-
1Academic Journal
المؤلفون: Gabriel Knotz, Till Moritz Muenker, Timo Betz, Matthias Krüger
المصدر: Frontiers in Physics, Vol 11 (2024)
مصطلحات موضوعية: entropy production, statistical physics, non-equilibrium, fluctuation theorems, coarse graining, detailed balance breakage, Physics, QC1-999
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: C.H.S. Vieira, J.L.D. de Oliveira, J.F.G. Santos, P.R. Dieguez, R.M. Serra
المصدر: Journal of Magnetic Resonance Open, Vol 16, Iss , Pp 100105- (2023)
مصطلحات موضوعية: Quantum thermodynamics, Quantum thermal engines, Fluctuation theorems, Experiments on quantum thermodynamics, Medical physics. Medical radiology. Nuclear medicine, R895-920, Physics, QC1-999
وصف الملف: electronic resource
-
3
المؤلفون: Wimsatt, Gregory William
مصطلحات موضوعية: Statistical physics, Thermodynamics, Fluctuation Theorems, Fluctuations, Information Processing, Nonequilibrium Thermodynamics
وصف الملف: application/pdf
-
4
المؤلفون: Coghi, Francesco, 1990, Buffoni, Lorenzo, Gherardini, Stefano
المصدر: Journal of Statistical Mechanics. (6)
مصطلحات موضوعية: fluctuation theorems, entropy production, irreversibility, convergence of statistical estimators, nonequilibrium Markov systems, large deviation theory
وصف الملف: print
-
5Academic Journal
المؤلفون: Jiteng Sheng, Cheng Yang, Haibin Wu
المصدر: Fundamental Research, Vol 3, Iss 1, Pp 75-86 (2023)
مصطلحات موضوعية: Cavity optomechanics, Nonequilibrium thermodynamics, Stochastic thermodynamics, Quantum thermodynamics, Entropy production, Fluctuation theorems, Science (General), Q1-390
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Schmidt, Heinz-Jürgen, Gemmer, Jochen
مصطلحات موضوعية: heat conduction, fluctuation theorems, Clausius relation, ddc:530
وصف الملف: application/pdf
Relation: https://doi.org/10.3390/e25030504; https://doi.org/10.48693/476; Schmidt H-J, Gemmer J.: Stochastic Thermodynamics of a Finite Quantum System Coupled to Two Heat Baths. Entropy. 2023; 25(3):504; https://osnadocs.ub.uni-osnabrueck.de/bitstream/ds-2024020510515/1/Schmidt_entropy-25-00504_2023.pdf
-
7Academic Journal
مصطلحات موضوعية: Fluctuation theorems, Fluctuations &, noise, Nonequilibrium &, irreversible thermodynamics, Large deviation &, rare event statistics, Markovian processes
Relation: https://nottingham-repository.worktribe.com/output/25676048; Physical Review Letters; Volume 131; Issue 19; https://nottingham-repository.worktribe.com/file/25676048/1/General%20upper%20bounds%20on%20fluctuations%20of%20trajectory%20observables
-
8Academic Journal
المؤلفون: Heinz-Jürgen Schmidt, Jochen Gemmer
المصدر: Entropy; Volume 25; Issue 3; Pages: 504
مصطلحات موضوعية: heat conduction, fluctuation theorems, Clausius relation
وصف الملف: application/pdf
Relation: Thermodynamics; https://dx.doi.org/10.3390/e25030504
الاتاحة: https://doi.org/10.3390/e25030504
-
9Academic Journal
المؤلفون: Abbasi, Amir, Netz, Roland R., Naji, Ali
مصطلحات موضوعية: Fluctuation theorems, Fractional Brownian motion, Microparticles, ddc:530
وصف الملف: 6 Seiten; application/pdf
Relation: https://refubium.fu-berlin.de/handle/fub188/43159; http://dx.doi.org/10.17169/refubium-42875; 97725
-
10Academic Journal
