообразность переоценки алмазоносности кимберлитовых трубок Лорик и Светлана(Западно-Укукитское поле, Якутия) // Региональная геология и металлогения. 2016. № 68. С. 92–99.; Korolev N., Kopylova M., Gurney J.J., Moore A.E., Davidson J., 2018. The Origin of Type II Diamonds as Inferred from Cullinan Mineral Inclusions. Mineralogy and Petrology 112, 275–289. https://doi.org/10.1007/s00710-018-0601-z.; Костровицкий С.И., Калашникова Т.В., Ащепков И.В. Состав минералов и Р-Т-параметры кристаллизации мантийных пород под кимберлитовыми полями Прианабарья // Геодинамика и тектонофизика. 2022. Т. 13. № 4. 0665. https://doi.org/10.5800/GT-2022-13-4-0665.; Lavrent’ev Yu.G., Korolyuk V.N., Usova L.V., Nigmatulina E.N., 2015. Electron Probe Microanalysis of Rock-Forming Minerals with a JXA-8100 Electron Probe Microanalyzer. Russian Geology and Geophysics 56 (10), 1428–1436. https://doi.org/10.1016/j.rgg.2015.09.005.; Лаврентьев Ю.Г., Усова Л.В. Новая версия программы «Карат» для количественного рентгеноспектрального микроанализа // Журнал аналитической химии. 1994. Т. 49. № 5. С. 462–468.; Lock N.P., Dawson J.B., 2013. Contrasting Garnet Lherzolite Xenolith Suites from the Letšeng Kimberlite Pipes: Inferences for the Northern Lesotho Geotherm. In: D.G. Pearson, H.S. Grütter, J.W. Harris, B.A. Kjarsgaard, H. O’Brien, N.V. Chalapathi Rao, S. Sparks (Eds), Proceedings of 10th International Kimberlite Conference (February 6–11, 2012, Bangalore, India). Vol. 1. Springer, New Delhi, p. 29–44. https://doi.org/10.1007/978-81-322-1170-9_3.; Матерон Ж. Основы прикладной геостатистики. М.: Мир, 1968. 408 с.; McGregor I.D., 1974. The System MgO-SiO2-Al2O3: Solubility of Al2O3 in Enstatite for Spinel and Garnet Peridotite Compositions. American Mineralogist 59 (1–2), 110–119.; Mitchell R.H., 1986. Kimberlites: Mineralogy, Geochemistry, and Petrology. Plenum Press, New York, 442 p. https://doi.org/10.1007/978-1-4899-0568-0.; Moore A.E., 2009. Type II Diamonds: Flamboyant Megacrysts. South African Journal of Geology 112 (1), 23–38. https://doi.org/10.2113/gssajg.112.1.23.; Moore A.E., 2014. The Origin of Large Irregular Gem-Quality Type II Diamonds and the Rarity of Blue Type IIb Varieties. South African Journal of Geology 117 (2), 219– 236. https://doi.org/10.2113/gssajg.117.2.219.; Moore A.E., Helmstaedt H., 2019. Evidence for Two Blue (Type IIb) Diamond Populations. Nature 570, E26–E27. https://doi.org/10.1038/s41586-019-1245-9.; Moore A.E., Helmstaedt H., 2023. Origin of Framesite Revisited: Possible Implications for the Formation of CLIPPIR Diamonds. Earth-Science Reviews 241, 104434. https://doi.org/10.1016/j.earscirev.2023.104434.; Motsamai T., Harris J.W., Stachel T., Pearson D.G., Armstrong J., 2018. Mineral Inclusions in Diamonds from Karowe Mine, Botswana: Super-Deep Sources for Super-Sized Diamonds? Mineralogy and Petrology 112 (Suppl 1), 169– 180. https://doi.org/10.1007/s00710-018-0604-9.; Nimis P., Taylor W.R., 2000. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part I. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology 139, 541–554. https://doi.org/10.1007/s004100000156.; O’Neill H.St.C., Wall V.J., 1987. The Olivine-Orthopyroxene-Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth’s Upper Mantle. Journal of Petrology 28 (6), 1169–1191. https://doi.org/10.1093/PETROLOGY%2F28.6.1169.; O’Neill H.St.C., Wood B.J., 1979. An Experimental Study of Fe-Mg Partitioning between Garnet and Olivine and Its Calibration as a Geothermometer. Contributions to Mineralogy and Petrology 70, 59–70. https://doi.org/10.1007/BF00371872.; O’Relly S.Y., Griffin W.L., 1985. A Xenoliths-Derived Geotherm for Southeastern Australia and Its Geophysical Implications. Tectonophysics 111 (1–2), 41–63. https://doi.org/10.1016/0040-1951(85)90065-4.; Peslier