يعرض 1 - 20 نتائج من 34 نتيجة بحث عن '"fire and explosion safety"', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Омский научный вестник, Vol 6 (180), Pp 56-64 (2021)

    وصف الملف: electronic resource

    Relation: https://www.omgtu.ru/general_information/media_omgtu/journal_of_omsk_research_journal/files/arhiv/2021/%E2%84%966%20(180)%20(%D0%9E%D0%9D%D0%92)/56-64%20%D0%9B%D0%B5%D1%83%D0%BD%20%D0%95.%20%D0%92.,%20%D0%A1%D1%8B%D1%81%D0%BE%D0%B5%D0%B2%20%D0%92.%20%D0%9A.,%20%D0%A8%D0%B0%D1%85%D0%B0%D0%BD%D0%BE%D0%B2%20%D0%90.%20%D0%95.,%20%D0%9C%D0%B8%D1%88%D0%B8%D0%BD%20%D0%AE.%20%D0%9D..pdf; https://doaj.org/toc/1813-8225; https://doaj.org/toc/2541-7541

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis

    المؤلفون: Vallejo-Molina, Luis Francisco

    المساهمون: Molina, Alejandro, Molina Escobar, Jorge Martin, Bioprocesos y Flujos Reactivos, Luis F. Vallejo-Molina orcid:0009-0006-4686-982X

    جغرافية الموضوع: Colombia

    وصف الملف: 157 páginas + 1 anexo (317 páginas); application/pdf

    Relation: LaReferencia; Bariha N, Mishra IM, Srivastava VC. Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): A case study of LPG truck tanker accident in Kannur, Kerala, India. 2016. doi:10.1016/j.jlp.2016.01.020; Pranesh V, Palanichamy K, Saidat O, Peter N. Lack of dynamic leadership skills and human failure contribution analysis to manage risk in deep water horizon oil platform. 2016. doi:10.1016/j.ssci.2016.09.013; Xi C, Guan W, Jiang Y, Liang J, Zhou Y, Wu J, et al. Numerical simulation of fire flooding for heavy oil reservoirs after steam injection: A case study on Block H1 of Xinjiang Oilfield, NW China. Petroleum Exploration and Development. 2013;40: 766–773.; Chen C-H, Sheen Y-N, Wang H-Y. Case analysis of catastrophic underground pipeline gas explosion in Taiwan. Eng Fail Anal. 2016;65: 39–47.; Taveau J. Explosion of fixed roof atmospheric storage tanks, part 1: Background and review of case histories. Process Saf Prog. 2011;30: 381–392.; Yang X, Li Y, Chen Y, Li Y, Dai L, Feng R, et al. Case study on the catastrophic explosion of a chemical plant for production of m-phenylenediamine. J Loss Prev Process Indust. 2020;67: 104232.; Gong Y, Fan Y. Applying HFACS Approach to Accident Analysis in Petro-Chemical Industry in China: Case Study of Explosion at Bi-Benzene Plant in Jilin. 2016; 399–406.; Jung S, Woo J, Kang C. Analysis of severe industrial accidents caused by hazardous chemicals in South Korea from January 2008 to June 2018. Safety Science. 2020;124. doi:10.1016/j.ssci.2019.104580; Zhou L, Fu G, Xue Y. Human and organizational factors in Chinese hazardous chemical accidents: a case study of the “8.12” Tianjin Port fire and explosion using the HFACS-HC. Int J Occup Saf Ergon. 2018;24: 329–340.; Zhang J, Fu J, Hao H, Fu G, Nie F, Zhang W. Root causes of coal mine accidents: Characteristics of safety culture deficiencies based on accident statistics. Process Saf Environ Prot. 2020;136: 78–91.; Zhu Y, Wang D, Shao Z, Xu C, Zhu X, Qi X, et al. A statistical analysis of coalmine fires and explosions in China. Process Saf Environ Prot. 2019;121: 357–366.; Herawati H, Santoso H. Tropical forest susceptibility to and risk of fire under changing climate: A review of fire nature, policy and institutions in Indonesia. For Policy Econ. 2011;13: 227–233.; Wood DA. Prediction and data mining of burned areas of forest fires: Optimized data matching and mining algorithm provides valuable insight. Artificial Intelligence in Agriculture. 2021;5: 24–42.; Garlock M, Paya-Zaforteza I, Kodur V, Gu L. Fire hazard in bridges: Review, assessment and repair strategies. Eng Struct. 