المؤلفون: Holubec, Viktor, Ryabov, Artem, Loos, Sarah A.M., Kroy, Klaus
مصطلحات موضوعية: time delay, stochastic processes, nonlinear, exact solutions, stochastic thermodynamics, fluctuation theorems, feedback, info:eu-repo/classification/ddc/530, ddc:530
Relation: 023021
-
11Academic Journal
المؤلفون: M Innerbichler (Faculty of Physics, University of Vienna), A Militaru (Photonics Laboratory, ETH Zürich), M Frimmer (Photonics Laboratory, ETH Zürich), L Novotny (Photonics Laboratory, ETH Zürich), C Dellago (Faculty of Physics, University of Vienna)
المصدر: New Journal of Physics ; issn:1367-2630
مصطلحات موضوعية: fluctuation theorems, stochastic thermodynamics, stochastic processes, parameter inference
وصف الملف: application/pdf
Relation: hdl:11353/10.1682530; https://phaidra.univie.ac.at/o:1682530
-
12Academic Journal
المؤلفون: Pedro Hack, Sebastian Gottwald, Daniel A. Braun
المصدر: Entropy; Volume 24; Issue 12; Pages: 1731
مصطلحات موضوعية: fluctuation theorems, Markov chains, information processing, decision-making
وصف الملف: application/pdf
Relation: Information Theory, Probability and Statistics; https://dx.doi.org/10.3390/e24121731
الاتاحة: https://doi.org/10.3390/e24121731
-
13Academic Journal
المؤلفون: Paolo Rissone, Felix Ritort
المصدر: Life; Volume 12; Issue 7; Pages: 1089
مصطلحات موضوعية: single-molecule biophysics, nucleic acid thermodynamics, statistical mechanics, fluctuation theorems, computational biophysics
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Biochemistry, Biophysics and Computational Biology; https://dx.doi.org/10.3390/life12071089
الاتاحة: https://doi.org/10.3390/life12071089
-
14Academic Journal
المؤلفون: Innerbichler, Max, Militaru, Andrei, id_orcid:0 000-0002-5083-317X, Frimmer, Martin, Novotny, Lukas, id_orcid:0 000-0002-9970-8345, Dellago, Christoph
المصدر: New Journal of Physics, 24 (11)
مصطلحات موضوعية: fluctuation theorems, stochastic thermodynamics, stochastic processes, parameter inference
وصف الملف: application/application/pdf
Relation: info:eu-repo/semantics/altIdentifier/wos/000886388800001; info:eu-repo/grantAgreement/SNF/NCCR (NFS)/185902; http://hdl.handle.net/20.500.11850/581492
-
15Academic Journal
المؤلفون: Viktor Holubec, Artem Ryabov, Sarah A M Loos, Klaus Kroy
المصدر: New Journal of Physics, Vol 24, Iss 2, p 023021 (2022)
مصطلحات موضوعية: time delay, stochastic processes, nonlinear, exact solutions, stochastic thermodynamics, fluctuation theorems, Science, Physics, QC1-999
Relation: https://doi.org/10.1088/1367-2630/ac4b91; https://doaj.org/toc/1367-2630; https://doaj.org/article/70c6c037268b4cfb9f2bb0b8909b37da
-
16Academic Journal
المؤلفون: Oga, Haruki, Omori, Takeshi, Herrero, Cecilia, Merabia, Samy, Joly, Laurent, Yamaguchi, Yasutaka
المساهمون: Department of Mechanical Engineering Osaka, Osaka University, Osaka City University (OCU), iLM - Modélisation de la matière condensée et des interfaces (iLM - MMCI), Institut Lumière Matière Villeurbanne (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Tokyo University of Science Tokyo, ANR-16-CE06-0004,NECtAR,Interfaces réactives pour la conversion d'énergie nanofluidique(2016)
المصدر: ISSN: 2643-1564.
