يعرض 1 - 20 نتائج من 266 نتيجة بحث عن '"frequency doubling technology"', وقت الاستعلام: 0.72s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المساهمون: Nebbioso, Marcella, Moramarco, Antonietta, Lambiase, Alessandro, Giustini, Sandra, Marenco, Marco, Miraglia, Emanuele, Fino, Pasquale, Iacovino, Chiara, Alisi, Ludovico

    Relation: info:eu-repo/semantics/altIdentifier/pmid/33117026; info:eu-repo/semantics/altIdentifier/wos/WOS:000582460600001; volume:12; issue:12; firstpage:119; lastpage:127; numberofpages:9; journal:EYE AND BRAIN; http://hdl.handle.net/11573/1446734; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85093924965

  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المؤلفون: Schiavi C., Finzi A., Cellini M.

    المساهمون: Schiavi C., Finzi A., Cellini M.

    وصف الملف: ELETTRONICO

    Relation: info:eu-repo/semantics/altIdentifier/pmid/31849443; info:eu-repo/semantics/altIdentifier/wos/WOS:000504008900001; volume:13; firstpage:2451; lastpage:2459; numberofpages:9; journal:CLINICAL OPHTHALMOLOGY; http://hdl.handle.net/11585/723443; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85076922283; https://www.dovepress.com/getfile.php?fileID=54628