A.H., Woodland A.B., Bell D.R., Lazarov M., 2010. Olivine Water Contents in the Continental Lithosphere and the Longevity of Cratons. Nature 467, 78–81. https://doi.org/10.1038/nature09317.; Peslier A.H., Woodland A.B., Bell D.R., Lazarov M., Lapen T.J., 2012. Metasomatic Control of Water Contents in the Kaapvaal Cratonic Mantle. Geochimica et Cosmochimica Acta 97, 213–246. https://doi.org/10.1016/j.gca.2012.08.028.; Pokhilenko N.P., Sobolev N.V., Kuligin S.S., Shimizu N., 1998. Peculiarities of Distribution of Pyroxenite Paragenesis Garnets in Yakutian Kimberlites and Some Aspects of the Evolution of the Siberian Craton Lithospheric Mantle. In: Extended Abstracts of the Seventh International Kimberlite Conference (April 11–17, 1998, Cape Town, South Africa). Cape Town, p. 702–704. https://doi.org/10.29173/ikc2852.; Pollack H.N., Chapman D.S., 1977. On the Regional Variation of Heat Flow, Geotherms, and Lithospheric Thickness. Tectonophysics 38 (3–4), 279–296. https://doi.org/10.1016/0040-1951(77)90215-3.; Regier M.E., Pearson D.G., Stachel T., Luth R.W., Stern R.A., Harris J.W., 2020. The Lithospheric-to-Lower-Mantle Carbon Cycle Recorded in Superdeep Diamonds. Nature 585, 234–238. https://doi.org/10.1038/s41586-020-2676-z.; Shatsky V.S., Zedgenizov D.A., Ragozin A.L., Kalinina V.V., 2015. Diamondiferous Subcontinental Lithospheric Mantle of the Northeastern Siberian Craton: Evidence from Mineral Inclusions in Alluvial Diamonds. Gondwana Research 28 (1), 106–120. https://doi.org/10.1016/j.gr.2014.03.018.; Shchukina E.V., Agashev A.M., Kostrovitsky S.I., Pokhilenko N.P., 2015. Metasomatic Processes in the Lithospheric Mantle beneath the V. Grib Kimberlite Pipe (Arkhangelsk Diamondiferous Province, Russia). Russian Geology and Geophysics 56 (12), 1701–1716. https://doi.org/10.1016/j.rgg.2015.11.004.; Shchukina E.V., Agashev A.M., Soloshenko N.G., Streletskaya M.V., Zedgenizov D.A., 2019. Origin of V. Grib Pipe Eclogites (Arkhangelsk Region, NW Russia): Geochemistry, Sm-Nd and Rb-Sr Isotopes and Relation to Regional Precambrian Tectonics. Mineralogy and Petrology 113, 593– 612. https://doi.org/10.1007/s00710-019-00679-7.; Smelov A.P., Timofeev V.F., 2007. The Age of the North Asian Cratonic Basement: An Overview. Gondwana Research 12 (3), 279–288. https://doi.org/10.1016/j.gr.2006.10.017.; Smith E.M., Shirey S.B., Nestola F., Bullock E.S., Wang J., Richardson S.H., Wang W., 2016. Large Gem Diamonds from Metallic Liquid in Earth’s Deep Mantle. Science 354 (6318), 1403–1405. https://doi.org/10.1126/science.aal1303.; Smith E.M., Shirey S.B., Wang W., 2017. The Very Deep Origin of the World’s Biggest Diamonds. Gems & Gemology 53 (4), 388–403. https://doi.org/10.5741/GEMS.53.4.388.; Соболев Н.В. О минералогических критериях алмазоносности кимберлитов // Геология и геофизика. 1971. Т. 12. № 3. С. 70–80.; Sobolev N.V., 1977. Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. American Geophysical Union, Washington, 279 p. DOI:10.1029/SP011.; Sobolev N.V., Lavrent’ev Y.G., Pokhilenko N., Usova L., 1973. Chrome-Rich Garnets from the Kimberlites of Yakutia and Their Parageneses. Contributions to Mineralogy and Petrology 40, 39–52. https://doi.org/10.1007/BF00371762.; Sobolev N.V., Sobolev A.V., Tomilenko A.A., Batanova V.G., Tolstov A.V., Logvinova A.M., Kuz’min D.V., 2015. Unique Compositional Peculiarities of Olivine Phenocrysts from the Post Flood Basalt Diamondiferous Malokuonapskaya Kimberlite Pipe, Yakutia. Doklady Earth Sciences 463, 828– 832 https://doi.org/10.1134/S1028334X15080164.; Spetsius Z.V., Bogush I.N., 2018. Peculiarities of Diamonds in Eclogitic Xenoliths from the Komsomolskaya Kimberlite Pipe, Yakutia. Doklady Earth Sciences 480, 666–670. https://doi.org/10.1134/S1028334X18050306.; Spetsius