مصطلحات موضوعية: Fluctuation theorems, Nanofluidics, Wall slip, Liquid-solid interfaces, [SPI]Engineering Sciences [physics], [CHIM]Chemical Sciences, [PHYS]Physics [physics]
Relation: hal-03325567; https://hal.science/hal-03325567; https://hal.science/hal-03325567/document; https://hal.science/hal-03325567/file/PhysRevResearch.3.L032019.pdf
-
17Academic Journal
المؤلفون: Eastham, Paul, Mitchison, Mark T., Popovic, Maria, Goold, John
مصطلحات موضوعية: Fluctuation theorems, Spin-boson model, Non-Markovian processes, Full counting statistics, Quantum thermodynamics, Heat transfer, Nonequilibrium & irreversible thermodynamics, Nanoscience & Materials, DECOHERENCE, NUMERICAL METHODS, OPEN QUANTUM SYSTEMS, Theoretical Physics, Thermodynamics
Relation: PRX Quantum; 2; Popovic, M., Mitchison, M.T., Strathearn, A., Lovett, B.W., Goold, J., Eastham, P.R., Quantum heat statistics with time-evolving matrix product operators, PRX Quantum, 2021, 2, 020338; Y; http://hdl.handle.net/2262/96563; http://people.tcd.ie/easthamp; 231195; https://doi.org/10.1103/PRXQuantum.2.020338; orcid:0000-0002-7054-1457
-
18Academic Journal
المؤلفون: Yuecheng Zhou, Folarin Latinwo, Charles M. Schroeder
المصدر: Entropy; Volume 24; Issue 1; Pages: 27
مصطلحات موضوعية: fluctuation theorems, nonequilibrium thermodynamics, polymer dynamics, conformation hysteresis, viscoelasticity
وصف الملف: application/pdf
Relation: Complexity; https://dx.doi.org/10.3390/e24010027
الاتاحة: https://doi.org/10.3390/e24010027
-
19Dissertation/ Thesis
المؤلفون: Torres Domínguez, Nicolás
المساهمون: Viviescas, Carlos Leonardo, Caos y Complejidad
مصطلحات موضوعية: 530 - Física, TERMODINAMICA, TEORIA CUANTICA, Thermodynamics, Quantum theory, Quantum thermodynamics, Work, Coherence, Fluctuation theorems, Quasi-probability, Path integral, Incompatible observables, Quasi-probabilidad, Integral de camino, Termodinámica cuántica, Trabajo, Coherencia, Teoremas de fluctuación, Observables incompatibles
وصف الملف: xi, 64 páginas; application/pdf
Relation: R. Alicki and D. Gelbwaser-Klimovsky, “Non-equilibrium quantum heat machines,” New Journal of Physics, vol. 17, no. 11, p. 115012, 2015.; Y.-H. Shi, H.-L. Shi, X.-H. Wang, M.-L. Hu, S.-Y. Liu, W.-L. Yang, and H. Fan, “Quantum coherence in a quantum heat engine,” Journal of Physics A: Mathematical and Theoretical, vol. 53, no. 8, p. 085301, 2020.; C. L. Latune, I. Sinayskiy, and F. Petruccione, “Roles of quantum coherences in thermal machines,” The European Physical Journal Special Topics, vol. 230, no. 4, pp. 841– 850, 2021.; Y. Xiao, D. Liu, J. He, W.-M. Liu, and J.Wang, “Finite-time quantum otto engine with a squeezed thermal bath: Role of quantum coherence and squeezing in the performance and fluctuations,” arXiv preprint arXiv:2205.13290, 2022.; R. Chetrite and K. Mallick, “Quantum fluctuation relations for the lindblad master equation,” Journal of statistical physics, vol. 148, pp. 480–501, 2012.; K. Korzekwa, M. Lostaglio, D. Jennings, and T. Rudolph, “Quantum coherence, timetranslation symmetry and thermodynamics,” Bulletin of the American Physical Society, vol. 61, 2016.; G. Manzano, J. M. Horowitz, and J. M. Parrondo, “Quantum fluctuation theorems for arbitrary environments: adiabatic and nonadiabatic entropy production,” Physical Review X, vol. 8, no. 3, p. 031037, 2018.; J. ˚Aberg, “Fully