  9. 9
  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المصدر: National Journal glaucoma; Том 14, № 2 (2015); 75-81 ; Национальный журнал Глаукома; Том 14, № 2 (2015); 75-81 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/66/67; The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol 2000; 130(4): 429-440.; Gordon M.O., Kass M.A. The Ocular Hypertension Treatment Study: design and baseline description of the participants. Arch Ophthalmol 1999; 117(5): 573-583.; Leske M.C., Heijl A., Hyman L., Bengtsson B. Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology 1999; 106(11): 2144-2153.; Miglior S., Zeyen T., Pfeiffer N., Cunha-Vaz J. et al. The European glaucoma prevention study design and baseline description of the participants. Ophthalmology 2002; 109(9): 1612-1621.; Musch D.C., Lichter P.R., Guire K.E., Standardi C.L. The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology 1999; 106(4): 653-662.; Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120(6): 714-720; discussion 829-730.; Medeiros F.A., Weinreb R.N., Sample P.A., Gomi C.F. et al. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Arch Ophthalmol 2005; 123(10): 1351-1360. doi:10.1001/archopht.123.10.1351.; Ocular Hypertension Treatment Study G., European Glaucoma Prevention Study G., Gordon M.O., Torri V. et al. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007; 114(1): 10-19. doi:10.1016/j.oph-tha.2006.08.031.; European Glaucoma Prevention Study G., Miglior S., Pfeiffer N., Torri V. et al. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma Prevention Study. Ophthalmology 2007; 114(1): 3-9. doi:10.1016/j.ophtha.2006.05.075.; Kass M.A., Heuer D.K., Higginbotham E.J., Johnson C.A. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 701-713; discussion 829-730.; Heijl A., Leske M.C., Bengtsson B., Bengtsson B., Hussein M. Early Manifest Glaucoma Trial G. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand 2003; 81(3): 286-293.; Heijl A., Leske M.C., Bengtsson B., Hyman L. et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120(10): 1268-1279.; Higginbotham E.J., Gordon M.O., Beiser J.A., Drake M.V. et al. The Ocular Hypertension Treatment Study: topical medication delays or prevents primary open-angle glaucoma in African American individuals. Arch Ophthalmol 2004; 122(6): 813-820. doi:10.1001/archopht.122.6.813.; Quigley H.A., Dunkelberger G.R., Green W.R. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107(5): 453-464.; Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell R.S. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000; 41(3): 741-748.; Artes P.H., Iwase A., Ohno Y., Kitazawa Y., Chauhan B.C. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci 2002; 43(8): 2654-2659.; Keltner J.L., Johnson C.A., Levine R.A., Fan J. et al. Normal visual field test results following glaucomatous visual field and points in the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123(9): 1201-1206. doi:10.1001/archopht.123.9.1201.; Keltner J.L., Johnson C.A., Anderson D.R., Levine R.A. et al. The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. Ophthalmology 2006; 113(9): 1603-1612. doi:10.1016/j.ophtha.2006.05.061.; Blumenthal E.Z., Sample P.A., Berry C.C., Lee A.C. et al. Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects, and normals. Ophthalmology 2003; 110(10): 1895-1902. doi:10.1016/S0161-6420(03)00541-4.; Bengtsson B., Heijl A. Evaluation of a new perimetric threshold strategy, SITA, in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand 1998; 76(3): 268-272.; Weinreb R.N., Greve E.L. Glaucoma diagnosis, structure and function: reports and consensus statements of the 1st global AIGS Consensus meeting on «structure and function in the management of glaucoma». The Hague: Kugler Publications; 2004.; Dacey D.M., Lee B.B. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 1994; 367(6465): 731-735. doi:10.1038/367731a0.; Dacey D.M., Packer O.S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr Opin Neurobiology 2003; 13(4): 421-427.; Martin P.R., White A.J., Goodchild A.K., Wilder H.D., Sefton A.E. Evidence that blue-on cells are part of the third geniculo-cortical pathway in primates. Europ J Neuroscience 1997; 9(7): 1536-1541.; Bengtsson B. A new rapid threshold algorithm for short-wave-length automated perimetry. Invest Ophthalmol Vis Sci 2003; 44(3): 1388-1394.; Bengtsson B., Heijl A. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Invest Ophthalmol Vis Sci 2003; 44(11): 5029-5034.; Sample P.A., Taylor J.D., Martinez G.A., Lusky M., Weinreb R.N. Short-wavelength color visual fields in glaucoma suspects at risk. Am J Ophthalmol 1993; 115(2): 225-233.; Wild J.M., Cubbidge R.P., Pacey I.E., Robinson R. Statistical aspects of the normal visual field in short-wavelength automated perimetry. Invest Ophthalmol Vis Sci 1998; 39(1): 54-63.; Bengtsson B., Heijl A. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. Ophthalmology 2006; 113(7): 1092-1097. doi:10.1016/j.ophtha.2005.12.028.; Sample P.A., Weinreb R.N. Progressive color visual field loss in glaucoma. Invest Ophthalmol Vis Sci 1992; 33(6): 2068-2071.; Johnson C.A., Adams A.J., Casson E.J., Brandt J.D. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 1993; 111(5): 645-650.; Johnson C.A., Adams A.J., Casson E.J., Brandt J.D. Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol 1993; 111(5): 651-656.; Johnson C.A., Sample P.A., Zangwill L.M., Vasile C.G. et al. Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. Am J Ophthalmol 2003; 135(2): 148-154.; Keltner J.L., Johnson C.A., Cello K.E., Bandermann S.E. et al. Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma 2007; 16(8): 665-669. doi:10.1097/IJG.0b013e318057526d.; Sample P.A., Bosworth C.F., Blumenthal E.Z., Girkin C., Wein-reb R.N. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci 2000; 41(7): 1783-1790.; McKendrick A.M., Badcock D.R., Morgan W.H. Psychophysical measurement of neural adaptation abnormalities in mag-nocellular and parvocellular pathways in glaucoma. Invest Ophthalmol Vis Sci 2004; 45(6): 1846-1853.; Sample P.A., Medeiros F.A., Racette L., Pascual J.P. et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 2006; 47(8): 3381-3389. doi:10.1167/iovs.05-1546.; Yucel Y.H., Zhang Q., Gupta N., Kaufman P.L., Weinreb R.N. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 2000; 118(3): 378-384.; Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci 2001; 42(13): 3216-3222.; Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, konio-cellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Progress in Retinal and Eye Research 2003; 22(4): 465-481.; Симакова И.Л., Волков В.В., Бойко Э.В. Создание метода периметрии с удвоенной пространственной частотой за рубежом и в России. Глаукома 2009; 8(2): 15. [Simakova I.L., Volkov V.V., Boiko E.V. Creation of the method of frequency-doubling technology perimetry: an international and Russian experience. Glaucoma 2009; 8(2): 15. (In Russ.)].; Симакова И.Л., Волков В.В., Бойко Э.В. Значение периметрии с удвоенной пространственной частотой в профилактике слепоты и инвалидности от глаукомы. Глаукома 2009; 8(3): 11. [Simakova I.L., Volkov V.V., Boiko E.V. Significance of frequency-doubling technology perimetry in prophylaxis of blindness and disablement from glaucoma. Glaucoma 2009; 8(3): 11. (In Russ.)].; Johnson C.A., Cioffi G.A., Van Buskirk E.M. Frequency doubling technology perimetry using a 24-2 stimulus presentation pattern. Optometry Vis Sci 1999; 76(8): 571-581.; Turpin A., McKendrick A.M., Johnson C.A., Vingrys A.J. Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2002; 43(3): 709-715.; Turpin A., McKendrick A.M., Johnson C.A., Vingrys A.J. Development of efficient threshold strategies for frequency doubling technology perimetry using computer simulation. Invest Ophthalmol Vis Sci 2002; 43(2): 322-331.; Burgansky-Eliash Z., Wollstein G., Patel A., Bilonick R.A., et al. Glaucoma detection with matrix and standard achromatic perimetry. Brit J Ophthalmol 2007; 91(7): 933-938. doi:10.1136/bjo.2006.110437.; Casson R.J., James B. Effect of cataract on frequency doubling perimetry in the screening mode. J Glaucoma 2006; 15(1): 23-25.; Brusini P., Salvetat M.L., Zeppieri M., Parisi L. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma 2006; 15(2): 77-83.; Burnstein Y., Ellish N.J., Magbalon M., Higginbotham E.J. Comparison of frequency doubling perimetry with humphrey visual field analysis in a glaucoma practice. Am J Ophthalmol 2000; 129(3): 328-333.; Cello K.E., Nelson-Quigg J.M., Johnson C.A. Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am J Ophthalmol 2000; 129(3): 314-322.; Iester M., Sangermani C., De Feo F., Ungaro N., et al. Sector-based analysis of frequency doubling technology sensitivity and optic nerve head shape parameters. Eur J Ophthalmol 2007; 17(2): 223-229.; Wu L.L., Suzuki Y., Kunimatsu S., Araie M., Iwase A., Tomita G. Frequency doubling technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma with hemifield defects. J Glaucoma 2001; 10(4): 256-260.; Iwase A., Tomidokoro A., Araie M., Shirato S. et al. Performance of frequency-doubling technology perimetry in a population-based prevalence survey of glaucoma: the Tajimi study. Ophthalmology 2007; 114(1): 27-32. doi:10.1016/j.ophtha.2006.06.041.; Mansberger S.L., Edmunds B., Johnson C.A., Kent K.J., Cioffi G.A. Community visual field screening: prevalence of follow-up and factors associated with follow-up of participants with abnormal frequency doubling perimetry technology results. Ophthalmic epidemiology 2007; 14(3): 134-140. doi:10.1080/09286580601174060.; Racette L., Medeiros F.A., Zangwill L.M., Ng D., Weinreb R.N., Sample P.A. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci 2008; 49(3): 954-960. doi:10.1167/iovs.07-0493.; Sakata L.M., Deleon-Ortega J., Arthur S.N., Monheit B.E., Girkin C.A. Detecting visual function abnormalities using the Swedish interactive threshold algorithm and matrix perimetry in eyes with glaucomatous appearance of the optic disc. Arch Ophthalmol 2007; 125(3): 340-345. doi:10.1001/archopht.125.3.340.; Spry P.G., Hussin H.M., Sparrow J.M. Clinical evaluation of frequency doubling technology perimetry using the Humphrey Matrix 24-2 threshold strategy. Brit J Ophthalmol 2005; 89(8): 1031-1035. doi:10.1136/bjo.2004.057778.; Horn F.K., Brenning A., Junemann A.G., Lausen B. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. J Glaucoma 2007; 16(4): 363-371. doi:10.1097/IJG.0b013e318032e4c2.; https://www.glaucomajournal.ru/jour/article/view/66