2012;35: 89–98.; Review on the Fire Safety of Exterior Wall Claddings in High-rise Buildings in China. Procedia Engineering. 2013;62: 663–670.; Suzuki S, Manzello SL. The Influence of COVID-19 Stay at Home Measures on Fire Statistics Sampled from New York City, London, San Francisco, and Tokyo. Fire Technol. 2022;58: 679–688.; Georgiadis-Filikas K, Bakas I, Kontoleon K. Statistical Analysis and Review of Fire Incidents Data of Greece, with Special Focus on Residential Cases 2000–2019. Fire Technol. 2022;58: 3191–3233.; Kegler SR, Dellinger AM, Ballesteros MF, Tsai J. Decreasing residential fire death rates and the association with the prevalence of adult cigarette smoking - United States, 1999-2015. J Safety Res. 2018;67: 197–201.; Li S, Rong X, Hu J, Wang M, Qu Q, Huang J, et al. Risk assessment method of gas explosion based on quantification of margins and uncertainties (QMU):a case study on beam structures in buildings. Structures. 2023;50: 52–62.; Flores Quiroz N, Walls R, Cicione A, Smith M. Application of the Framework for Fire Investigations in Informal Settlements to large-scale real fire events – Consideration of fire formation patterns, fire spread rates and home survivability. Fire Saf J. 2021;125: 103435.; Molina A, López S, Molina-Escobar JM, Copete H, Soto D, Jaramillo L, et al. Hacia una estructura de investigación y educación para la prevención de accidentes por incendios y explosiones en Colombia. Rev Acad Colombiana Cienc Exact Fis Natur. 2022;46: 50–67.; Unidad Nacional para la Gestión del Riesgo de Desastres. [cited 6 Jun 2022]. Available: http://portal.gestiondelriesgo.gov.co/; Agencia Nacional de Minería ANM. [cited 7 Dec 2021]. Available: https://www.anm.gov.co/; University Programs. In: Society of Fire Protection Engineers [Internet]. [cited 25 May 2023]. Available: https://www.sfpe.org/career/students/universityprograms; Links. In: International Association for Fire Safety Science [Internet]. [cited 25 May 2023]. Available: https://iafss.org/links/; Fire and Emergency Services College Degree Programs. In: U.S. Fire Administration [Internet]. [cited 25 May 2023]. Available: https://www.usfa.fema.gov/nfa/about/feshe/degree-programs.html; Master Of Science in Safety Engineering. In: Texas A&M University [Internet]. [cited 25 May 2023]. Available: https://engineering.tamu.edu/chemical/academics/degrees/graduate/MSSENG.html; Master of Science in Process Safety and Loss Prevention. In: The University of Sheffield [Internet]. [cited 25 May 2023]. Available: https://www.sheffield.ac.uk/postgraduate/taught/courses/2023/process-safety-and-loss-prevention-msceng-pg-diploma; Master of Science in Process Safety. In: University of Aberdeen [Internet]. [cited 25 May 2023]. Available: https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/; Specialisation in Process safety technology. In: University of Bergen [Internet]. [cited 25 May 2023]. Available: https://www.uib.no/en/studies/MAMN-PRO/SI; Especialización en Ingeniería Contra Incendios y Explosiones. In: Facultad de Minas - Universidad Nacional de Colombia Sede Medellín [Internet]. [cited 7 Jun 2022]. Available: https://minas.medellin.unal.edu.co/formacion/especializaciones/especializacion-en-ingenieria-contra-incendios-y-explosiones; Bui X-N, Bui H-B, Nguyen H. A Review of Artificial Intelligence Applications in Mining and Geological Engineering. Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining. Springer International Publishing; 2021. pp. 109–142.; Naser MZ. Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences. Fire Technol. 