quantum fluctuation theorems,” Physical Review X, vol. 8, no. 1, p. 011019, 2018.; M. Lostaglio, “Quantum fluctuation theorems, contextuality, and work quasiprobabilities,” Physical review letters, vol. 120, no. 4, p. 040602, 2018.; M. Srednicki, “The approach to thermal equilibrium in quantized chaotic systems,” Journal of Physics A: Mathematical and General, vol. 32, no. 7, p. 1163, 1999.; L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics,” Advances in Physics, vol. 65, no. 3, pp. 239–362, 2016.; M. Brenes, S. Pappalardi, J. Goold, and A. Silva, “Multipartite entanglement structure in the eigenstate thermalization hypothesis,” Physical Review Letters, vol. 124, no. 4, p. 040605, 2020.; K. Funo and H. T. Quan, “Path integral approach to quantum thermodynamics,” Phys. Rev. Lett., vol. 121, p. 040602, Jul 2018.; M. Campisi, P. H¨anggi, and P. Talkner, “Colloquium: Quantum fluctuation relations: Foundations and applications,” Reviews of Modern Physics, vol. 83, no. 3, p. 771, 2011.; M. Esposito, M. A. Ochoa, and M. Galperin, “Nature of heat in strongly coupled open quantum systems,” Physical Review B, vol. 92, no. 23, p. 235440, 2015.; K. Funo and H. Quan, “Path integral approach to heat in quantum thermodynamics,” Physical Review E, vol. 98, no. 1, p. 012113, 2018.; S. Deffner and S. Campbell, Quantum Thermodynamics: An introduction to the thermodynamics of quantum information. Morgan & Claypool Publishers, 2019.; B. Leggio, A. Napoli, A. Messina, and H.-P. Breuer, “Entropy production and information fluctuations along quantum trajectories,” Physical Review A, vol. 88, no. 4, p. 042111, 2013.; F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, “Thermodynamics in the quantum regime,” Fundamental Theories of Physics, vol. 195, pp. 1–2, 2018.; K. Sekimoto, Stochastic energetics, vol. 799. Springer, 2010.; D. J. Evans and D. J. Searles, “The fluctuation theorem,” Advances in Physics, vol. 51, no. 7, pp. 1529–1585, 2002.; K. Micadei, G. T. Landi, and E. Lutz, “Quantum fluctuation theorems beyond twopoint measurements,” Physical Review Letters, vol. 124, no. 9, p. 090602, 2020.; G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences,” Physical Review E, vol. 60, no. 3, p. 2721, 1999.; A. B. Adib, “Entropy and density of states from isoenergetic nonequilibrium processes,” Physical Review E, vol. 71, no. 5, p. 056128, 2005.; P. Talkner, M. Morillo, J. Yi, and P. H¨anggi, “Statistics of work and fluctuation theorems for microcanonical initial states,” New Journal of Physics, vol. 15, no. 9, p. 095001, 2013.; J. D. Noh and J.-M. Park, “Fluctuation relation for heat,” Physical Review Letters, vol. 108, no. 24, p. 240603, 2012.; C. Jarzynski and D. K. W´ojcik, “Classical and quantum fluctuation theorems for heat exchange,” Physical review letters, vol. 92, no. 23, p. 230602, 2004.; B.