يعرض 1 - 17 نتائج من 17 نتيجة بحث عن '"gas-phase molecules"', وقت الاستعلام: 0.52s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 4 (2022); 261-270 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 4 (2022); 261-270 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-4

    وصف الملف: application/pdf

    Relation: https://met.misis.ru/jour/article/view/503/390; Hauptmann P., Puttmer A., Henning B. Ultrasonic sensors for process monitoring and chemical analysis: state-of-the-art and trends. Sensors and Actuators A-physical. 1998; 67(1-3): 32—48. https://doi.org/10.1016/S0924-4247(97)01725-1; Thundat T, Oden P.I, Warmack R.J. Microcantilever sensors. Microscale Thermophysical Engineering. 1997; 1(3): 185—199.; Ilic B., Czaplewski D., Craighead H.G., Neuzil P., Campagnolo C., Batt C. Mechanical resonant immunospecific biological detector. Applied Physics Letters. 2000; 77: 450—452. https://doi.org/10.1063/1.127006; Chopra N.G., Zettl A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Communications. 1998; 105(5): 297—300. https://doi.org/10.1016/S0038-1098(97)10125-9; Ghorbanpour A.A, Roudbari M.A., Amir S. Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Physica B: Condensed Matter. 2012; 407(17): 3646—3653. https://doi.org/10.1016/j.physb.2012.05.043; Ghorbanpour A.A., Roudbari M.A. Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films. 2013; 542: 232—241. https://doi.org/10.1016/j.tsf.2013.06.025; Ghorbanpour A.A., Hafizi B.A., Ravandi K.A., Roudbari M.A., Amir S., Azizkhani M.B. Induced nonlocal electric wave propagation of boron nitride nanotubes. Journal of Mechanical Science and Technology. 2013; 27: 3063—3071. https://doi.org/10.1007/s12206-013-0705-7; Ghorbanpour A.A., Roudbari M.A. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Physica B: Condensed Matter. 2014; 452: 159—165. https://doi.org/10.1016/j.physb.2014.07.017; Ghorbanpour A.A., Jalilvand A., Ghaffari M., Talebi M.M., Kolahchi R, Roudbari M.A., Amir S. Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces. Scientia Iranica. 2014; 21(3): 1183—1196.; Ghorbanpour A.A., Karamali R.A., Roudbari M.A., Azizkhani M.B., Bidgoli A. Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory. Journal of Solid Mechanics. 2015; 7(3): 239—254.; Ansari R., Rouhi S., Mirnezhad M., Aryayi M. Stability characteristics of single-walled boron nitride nanotubes. Archives of Civil and Mechanical Engineering. 2015; 15: 162—170. https://doi.org/10.1016/J.ACME.2014.01.008; Ciofani G., Danti S., D’Alessandro D., Moscato S., Menciassi A. Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochemical and Biophysical Research Communications. 2010; 394(2): 405—411. https://doi.org/10.1016/j.bbrc.2010.03.035; Chowdhury R., Wang C.Y., Adhikari S., Scarpa F. Vibration and symmetry-breaking of boron nitride nanotubes. Nanotechnology. 2010; 21(36): 365702—365703 https://doi.org/10.1088/0957-4484/21/36/365702; Chowdhury R., Adhikari S. Boron-nitride nanotubes as zeptogram-scale bionanosensors: theoretical investigations. IEEE Transactions on Nanotechnology. 2011; 10(4): 659—667. https://doi.org/10.1109/TNANO.2010.2060492; Panchal M.B., Upadhyay S.H., Harsha S.P. Mass detection using single walled boron nitride nanotube as a nanomechanical resonator. Nano Brief Reports and Reviews. 2012; 7(4): 1250029—1250030. https://doi.org/10.1142/S1793292012500294; Panchal M.B., Upadhyay S.H., Harsha S.P. Vibrational analysis of boron nitride nanotube based nanoresonators. Journal of Nanotechnology in Engineering and Medicine. 2012; 3(3): 031004—031009. https://doi.org/10.1115/1.4007696; Panchal M.B., Upadhyay S.H. Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms. Physica E Low-dimensional Systems and Nanostructures. 2013; 50: 73—82. https://doi.org/10.1016/j.physe.2013.02.018; Panchal M.B., Upadhyay S.H. Boron nitride nanotube-based biosensing of various bacterium/viruses: Continuum modelling-based simulation approach. IET Nanobiotechnology. 2014; 8(3): 143—148. https://doi.org/10.1049/iet-nbt.2013.0020; Panchal M.B., Upadhyay S.H. Boron nitride nanotube-based mass sensing of zeptogram scale. Spectroscopy Letters. 2014; 47(5): 17—21. https://doi.org/10.1080/00387010.2013.850437; Adhikari S. Boron nitride nanotubes in nanomedicine. In: A volume in micro and nano technologies. NY: Elsevier Inc; 2016. P. 149—164.; Борознин С.В. Исследование роли примесных атомов бора в металлизации углеродных нанотрубок. Известия Юго-Западного государственного университета. Серия: Техника и технологии. 2022; 12(1): 159—173. https://doi.org/10.21869/2223-1528-2022-12-1-159-173; Zaporotskova I.V., Boroznina N.P., Boroznin S.V. Nanotechnology: contribution to inclusive growth in Russia. In: Inshakova E.I., Inshakova A.O., eds. Smart Innovation, Systems and Technologies. Singapore: Springer; 2022. P. 137—149. https://doi.org/10.1007/978-981-16-9804-0_12; Boroznin S.V. Сarbon nanostructures containing boron impurity atoms: synthesis, physicochemical properties and potential applications. Modern Electronic Materials. 2022; 8(1): 23—42. https://doi.org/10.3897/j.moem.8.1.84317; https://elibrary.ru/wawpmy; Zaporotskova I.V., Dryuchkov E.S., Boroznina N.P., Kozhitov L.V., Popkova A.V. Surface-modified boron-carbon BC5 nanotube with amine group as a sensor device element: Theoretical research. Russian Microelectronics. 2021; 50(8): 644—648. https://doi.org/10.1134/S1063739721080096; Boroznina N.P., Boroznin S.V., Zaporotskova I.V., Zaporotskov P.A. Comparative analysis of the effectiveness of the sensory properties of carbon nanotubes when modifying their surface with boron atoms. In: Popkova E.G., Sergi B.S., eds. "Smart technologies" for society, state and economy. ISC 2020. Lecture Notes in Networks and Systems. Springer, Cham.; 2021. Vol. 155. P. 28—296. https://doi.org/10.1007/978-3-030-59126-7_32; Boroznina N., Zaporotskova I., Boroznin S., Dryuchkov E.S. Sensors based on amino group surface-modified CNTs. Chemosensors. 2019; 7(1): 11—19. https://doi.org/10.3390/CHEMOSENSORS7010011; https://met.misis.ru/jour/article/view/503

  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
  10. 10
  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal
  14. 14
  15. 15
    Dissertation/ Thesis
  16. 16
    Electronic Resource
  17. 17
    Electronic Resource