2021;57: 2741–2784.; Wu X, Zhang X, Huang X, Xiao F, Usmani A. A real-time forecast of tunnel fire based on numerical database and artificial intelligence. Build Simul. 2022;15: 511–524.; Li M, Sun Z, Jiang Z, Tan Z, Chen J. A Virtual Reality Platform for Safety Training in Coal Mines with AI and Cloud Computing. Discrete Dyn Nat Soc. 2020;2020. doi:10.1155/2020/6243085; Chen N, Liu W, Bai R, Chen A. Application of computational intelligence technologies in emergency management: a literature review. Artificial Intelligence Review. 2019;52: 2131–2168.; Khan A, Gupta S, Gupta SK. Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International Journal of Disaster Risk Reduction. 2020;47: 101642.; Su L-C, Wu X, Zhang X, Huang X. Smart performance-based design for building fire safety: Prediction of smoke motion via AI. Journal of Building Engineering. 2021;43: 102529.; Muduli L, Mishra DP, Jana PK. Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review. Journal of Network and Computer Applications. 2018;106: 48–67.; Vahabi H, Naser MZ, Saeb MR. Fire Protection and Materials Flammability Control by Artificial Intelligence. Fire Technol. 2022;58: 1071–1073.; Shen VRL, Yang CY. A Special Approach to Teach Artificial Intelligence. International Journal of Engineering Education. 2010;26: 1414–1421.; Bosman L, Madamanchi A, Bartholomew S, Byrd V. Repeated Use of Adaptive Comparative Judgment to Develop Student Understanding of Artificial Intelligence in Problem Based Learning Assignments. International Journal of Engineering Education. 2022;38: 892–904.; Qin SJ, Chiang LH. Advances and opportunities in machine learning for process data analytics. Comput Chem Eng. 2019;126: 465–473.; Gajek A, Fabiano B, Laurent A, Jensen N. Process safety education of future employee 4.0 in Industry 4.0. J Loss Prev Process Indust. 2022;75: 104691.; Kockmann N. Digital methods and tools for chemical equipment and plants. Reaction Chemistry & Engineering. 2019;4: 1522–1529.; Jiménez López E, Cuenca Jiménez F, Luna Sandoval G, Ochoa Estrella FJ, Maciel Monteón MA, Muñoz F, et al. Technical Considerations for the Conformation of Specific Competences in Mechatronic Engineers in the Context of Industry 4.0 and 5.0. Processes. 2022;10: 1445.; Maluk C, Woodrow M, Torero JL. The potential of integrating fire safety in modern building design. Fire Saf J. 2017;88: 104–112.; Zhang X, Wu X, Park Y, Zhang T, Huang X, Xiao F, et al. Perspectives of big experimental database and artificial intelligence in tunnel fire research. Tunnelling and Underground Space Technology. 2021;108: 103691.; Ingberg SH, Griffin HK, Robinson WC, Wilson RE. Fire tests of building columns. J Franklin Inst. 1921;191: 823–827.; Thomas PH, Webster CT, Raftery MM. Some experiments on buoyant diffusion flames. Combust Flame. 1961;5: 359–367.; Thomas PH. The size of flames from natural fires. Symp Combust. 1963;9: 844–859.; Thomas PH. Behavior of fires in enclosures—Some recent progress. Symp Combust. 1973;14: 1007–1020.; Murgai MP, Emmons HW. Natural convection above fires. J Fluid Mech. 1960;8: 611–624.; Lee S-L, Emmons HW. A study of natural convection above a line fire. J Fluid Mech. 1961;11: 353–368.; Emmons HW. Fire development theory—An overview. Fire Technol. 1965;1: 175–181.; Yang KT, Chang LC. UNDSAFE-I: A computer code for buoyant flow in an enclosure. NASA astrophysics data system Harvard University; 1977 p. 33476.; Yeoh GH, Yuen KK. Chapter 1 - Introduction. In: Yeoh GH, Yuen KK, editors. Computational Fluid Dynamics in Fire Engineering. 