-B.Wei, “Fluctuation relations for heat exchange in the generalized gibbs ensemble,” Frontiers of Physics, vol. 13, no. 5, p. 130510, 2018.; R. W. Spekkens, “Contextuality for preparations, transformations, and unsharp measurements,” Physical Review A, vol. 71, no. 5, p. 052108, 2005.; S. Asthana and V. Ravishankar, “Weak measurements, non-classicality and negative probability,” Quantum Information Processing, vol. 20, pp. 1–39, 2021.; A. Allahverdyan and T. M. Nieuwenhuizen, “Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems,” Physical Review E, vol. 71, no. 6, p. 066102, 2005.; M. Perarnau-Llobet, E. B¨aumer, K. V. Hovhannisyan, M. Huber, and A. Acin, “No-go theorem for the characterization of work fluctuations in coherent quantum systems,” Physical review letters, vol. 118, no. 7, p. 070601, 2017.; A. Levy and M. Lostaglio, “Quasiprobability distribution for heat fluctuations in the quantum regime,” PRX Quantum, vol. 1, no. 1, p. 010309, 2020.; P. Talkner, E. Lutz, and P. H¨anggi, “Fluctuation theorems: Work is not an observable,” Physical Review E, vol. 75, no. 5, p. 050102, 2007.; J. Kurchan, “A quantum fluctuation theorem,” 2001. eprint arXiv:cond-mat/0007360.; P. Talkner and P. H¨anggi, “Aspects of quantum work,” Physical Review E, vol. 93, no. 2, p. 022131, 2016.; M. G. D´ıaz, G. Guarnieri, and M. Paternostro, “Quantum work statistics with initial coherence,” Entropy, vol. 22, no. 11, p. 1223, 2020.; A. E. Allahverdyan, “Nonequilibrium quantum fluctuations of work,” Physical Review E, vol. 90, no. 3, p. 032137, 2014.; H. J. Miller and J. Anders, “Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework,” New Journal of Physics, vol. 19, no. 6, p. 062001, 2017.; A. Barut, “Distribution functions for noncommuting operators,” Physical Review, vol. 108, no. 3, p. 565, 1957.; H. Margenau and R. N. Hill, “Correlation between measurements in quantum theory,” Progress of Theoretical Physics, vol. 26, no. 5, pp. 722–738, 1961.; L. Ardila, “Calor y trabajo en un oscilador armónico,” 2019.; S. Carnot, “R´eflexions sur la puissance motrice du feu et sur les machines propres `a d´evelopper cette puissance,” in Annales scientifiques de l’ ´ Ecole normale sup´erieure, vol. 1, pp. 393–457, 1872.; A. B. Pippard, Elements of classical thermodynamics: for advanced students of physics. Cambridge University Press, 1964.; R. Clausius, “ ¨Uber eine veranderte form des zweiten hauptsatzes der mechanischen w¨armetheorie,” Annalen der Physik, vol. 169, no. 12, pp. 481–506, 1854.; H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. American Association of Physics Teachers, 1998.; V. C. Weiss, “The uniqueness of clausius’s integrating factor,” American journal of physics, vol. 74, no. 8, pp. 699–705, 2006.; P. Strasberg, Quantum Stochastic Thermodynamics: Foundations and Selected Applications. Oxford University Press, 2022.; R. Brown, “Microscopical observations,” Philos. Mag, vol. 4, no. 21, pp. 161–173, 1828.; B. H. Lavenda, “Brownian motion,” Scientific American, vol. 252, no. 2, pp. 70–85, 1985.; A. Einstein, “¨Uber die von der molekularkinetischen theorie der w¨arme geforderte bewegung von in ruhenden fl¨ussigkeiten suspendierten teilchen,” Annalen der Physik, vol. 322, no. 8, pp. 549–560, 1905.; A. Einstein, “Zur theorie der brownschen bewegung,” Annalen der Physik, vol. 324, no. 2, pp. 371–381, 1906.; J. Perrin, Brownian movement and molecular reality. Courier Corporation, 2013.; P. Langevin, “Sur la th´eorie du mouvement brownien,” Compt. Rendus, vol. 146, pp. 530–533, 1908.; R. Zwanzig, Nonequilibrium statistical mechanics. Oxford university press, 2001.; R. Kubo, “The fluctuation-dissipation theorem,” Reports on Progress in Physics, vol. 29, no. 1, p. 255, 1966.; J. T´othov´a and V. Lis`y, “Brownian motion in a bath affected by an