  13. 13
    Academic Journal

    المصدر: National Journal glaucoma; Том 14, № 3 (2015); 72-79 ; Национальный журнал Глаукома; Том 14, № 3 (2015); 72-79 ; 2311-6862 ; 2078-4104

    وصف الملف: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/75/76; Gordon M.O., Beiser J.A., Brandt J.D., Heuer D.K., Higginbotham E.J., Johnson C.A. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120(6): 714-720; discussion 829-730.; Lin S.C., Singh K., Jampel H.D., Hodapp E.A., Smith S.D., Francis B.A. et al. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology 2007; 114(10): 1937-1949. 10.1016/j.ophtha.2007.07.005.; Medeiros F.A., Zangwill L.M., Bowd C., Sample P.A., Weinreb R.N. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol 2005; 139(6): 1010-1018. 10.1016/j.ajo.2005.01.003.; Fingeret M., Medeiros F.A., Susanna R. Jr., Weinreb R.N. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry 2005; 76(11): 661-668. 10.1016/j.optm.2005.08.029.; Tielsch J.M., Katz J., Quigley H.A., Miller N.R., Sommer A. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology 1988; 95(3): 350-356.; Varma R., Steinmann W.C., Scott I.U. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology 1992; 99(2): 215-221.; Gaasterland D.E., Blackwell B., Dally L.G., Caprioli J., Katz L.J., Ederer F. et al. The Advanced Glaucoma Intervention Study (AGIS): 10. Variability among academic glaucoma subspecialists in assessing optic disc notching. Transactions Am Ophthalmol Soc 2001; 99: 177-184; discussion 184-175.; Parrish R.K., 2nd, Schiffman J.C., Feuer W.J., Anderson D.R., Budenz D.L., Wells-Albornoz M.C. et al. Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol 2005; 140(4): 762-764. 10.1016/j.ajo.2005.04.044.; Zeyen T., Miglior S., Pfeiffer N., Cunha-Vaz J., Adamsons I., European Glaucoma Prevention Study G. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology 2003; 110(2): 340-344.; Deleon-Ortega J.E., Arthur S.N., McGwin G., Jr., Xie A., Monheit B.E., Girkin C.A. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci 2006; 47(8): 3374-3380. 10.1167/iovs.05-1239.; Girkin C.A., DeLeon-Ortega J.E., Xie A., McGwin G., Arthur S.N., Monheit B.E. Comparison of the Moorfields classification using confocal scanning laser ophthalmoscopy and subjective optic disc classification in detecting glaucoma in blacks and whites. Ophthalmology 2006; 113(12): 2144-2149. 10.1016/j.ophtha.2006.06.035.; Henderer J.D., Liu C., Kesen M., Altangerel U., Bayer A., Steinmann W.C. et al. Reliability of the disk damage likelihood scale. Am J Ophthalmol 2003; 135(1): 44-48.; Weinreb R.N., Bowd C., Zangwill L.M. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 2003; 121(2): 218-224.; Miglior S., Guareschi M., Albe E., Gomarasca S., Vavassori M., Orzalesi N. Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Am J Ophthalmol 2003; 136(1): 26-33.; Wollstein G., Garway-Heath D.F., Hitchings R.A. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998; 105(8): 1557-1563. 10.1016/S0161-6420(98)98047-2.; Miglior S., Guareschi M., Romanazzi F., Albe E., Torri V., Orzalesi N. The impact of definition of primary open-angle glaucoma on the cross-sectional assessment of diagnostic validity of Heidelberg retinal tomography. Am J Ophthalmol 2005; 139(5): 878-887. 10.1016/j.ajo.2005.01.013.; Ford B.A., Artes P.H., McCormick T.A., Nicolela M.T., LeBlanc R.P., Chauhan B.C. Comparison of data analysis tools for detection of glaucoma with the Heidelberg Retina Tomograph. Ophthalmology 2003; 110(6): 1145-1150. 10.1016/S0161-6420(03)00230-6.; Mardin C.Y., Hothorn T., Peters A., Junemann A.G., Nguyen N.X., Lausen B. New glaucoma classification method based on standard Heidelberg Retina Tomograph parameters by bagging classification trees. J Glaucoma 2003; 12(4): 340-346.; Zangwill L.M., Chan K., Bowd C., Hao J., Lee T.W., Weinreb R.N. et al. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest Ophthalmol Vis Sci 2004; 45(9): 3144-3151. 10.1167/iovs.04-0202.; Zangwill L.M., Weinreb R.N., Beiser J.A., Berry C.C., Cioffi G.A., Coleman A.L. et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 2005; 123(9): 1188-1197. 10.1001/archopht.123.9.1188.; Danesh-Meyer H.V., Gaskin B.J., Jayusundera T., Donaldson M., Gamble G.D. Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma. Brit J Ophthalmol 2006; 90(4): 437-441. 10.1136/bjo.2005.077131.; Medeiros F.A., Zangwill L.M., Bowd C., Vasile C., Sample P.A., Weinreb R.N. Agreement between stereophotographic and confocal scanning laser ophthalmoscopy measurements of cup/disc ratio: effect on a predictive model for glaucoma development. J Glaucoma 2007; 16(2): 209-214. 10.1097/IJG.0b013e31802d695c.; Reus N.J., de Graaf M., Lemij H.G. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Brit J Ophthalmol 2007; 91(3): 313-318. 10.1136/bjo.2006.096586.; Swindale N.V., Stjepanovic G., Chin A., Mikelberg F.S. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 2000; 41(7): 1730-1742.; Burgansky-Eliash Z., Wollstein G., Patel A., Bilonick R.A., Ishikawa H., Kagemann L. et al. Glaucoma detection with matrix and standard achromatic perimetry. Brit J Ophthalmol 2007; 91(7): 933-938. 10.1136/bjo.2006.110437.; Harizman N., Zelefsky J.R., Ilitchev E., Tello C., Ritch R., Liebmann J.M. Detection of glaucoma using operator-dependent versus operator-independent classification in the Heidelberg retinal tomograph-III. Brit J Ophthalmol 2006; 90(11): 1390-1392. 10.1136/bjo.2006.098111.; Zangwill L.M., Jain S., Racette L., Ernstrom K.B., Bowd C., Medeiros F.A. et al. The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. Invest Ophthalmol Vis Sci 2007; 48(6): 2653-2660. 10.1167/iovs.06-1314.; Coops A., Henson D.B., Kwartz A.J., Artes P.H. Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score. Invest Ophthalmol Vis Sci 2006; 47(12): 5348-5355. 10.1167/iovs.06-0579.; Artes P.H., Chauhan B.C. Longitudinal changes in the visual field and optic disc in glaucoma. Progress in Retinal and Eye Res 2005; 24(3): 333-354. 10.1016/j.preteyeres.2004.10.002.; Chauhan B.C., Blanchard J.W., Hamilton D.C., LeBlanc R.P. Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci 2000; 41(3): 775-782.; Quigley H.A., Katz J., Derick R.J., Gilbert D., Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99(1): 19-28.; Sehi M., Guaqueta D.C., Feuer W.J., Greenfield D.S., Advanced Imaging in Glaucoma Study G. Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. Am J Ophthalmol 2007; 143(2): 272-279. 10.1016/j.ajo.2006.09.049.; Bowd C., Zangwill L.M., Medeiros F.A., Tavares I.M., Hoffmann E.M., Bourne R.R. et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 2006; 47(7): 2889-2895. 10.1167/iovs.05-1489.; Schlottmann P.G., De Cilla S., Greenfield D.S., Caprioli J., Garway-Heath D.F. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by scanning laser polarimetry. Invest Ophthalmol Vis Sci 2004; 45(6): 1823-1829.; Brusini P., Salvetat M.L., Parisi L., Zeppieri M., Tosoni C. Discrimination between normal and early glaucomatous eyes with scanning laser polarimeter with fixed and variable corneal compensator settings. Eur J Ophthalmol 2005; 15(4): 468-476.; Bowd C., Medeiros F.A., Zhang Z., Zangwill L.M., Hao J., Lee T.W. et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci 2005; 46(4): 1322-1329. 10.1167/iovs.04-1122.; Essock E.A., Zheng Y., Gunvant P. Analysis of GDx-VCC polari-metry data by Wavelet-Fourier analysis across glaucoma stages. Invest Ophthalmol Vis Sci 2005; 46(8): 2838-2847. 10.1167/iovs.04-1156.; Medeiros F.A., Zangwill L.M., Bowd C., Bernd A.S., Weinreb R.N. Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma. Invest Ophthalmol Vis Sci 2003; 44(6): 2606-2612.; Medeiros F.A., Zangwill L.M., Bowd C., Mohammadi K., Weinreb R.N. Comparison of scanning laser polarimetry using variable corneal compensation and retinal nerve fiber layer photography for detection of glaucoma. Arch Ophthalmol 2004; 122(5): 698-704. 10.1001/archopht.122.5.698.; Mohammadi K., Bowd C., Weinreb R.N., Medeiros F.A., Sample P.A., Zangwill L.M. Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. Am J Ophthalmol 2004; 138(4): 592-601. 10.1016/j.ajo.2004.05.072.; Horn F.K., Brenning A., Junemann A.G., Lausen B. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. J Glaucoma 2007; 16(4): 363-371. 10.1097/IJG.0b013e318032e4c2.; Bagga H., Greenfield D.S., Feuer W.J. Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am J Ophthalmol 2005; 139(3): 437-446. 10.1016/j.ajo.2004.10.019.; Bowd C., Tavares I.M., Medeiros F.A., Zangwill L.M., Sample P.A., Weinreb R.N. Retinal nerve fiber layer thickness and visual sensitivity using scanning laser polarimetry with variable and enhanced corneal compensation. Ophthalmology 2007; 114(7): 1259-1265. 10.1016/j.ophtha.2006.10.020.; Medeiros F.A., Bowd C., Zangwill L.M., Patel C., Weinreb R.N. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest Ophthalmol Vis Sci 2007; 48(7): 3146-3153. 10.1167/iovs.06-1139.; Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W. et al. Optical coherence tomography. Science 1991; 254(5035): 1178-1181.; Paunescu L.A., Schuman J.S., Price L.L., Stark P.C., Beaton S., Ishikawa H. et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest Ophthalmol Vis Sci 2004; 45(6): 1716-1724.; Schuman J.S., Pedut-Kloizman T., Hertzmark E., Hee M.R., Wilkins J.R., Coker J.G. et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996; 103(11): 1889-1898.; Pieroth L., Schuman J.S., Hertzmark E., Hee M.R., Wilkins J.R., Coker J. et al. Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. Ophthalmology 1999; 106(3): 570-579.; Schuman J.S., Hee M.R., Puliafito C.A., Wong C., Pedut-Kloizman T., Lin C.P. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113(5): 586-596.; Williams Z.Y., Schuman J.S., Gamell L., Nemi A., Hertzmark E., Fujimoto J.G. et al. Optical coherence tomography measurement of nerve fiber layer thickness and the likelihood of a visual field defect. Am J Ophthalmol 2002; 134(4): 538-546.; Bourne R.R., Medeiros F.A., Bowd C., Jahanbakhsh K., Zangwill L.M., Weinreb R.N. Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2005; 46(4): 1280-1285. 10.1167/iovs.04-1000.; Budenz D.L., Michael A., Chang R.T., McSoley J., Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 2005; 112(1): 3-9. 10.1016/j.ophtha.2004.06.039.; Kanamori A., Escano M.F., Eno A., Nakamura M., Maeda H., Seya R. et al. Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. International J Ophthalmol. Zeitschrift fur Augenheilkunde 2003; 217(4): 273-278. 70634.; Leung C.K., Chan W.M., Hui Y.L., Yung W.H., Woo J., Tsang M.K. et al. Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46(3): 891-899. 10.1167/iovs.04-1107.; Nouri-Mahdavi K., Hoffman D., Tannenbaum D.P., Law S.K., Caprioli J. Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol 2004; 137(2): 228-235. 10.1016/j.ajo.2003.09.004.; Wollstein G., Ishikawa H., Wang J., Beaton S.A., Schuman J.S. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol 2005; 139(1): 39-43. 10.1016/j.ajo.2004.08.036.; Wollstein G., Schuman J.S., Price L.L., Aydin A., Beaton S.A., Stark P.C. et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004; 138(2): 218-225. 10.1016/j.ajo.2004.03.019.; Leung C.K., Chan W.M., Yung W.H., Ng A.C., Woo J., Tsang M.K. et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 2005; 112(3): 391-400. 10.1016/j.ophtha.2004.10.020.; Manassakorn A., Nouri-Mahdavi K., Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol 2006; 141(1): 105-115. 10.1016/j.ajo.2005.08.023.; Schuman J.S., Wollstein G., Farra T., Hertzmark E., Aydin A., Fujimoto J.G. et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confo-cal scanning laser ophthalmoscopy. Am J Ophthalmol 2003; 135(4): 504-512.; Guedes V., Schuman J.S., Hertzmark E., Wollstein G., Correnti A., Mancini R. et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003; 110(1): 177-189.; Burgansky-Eliash Z., Wollstein G., Chu T., Ramsey J.D., Glymour C., Noecker R.J. et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest Ophthalmol Vis Sci 2005; 46(11): 4147-4152. 10.1167/iovs.05-0366.; Ishikawa H., Stein D.M., Wollstein G., Beaton S., Fujimoto J.G., Schuman J.S. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46(6): 2012-2017. 10.1167/iovs.04-0335.; Wollstein G., Schuman J.S., Price L.L., Aydin A., Stark P.C., Hertzmark E. et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 2005; 123(4): 464-470. 10.1001/archopht.123.4.464.; Drexler W., Morgner U., Ghanta R.K., Kartner F.X., Schuman J.S., Fujimoto J.G. Ultrahigh-resolution ophthalmic optical coherence tomography. Nature medicine 2001; 7(4): 502-507. 10.1038/86589.; Gabriele M.L., Ishikawa H., Wollstein G., Bilonick R.A., Kagemann L., Wojtkowski M. et al. Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning. Invest Ophthalmol Vis Sci 2007; 48(7): 3154-3160. 10.1167/iovs.06-1416.; Wollstein G., Paunescu L.A., Ko T.H., Fujimoto J.G., Kowale-vicz A., Hartl I. et al. Ultrahigh-resolution optical coherence tomography in glaucoma. Ophthalmology 2005; 112(2): 229-237. 10.1016/j.ophtha.2004.08.021.; Essock E.A., Sinai M.J., Bowd C., Zangwill L.M., Weinreb R.N. Fourier analysis of optical coherence tomography and scanning laser polarimetry retinal nerve fiber layer measurements in the diagnosis of glaucoma. Arch Ophthalmol 2003; 121(9): 1238-1245. 10.1001/archopht.121.9.1238.; Leung C.K., Chan W.M., Chong K.K., Yung W.H., Tang K.T., Woo J. et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, I: correlation analysis in glaucoma. Invest Ophthalmol Vis Sci 2005; 46(9): 3214-3220. 10.1167/iovs.05-0294.; Leung C.K., Chong K.K., Chan W.M., Yiu C.K., Tso M.Y., Woo J. et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci 2005; 46(10): 3702-3711. 10.1167/iovs.05-0490.; Hoffmann E.M., Bowd C., Medeiros F.A., Boden C., Grus F.H., Bourne R.R. et al. Agreement among 3 optical imaging methods for the assessment of optic disc topography. Ophthalmology 2005; 112(12): 2149-2156. 10.1016/j.ophtha.2005.07.003.; https://www.glaucomajournal.ru/jour/article/view/75