2008. pp. 1–28.; Olenick SM, Carpenter DJ. An updated international survey of computer models for fire and smoke. J Fire Prot Eng. 2003;13. doi:10.1177/104239103033367; Oran ES. Understanding explosions – From catastrophic accidents to creation of the universe. Proc Combust Inst. 2015;35: 1–35.; Sunder SS, Gann RG, Grosshandler WL, Lew HS, Bukowski RW, Sadek F, et al. Final report on the collapse of the World Trade Center towers : Gaithersburg, MD: National Institute of Standards and Technology; 2005. doi:10.6028/nist.ncstar.1; Torero JL. Fire-induced structural failure: the World Trade Center, New York. Proc Inst Civ Eng - Forensic Eng. 2011;164: 69–77.; Usmani AS, Chung YC, Torero JL. How did the WTC towers collapse: a new theory. Fire Saf J. 2003;38: 501–533.; International Survey of Computer Models for Fire and Smoke. [cited 6 Feb 2023]. Available: https://www.firemodelsurvey.com/; The Howden Group. Ventsim 3D Mine Ventilation Design. [cited 9 Jul 2022]. Available: https://ventsim.com/; Brake DJ. Fire Modelling in Underground Mines using Ventsim VentFIRE. The Australian Mine Ventilation Conference. 2013.; Stewart CM, Aminossadati SM, Kizil MS. Underground Fire Rollback Simulation in Large Scale Ventilation Models. The 15th North American Mine Ventilation Symposium 2015. 2015.; Pomeroy C, Brune J, Mischo H, Weyer J. Modeling leakage though utilization of modern software for a historical silver mine. 2015 SME Annual Meeting and Conference. 2015.; Rădoi F, Boantă C, Ianc N, Matei A, Prodan M. Comparative solving of a ventilation network and its validated results. International Multidisciplinary Scientific Geoconference; 2018.; Morar MS, Radu SM, Cioclea D, Gherghe I. Use of IT equipment and specialized programs for solving ventilation networks. 7th International Multidisciplinary Symposium. 2017.; Centers for Disease Control and Prevention. MFIRE - 4.0.2.0. [cited 8 Jul 2021]. Available: https://www.cdc.gov/niosh/mining/works/coversheet1816.html; Schafrik S. Expanding the Limitations of the MFIRE Simulation Model. SME Annual Meeting. 2011.; Zhou L, Bahrami D. A Derivative Method to Calculate Resistance Sensitivity for Mine Ventilation Networks. Mining, Metallurgy and Exploration. 2022;39: 1833–1839.; Zhou L, Yuan L, Thomas R, Bahrami D, Rowland J. An Improved Method to Calculate the Heat Release Rate of a Mine Fire in Underground Mines. Mining, Metallurgy and Exploration. 2020;37: 1941–1949.; Zhou L, Yuan L, Bahrami D, Thomas RA, Rowland JH. Numerical and experimental investigation of carbon monoxide spread in underground mine fires. J Fire Sci. 2018;36: 406–418.; Zhou L, Smith AC, Yuan L. New Improvements to MFIRE to Enhance Fire Modeling Capabilities. Min Eng. 2016;68: 45–50.; Yuan L, Zhou L, Smith AC. Modeling carbon monoxide spread in underground mine fires. Appl Therm Eng. 2016;100: 1319–1326.; Zhou L, Smith AC. Improvement of a mine fire simulation program - Incorporation of smoke rollback into MFIRE 3.0. J Fire Sci. 2012;30: 29–39.; Zhou L, Luo Y. Improvement and upgrade of mine fire simulation program MFIRE. Journal of Coal Science and Engineering. 2011;17: 275–280.; Zhou L, Luo Y. A new feature of MFIRE: The moving fire simulation. Int J Min Miner Eng. 2011;3: 141–151.; Cheng LH, Ueng TH, Liu CW. Simulation of ventilation and fire in the underground facilities. Fire Saf J. 2001;36: 597–619.; VentGraph – software for mine ventilation engineers and experts. [cited 9 Dec 2021]. Available: https://imgpan.pl/en/oferta/ventgraph/; Dziurzyński W, Krach A, Pałka T. Airflow sensitivity assessment based on underground mine ventilation systems modeling. Energies. 