external harmonic potential,” Physics Letters A, vol. 395, p. 127220, 2021.; L. Ferrari, “Test particles in a gas: Markovian and non-markovian langevin dynamics,” Chemical Physics, vol. 523, pp. 42–51, 2019.; P. Shea and H. J. Kreuzer, “Langevin equation for diffusion of an adsorbed molecule,” Surface science, vol. 605, no. 3-4, pp. 296–305, 2011.; R. Tabar, Analysis and data-based reconstruction of complex nonlinear dynamical systems, vol. 730. Springer, 2019.; Y. P. Kalmykov, “Rotational brownian motion in an external potential: the langevin equation approach,” Journal of molecular liquids, vol. 69, pp. 117–131, 1996.; K. Sekimoto, “Kinetic characterization of heat bath and the energetics of thermal ratchet models,” Journal of the physical society of Japan, vol. 66, no. 5, pp. 1234– 1237, 1997.; T. Shimokawa, S. Sato, A. Buonocore, and L. Ricciardi, “A chemically driven fluctuating ratchet model for actomyosin interaction,” BioSystems, vol. 71, no. 1-2, pp. 179– 187, 2003.; L. S. Ornstein, “Zur theorie der brown schen bewegung f¨ur systeme, worin mehrere temperaturen vorkommen,” Zeitschrift f¨ur Physik, vol. 41, pp. 848–856, apr 1927.; P. H¨anggi and P. Jung, “Colored noise in dynamical systems,” Advances in chemical physics, vol. 89, pp. 239–326, 2007.; J. Luczka, “Non-markovian stochastic processes: Colored noise,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 15, no. 2, p. 026107, 2005.; J. Jim´enez-Aquino and N. S´anchez-Salas, “Thermodynamic work statistics for ornstein–uhlenbeck-type heat baths,” Physica A: Statistical Mechanics and its Applications, vol. 509, pp. 12–19, 2018.; M. Ceriotti, G. Bussi, and M. Parrinello, “Langevin equation with colored noise for constant-temperature molecular dynamics simulations,” Physical review letters, vol. 102, no. 2, p. 020601, 2009.; K. Sekimoto and S.-i. Sasa, “Complementarity relation for irreversible process derived from stochastic energetics,” Journal of the Physical Society of Japan, vol. 66, no. 11, pp. 3326–3328, 1997.; K. Sekimoto, F. Takagi, and T. Hondou, “Carnot’s cycle for small systems: Irreversibility and cost of operations,” Physical Review E, vol. 62, no. 6, p. 7759, 2000.; C. Jarzynski, “Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach,” Physical Review E, vol. 56, no. 5, p. 5018, 1997.; C. Jarzynski, “Hamiltonian derivation of a detailed fluctuation theorem,” Journal of Statistical Physics, vol. 98, pp. 77–102, 2000.; J. Kurchan, “Fluctuation theorem for stochastic dynamics,” Journal of Physics A: Mathematical and General, vol. 31, no. 16, p. 3719, 1998.; D. J. Evans and D. J. Searles, “Equilibrium microstates which generate second law violating steady states,” Physical Review E, vol. 50, no. 2, p. 1645, 1994.; K. Kraus, A. B¨ohm, J. D. Dollard, and W. Wootters, States, Effects, and Operations Fundamental Notions of Quantum Theory: Lectures in Mathematical Physics at the University of Texas at Austin. Springer, 1983.; I. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 10 anv ed., 2011.; H. M. Wiseman and G. J. Milburn, Quantum measurement and control. Cambridge university press, 2009.; E. C. G. Sudarshan, P. M. Mathews, and J. Rau, “Stochastic dynamics of quantum mechanical systems,” Phys. Rev., vol. 121, pp. 920–924, Feb 1961.; I. E. Segal, “Postulates for general quantum mechanics,” Annals of Mathematics, pp. 930–948, 1947.; R. Haag and D. Kastler, “An algebraic approach to quantum field theory,” Journal of Mathematical Physics, vol. 5, no. 7, pp. 848–861, 1964.; K.