  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المؤلفون: Zia Sultan Pradhan, Pushpa Jacob

    المصدر: Indian Journal of Ophthalmology, Vol 61, Iss 10, Pp 590-593 (2013)

    وصف الملف: electronic resource

  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المصدر: Indian Journal of Ophthalmology, Vol 61, Iss 10, Pp 593-596 (2013)

    وصف الملف: electronic resource

  19. 19
  20. 20
    Academic Journal

    المصدر: Indian Journal of Ophthalmology, Vol 61, Iss 10, Pp 608-611 (2013)

    مصطلحات موضوعية: Posterior open globe injuries, posterior to rectus insertion, zone III open globe injuries, Glaucoma severity, juvenile glaucoma, juvenile-onset primary open angle glaucoma, visual field defects, Diabetic retinopathy, renal transplant, visual outcome, Gujarati, logMAR, repeatability, validity, visual acuity, Multiple sclerosis, optic neuritis, optical coherence tomography, retinal nerve fi ber layer, visual functions, Axon diameter, electron microscopy, nerve fiber layer, oligodendrocytes, pathology, Frequency doubling technology perimetry, pediatric visual field testing, standard automated perimetry, Central corneal thickness, glaucoma, pachymetry, 20G Silicone rod, monocanalicular stent, canalicular laceration repair, Coat′s like response, pigmented paravenous chorioretinal atrophy, Retinochoroiditis radiata, Dacryocystectomy, oculosporidiosis, Rhinosporidium, Infectious scleritis, microbial scleritis, ocular infection, scleritis, Congenital ectropion, congenital eyelid imbrication syndrome, congenital floppy eyelid syndrome, congenital lax upper eyelid syndrome, down syndrome, Inner retinal layer thickness, optic nerve hypoplasia, outer retinal layer thickness, retinal nerve fiber layer thickness, spectral domain optical coherence tomography, Abducens nerve palsy, hyperhomocysteinemia, isolated abducens nerve palsy, nontraumatic, Inverted internal limiting membrane flap technique, macular hole, macular hole surgery, Ocular, positron emission tomography, tuberculosis, High myopia, myelination, reduced vision, Amblyopia, anisometropia, digital camera, photoscreening, strabismus, Ophthalmology, RE1-994

    وصف الملف: electronic resource