2017;10. doi:10.3390/en10101451; Dziurzynski W, Krach A, Pałka T. A reliable method of completing and compensating the results of measurements of flow parameters in a network of headings. Arch Min Sci. 2015;60: 3–24.; Gillies ADS, Wala AM, Wu HW. Simulation of the effects of inertisation of fires on mine ventilation systems. 8th International Mine Ventilation Congress. 2005.; Peacock RD, Reneke PA, Forney GP. CFAST – consolidated model of fire growth and smoke transport (version 7) volume 1: Technical reference guide. National Institute of Standards and Technology; 2015 Dec. doi:10.6028/nist.tn.1889v1; Ding L, Li Y, Ji J, Lin C, Wang L. A cost-effective building fire smoke spread prediction approach for risk mitigation based on data assimilation using Ensemble Kalman Filter. Fire Mater. 2022. doi:10.1002/fam.3052; Fang H, Lo SM, Zhang Y, Shen Y. Development of a machine-learning approach for identifying the stages of fire development in residential room fires. Fire Saf J. 2021;126. doi:10.1016/j.firesaf.2021.103469; Buffington T, Cabrera J-M, Kurzawski A, Ezekoye OA. Deep-Learning Emulators of Transient Compartment Fire Simulations for Inverse Problems and Room-Scale Calorimetry. Fire Technol. 2021;57: 2859–2885.; Possidente L, Weiss A, De Silva D, Pustorino S, Nigro E, Tondini N. Fire safety engineering principles applied to a multi-storey steel building. Proc Inst Civ Eng Struct Build. 2021;174: 725–738.; Di S, Yong J, Xianli Z, Mengjie L. Temperature predictions of a single-room fire based on the cokriging model. Journal of University of Science and Technology of China. 2021;51: 75–86.; Kurzawski AJ, Ezekoye OA. Inversion for fire heat-release rate using heat flux measurements. J Heat Transfer. 2020;142. doi:10.1115/1.4046264; Kurzawski A, Cabrera J-M, Ezekoye OA. Model Considerations for Fire Scene Reconstruction Using a Bayesian Framework. Fire Technol. 2020;56: 445–467.; Lee J. Numerical analysis of how ventilation conditions impact compartment fire suppression by water mist. Ann Nucl Energy. 2020;136. doi:10.1016/j.anucene.2019.107021; Yemelyanenko S, Ivanusa A, Yakovchuk R, Kuzyk A. Fire risks of public buildings. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2020;6: 75–82.; Cleary T, Taylor G. Evaluation of Empirical Evidence Against Zone Models for Smoke Detector Activation Prediction. Fire Technol. 2020. doi:10.1007/s10694-020-01061-2; McGrattan KB, Hostikka S, Floyd J, McDermott R, Vanella M, Mueller E. Fire Dynamics Simulator Technical Reference Guide Volume 3: Validation. Gaithersburg, MD: National Institute of Standards and Technology; 2013. doi:10.6028/NIST.SP.1018; Wang K-H, Liu Y-Q, Zhang P-H, Guo Y-L. Numerical study on the impact of wall thermal inertia on maximum smoke temperature and longitudinal attenuation in long channel fires. Int J Therm Sci. 2023;184. doi:10.1016/j.ijthermalsci.2022.107940; Karunaratne TLW, Chow CL. Fire spread along vertical greenery systems from window ejected flame: A study based on a fire dynamic simulator model. Journal of Building Engineering. 2022;62. doi:10.1016/j.jobe.2022.105359; Vijayan P, Thampi GK, Vishwakarma PK, Palacios A. Evaluation of flame geometry of horizontal turbulent jet fires in reduced pressures: A numerical approach. J Loss Prev Process Indust. 2022;80. doi:10.1016/j.jlp.2022.104931; Wang Z, Hou S, Zhang M, Xu J, Gao Z, Cozzani V, et al. Assessment of the mass burning rate of LNG pool fires by a validated CFD model. Process Saf Environ Prot. 2022;168: 642–653.; Bilyaz S, Ezekoye OA. Modeling the dispersion and mixing of light gases in enclosed spaces using the Method of Moments. J Loss Prev Process Indust. 