-E. Hellwig and K. Kraus, “Pure operations and measurements,” Communications in Mathematical Physics, vol. 11, no. 3, pp. 214–220, 1969.; E. B. Davies and J. T. Lewis, “An operational approach to quantum probability,” Communications in Mathematical Physics, vol. 17, no. 3, pp. 239–260, 1970.; B. Tamir and E. Cohen, “Introduction to weak measurements and weak values,” Quanta, vol. 2, no. 1, pp. 7–17, 2013.; L. Blanco Casta˜neda, “Probabilidad,” Editorial UN, 2013.; T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical review letters, vol. 113, no. 14, p. 140401, 2014.; E. Chitambar and G. Gour, “Quantum resource theories,” Reviews of modern physics, vol. 91, no. 2, p. 025001, 2019.; M. Lostaglio, “An introductory review of the resource theory approach to thermodynamics,” Reports on Progress in Physics, vol. 82, no. 11, p. 114001, 2019; C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Physical Review A, vol. 54, no. 5, p. 3824, 1996.; V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Physical Review A, vol. 57, no. 3, p. 1619, 1998.; R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of modern physics, vol. 81, no. 2, p. 865, 2009.; Y. Yao, X. Xiao, L. Ge, and C. Sun, “Quantum coherence in multipartite systems,” Physical Review A, vol. 92, no. 2, p. 022112, 2015.; A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a resource,” Reviews of Modern Physics, vol. 89, no. 4, p. 041003, 2017.; M. Avalle and A. Serafini, “Noisy quantum cellular automata for quantum versus classical excitation transfer,” Physical Review Letters, vol. 112, no. 17, p. 170403, 2014.; S. Yukawa, “A quantum analogue of the jarzynski equality,” Journal of the Physical Society of Japan, vol. 69, no. 8, pp. 2367–2370, 2000.; M. Campisi, P. Talkner, and P. H¨anggi, “Quantum bochkov–kuzovlev work fluctuation theorems,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1935, pp. 291–306, 2011.; A. J. Roncaglia, F. Cerisola, and J. P. Paz, “Work measurement as a generalized quantum measurement,” Physical review letters, vol. 113, no. 25, p. 250601, 2014.; C. Gardiner, Handbook of Stochastic Methods - For Physics, Chem, Nat. Sciences. Springer, 3rd ed ed., 2004.; E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749–759, Jun 1932.; W. P. Schleich, Quantum optics in phase space. John Wiley & Sons, 2011.; P. P. Hofer, “Quasi-probability distributions for observables in dynamic systems,” Quantum, vol. 1, p. 32, 2017.; M. Lostaglio, A. Belenchia, A. Levy, S. Hern´andez-G´omez, N. Fabbri, and S. Gherardini, “Kirkwood-dirac quasiprobability approach to quantum fluctuations: Theoretical and experimental perspectives,” arXiv preprint arXiv:2206.11783, 2022.; T. Monnai and S. Tasaki, “Quantum correction of fluctuation theorem,” 2003. arXiv preprint cond-mat/0308337.; A. Messiah, Quantum Mechanics, vol. 2. John Wiley and Sons, Inc., 1 ed., 1961.; P. Solinas and S. Gasparinetti, “Full distribution of work done on a quantum system for arbitrary initial states,” Physical Review E, vol. 92, no. 4, p. 042150, 2015.; P. Solinas and S. Gasparinetti, “Probing quantum interference effects in the work distribution,” Physical