Z.V., Bogush I.N., Kovalchuk O.E., 2015. FTIR Mapping of Diamond Plates of Eclogitic and Peridotitic Xenoliths from the Nyurbinskaya Pipe, Yakutia: Genetic Implications. Russian Geology and Geophysics 56 (1–2), 344– 353. https://doi.org/10.1016/j.rgg.2015.01.025.; Stagno V., Ojwang D.O., McCammon C.A., Frost D.J., 2013. The Oxidation State of the Mantle and the Extraction of Carbon from Earth’s Interior. Nature 493, 84–88. https://doi.org/10.1038/nature11679.; Stephens W.E., Dawson J.B., 1977. Statistical Comparison between Pyroxenes from Kimberlites and Their Associated Xenoliths. The Journal of Geology 85 (4), 433–449. https://doi.org/10.1086/628317.; Sun J., Tappe S., Kostrovitsky S.I., Liu C.-Z., Skuzovatov S.Yu., Wu F.-Y., 2018. Mantle Sources of Kimberlites Through Time: A U-Pb and Lu-Hf Isotope Study of Zircon Megacrysts from the Siberian Diamond Fields. Chemical Geology 479, 228– 240. https://doi.org/10.1016/j.chemgeo.2018.01.013.; Taylor W.L., Kamperman M., Hamilton R., 1998. New Thermometer and Oxygen Fugacity Sensor Calibrations for Ilmenite- and Chromian Spinel-Bearing Peridotitic Assemblages. In: Extended Abstracts of the Seventh International Kimberlite Conference (April 11–17, 1998, Cape Town, South Africa). Cape Town, p. 891. https://doi.org/10.29173/ikc2920.; Tomilenko A.A., Kuzmin D.V., Bulbak T.A., Timina T.Yu., Sobolev N.V., 2015. Composition of Primary Fluid and Melt Inclusions in Regenerated Olivines from Hypabyssal Kimberlites of the Malokuonapskaya Pipe (Yakutia). Doklady Earth Sciences 465, 1168–1171. https://doi.org/10.1134/S1028334X1511015X.; Wudrick M., Pearson D.G., Stachel T., Armstrong J., Woodland S.J., Motsamai T., 2017. Age of the Lithospheric Mantle beneath the Karowe Diamond Mine. In: Extended Abstracts of the 11th International Kimberlite Conference (September 18–22, 2017, Gaborone, Botswana). IKC-4489. https://doi.org/10.29173/ikc3859.; Wyatt B.A., Baumgartner M., Ancka E., Grutter H., 2004. Compositional Classification of "Kimberlitic" and "Non-Kimberlitic" Ilmenite. Lithos 77 (1–4), 819–840. https://doi.org/10.1016/j.lithos.2004.04.025.; Зайцев А.И., Смелов А.П. Изотопная геохронология пород кимберлитовой формации Якутской провинции. Якутск: Офсет, 2010. 108 с.; Zelenski M., Kamenetsky V.S., Nekrylov V., Chayka I.F., Shcherbakov V.D., Kontonikas-Charos A., Pokrovsky B.G., Korneeva A.A., 2024. Sulfide-Sulfate Metasomatism and Nickel Release in the Suprasubduction Mantle. Earth and Planetary Science Letters 626, 118500. https://doi.org/10.1016/j.epsl.2023.118500.; Zinchenko V.N., Ivanov A.S., 2021. Simulation of Physical-Geochemical Parameters of Crystallization of Large Type IIa Diamonds from Parasteresis of Their Satellite Minerals. Journal of Science. Lyon 17, 9–14.; Зинчук Н.Н., Бадрухинов Л.Д. Алмазы из низкопродуктивных кимберлитов // Руды и металлы. 2022. № 1. С. 77–93. https://doi.org/10.47765/0869-5997-2022-10004.; Зинчук Н.Н., Бадрухинов Л.Д. Алмазы полупромышленных кимберлитов // Вестник Воронежского государственного университета. Серия: Геология. 2022. № 2. С. 32– 45. https://doi.org/10.17308/geology.2022.2/9277.; Зинчук Н.Н., Коптиль В.И. Об особенностяхалмазов перспективных территорий Сибирской платформы // Вестник Пермского университета. Геология. 2015. №. 2 (27). С. 41–54. https://doi.org/10.17072/psu.geol.27.41.; Зинчук Н.Н., Коптиль В.И. Алмазы из современных россыпей Сибирской платформы. Статья 2. Лено-Анабарская субпровинция // Бюллетень МОИП. Отдел геологический. 2017. Т. 92. № 2. С. 65–82.; Зырянов И.В., Иванов А.В., Яковлев В.Н. Извлечение алмазов с аномальной кинетикой люминесценции: результаты экспериментальных исследований // Горная промышленность. 2022. №. 4. С. 88–92. https://doi.org/10.30686/1609-9192-2022-4-88-92.