2022;80. doi:10.1016/j.jlp.2022.104877; Xie J, Li J, Wang J, Jiang J. Fire protection design of a lithium-ion battery warehouse based on numerical simulation results. J Loss Prev Process Indust. 2022;80. doi:10.1016/j.jlp.2022.104885; Deng T, Norris S, Sharma RN. Effects of the water spray system on the air-driving force required in longitudinally ventilated road tunnels. Tunnelling and Underground Space Technology. 2022;130. doi:10.1016/j.tust.2022.104753; Huang Y-H. Using Fire Dynamics Simulator to reconstruct a fire scene in a hospital-based long-term care facility. J Loss Prev Process Indust. 2022;80. doi:10.1016/j.jlp.2022.104863; Chen Y, Jia J, Che G. Simulation of Large-Scale Tunnel Belt Fire and Smoke Characteristics under a Water Curtain System Based on CFD. ACS Omega. 2022;7: 40419–40431.; Liu Z, Xie H, Han B, Li P, Jiang Z, Yu J. Experimental study on residual bearing capacity of full-size fire-damaged prestressed concrete girders. Structures. 2022;45: 1788–1802.; PyroSim. [cited 31 Jul 2023]. Available: https://www.thunderheadeng.com/pyrosim; Chow WK. A comparison of the use of fire zone and field models for simulating atrium smoke-filling processes. Fire Saf J. 1995;25: 337–353.; Tuovinen H, Holmstedt G, Bengtson S. Sensitivity calculations of tunnel fires using CFD. Fire Technol. 1996;32: 99–119.; Wang J, Hua J, Kumar K, Kumar S. Evaluation of CFD Modeling Methods for Fire-induced Airflow in a Room. J Fire Sci. 2006;24: 393–411.; Bilger R. Computational field models in fire research and engineering. Fire Saf Sci. 1994;4: 95–110.; Cox G, Kumar S. Field Modelling of Fire in Forced Ventilated Enclosures. Combustion Science and Technology. 1987. pp. 7–23. doi:10.1080/00102208708952565; Kumar S, Chitty R. CFD study of thermal detection in A closed compartment subject to external fires. Fire Saf Sci. 2000;6: 767–778.; Carlsson J. Fire modeling using CFD - An introduction for fire safety engineers. Department of Fire Safety Engineering - Lund Institute of Technology - Lund University; 1999. Report No.: 5025.; Liang H, Welch S. Development of an engineering methodology for thermal analysis of protected structural members in fire. Proceedings of the 3rd International Conference on Steel and Composite Structures. 2007.; Lewis M, Moss J, Rubini P. CFD modelling of combustion and heat transfer in compartment fires. Fire Saf Sci. 1997;5: 463–474.; Pierce JBM, Moss JB. Smoke production, radiation heat transfer and fire growth in a liquid-fuelled compartment fire. Fire Saf J. 2007;42: 310–320.; Koo S-H, Fraser-Mitchell J, Welch S. Sensor-steered fire simulation. Fire Saf J. 2010;45: 193–205.; Fraser-Mitchell JN. An object-oriented simulation (crisp II) for fire risk assessment. Fire Safety Science - Proceedings of the Fourth International Symposium. 1994.; Fraser‐Mitchell JN. Modelling human behaviour within the fire risk assessment tool CRISP. Fire Mater. doi:10.1002/(SICI)1099-1018(199911/12)23:63.0.CO;2-3; Björkman J, Mikkola E. Risk assessment of a timber frame building by using CRISP simulation. Fire Mater. 2001. doi:10.1002/fam.770; Zhang S, Ma H, Huang X, Peng S, Du J, Zhao W. Numerical simulation on natural gas explosion and prevention measures design under water–gas compartment in utility tunnel. Tunnelling and Underground Space Technology. 2022;130. doi:10.1016/j.tust.2022.104754; Cantera. [cited 30 Nov 2022]. Available: https://cantera.org/; Porowski R, Kowalik R, Grzmiączka M, Jurišević N, Gawdzik J. Influence of initial temperature on laminar burning velocity in hydrogen-air mixtures as potential for green energy carrier. Int Commun Heat Mass Transfer. 