Review A, vol. 94, no. 5, p. 052103, 2016.; J. J. Alonso, E. Lutz, and A. Romito, “Thermodynamics of weakly measured quantum systems,” Physical review letters, vol. 116, no. 8, p. 080403, 2016.; S. Gherardini, A. Belenchia, M. Paternostro, and A. Trombettoni, “The role of quantum coherence in energy fluctuations,” arXiv preprint arXiv:2006.06208, 2020.; R. W. Spekkens, “Negativity and contextuality are equivalent notions of nonclassicality,” Physical review letters, vol. 101, no. 2, p. 020401, 2008.; H. J. Miller and J. Anders, “Leggett-garg inequalities for quantum fluctuating work,” Entropy, vol. 20, no. 3, p. 200, 2018.; S. Asthana, S. Adhikary, and V. Ravishankar, “Non-locality and entanglement in multiqubit systems from a unified framework,” Quantum Information Processing, vol. 20, pp. 1–33, 2021.; B.-M. Xu, J. Zou, L.-S. Guo, and X.-M. Kong, “Effects of quantum coherence on work statistics,” Phys. Rev. A, vol. 97, p. 052122, May 2018.; P. Solinas, M. Amico, and N. Zangh`ı, “Quasiprobabilities of work and heat in an open quantum system,” Physical Review A, vol. 105, no. 3, p. 032606, 2022.; C. Elouard, D. A. Herrera-Mart´ı, M. Clusel, and A. Auff`eves, “The role of quantum measurement in stochastic thermodynamics,” npj Quantum Information, vol. 3, no. 1, p. 9, 2017.; M. Naghiloo, D. Tan, P. Harrington, J. Alonso, E. Lutz, A. Romito, and K. Murch, “Heat and work along individual trajectories of a quantum bit,” Physical review letters, vol. 124, no. 11, p. 110604, 2020.; M. J. Hall, “Prior information: How to circumvent the standard joint-measurement uncertainty relation,” Physical Review A, vol. 69, no. 5, p. 052113, 2004.; J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: Understanding quantum weak values: Basics and applications,” Reviews of Modern Physics, vol. 86, no. 1, p. 307, 2014.; A. Barut, M. Boˇzi´c, and Z. Mari´c, “Joint probabilities of noncommuting operators and incompleteness of quantum mechanics,” Foundations of physics, vol. 18, pp. 999–1012, 1988.; J. B. Hartle, “Linear positivity and virtual probability,” Physical Review A, vol. 70, no. 2, p. 022104, 2004.; S. Adhikary, S. Asthana, and V. Ravishankar, “Bell-chsh non-locality and entanglement from a unified framework,” The European Physical Journal D, vol. 74, pp. 1–8, 2020.; F. Zhang and F. Zhang, “Positive semidefinite matrices,” Matrix Theory: Basic Results and Techniques, pp. 199–252, 2011.; R. Pan, Z. Fei, T. Qiu, J.-N. Zhang, and H. Quan, “Quantum-classical correspondence of work distributions for initial states with quantum coherence,” arXiv preprint arXiv:1904.05378, 2019.; R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum mechanics and path integrals. Courier Corporation, 2010.; L. E. Ballentine, Quantum mechanics: a modern development. World Scientific Publishing Company, 2014.; L. S. Schulman, Techniques and applications of path integration. Courier Corporation, 2012.; https://repositorio.unal.edu.co/handle/unal/85517; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
20Academic Journal
المؤلفون: Govind Paneru, Hyuk Kyu Pak
المصدر: Advances in Physics: X, Vol 5, Iss 1 (2020)
مصطلحات موضوعية: non-equilibrium thermodynamics, information engines, fluctuation theorems, efficiency fluctuations, Physics, QC1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2374-6149