2023;146: 106861.; van Wingerden M, Skjold T, Roosendans D, Dutertre A, Pekalski A. Chemical inhibition of hydrogen-air explosions: Literature review, simulations and experiments. Process Saf Environ Prot. 2023;176: 1120–1129.; Papas P, Cao C, Kim W, Baldwin E, Chattaway A. Fire suppression using trifluoroiodomethane (CF3I)-carbon dioxide (CO2) mixtures. Proc Combust Inst. 2023;39: 3765–3773.; Wang Z, Lu Z, Yelishala SC, Metghalchi H, Levendis YA. Flame characteristics of propane-air-carbon dioxide blends at elevated temperatures and pressures. Energy. 2021;228. doi:10.1016/j.energy.2021.120624; Rudy W, Pekalski A, Makarov D, Teodorczyk A, Molkov V. Prediction of deflagrative explosions in variety of closed vessels. Energies. 2021;14. doi:10.3390/en14082138; Wang Z, Lu Z, Yelishala SC, Metghalchi H, Levendis YA. Laminar burning speeds and flame instabilities of isobutane carbon dioxide air mixtures at high pressures and temperatures. Fuel. 2020;268. doi:10.1016/j.fuel.2020.117410; Kuznetsov M, Redlinger R, Breitung W, Grune J, Friedrich A, Ichikawa N. Laminar burning velocities of hydrogen-oxygen-steam mixtures at elevated temperatures and pressures. Proc Combust Inst. 2011;33: 895–903.; Kee RJ, Coltrin ME, Glarborg P, Zhu H. Chemically Reacting Flow: Theory, Modeling, and Simulation. John Wiley & Sons; 2017.; California Institute of Technology. Shock and Detonation Toolbox. In: Explosion Dynamics Laboratory [Internet]. 2021 [cited 30 Nov 2022]. Available: https://shepherd.caltech.edu/EDL/PublicResources/sdt/; Kao S, Ziegler J, Bitter N, Schmidt B, Lawson J, Shepherd JE. SDToolbox - Numerical Tools for Shock and Detonation Wave Modeling. Explosion Dynamics Laboratory - Graduate Aerospace Laboratories - California Institute of Technology; 2023. Report No.: FM2018.001.; Weng Z, Mével R, Chaumeix N. Detonation in ammonia-oxygen and ammonia-nitrous oxide mixtures. Combust Flame. 2023;251: 112680.; Li Z, Weng Z, Mével R. Thermo-chemical analyses of steady detonation wave using the Shock and Detonation Toolbox in Cantera. Shock Waves. 2022;32: 759–762.; Bedick C, Ferguson D. Quantitative Ion Probe Measurements for Application in a Rotating Detonation Engine. AIAA Journal. 2020;58: 4003–4016.; Xu Y, Worthington D, Oke A, Software D. Correcting the predictions by Baker-Strehlow-Tang (BST) model for the ground effect. Hazards XXI: Process Safety and Environmental Protection in a Changing World - Symposium Series 155 - IChemE. 2009.; Marsh BLAST Powered by MaxLoss. [cited 30 Nov 2022]. Available: https://www.marsh.com/us/industries/energy-and-power/products/marsh-blast-powered-by-maxloss.html?bsrc=marsh; Gexcon AS. FLACS-CFD v22.2 User’s Manual. 2023.; Lim BH, Ng EYK. Comparison of FLACS and BASiL Model for Ro-Pax Ferry LNG Bunkering Leak Analysis. Fluids Barriers CNS. 2022;7. doi:10.3390/fluids7080272; Malik AA, Nasif MS, Niazi UM, Al-Waked R. Numerical modelling of wind-influenced above sea gas dispersion and explosion risk analysis due to subsea gas release on multileveled offshore platform. Appl Ocean Res. 2022;124. doi:10.1016/j.apor.2022.103208; Diakow PA, Thomas JK, Vivanco E, Rodriguez O. Fireball and flame venting comparisons: Test data, CFD simulations, and industry standard prediction. J Loss Prev Process Indust. 2022;77. doi:10.1016/j.jlp.2022.104794; Yuan W, Li J, Zhang R, Li X, Xie J, Chen J. Numerical investigation of the leakage and explosion scenarios in China’s first liquid hydrogen refueling station. Int J Hydrogen Energy. 2022;47: 18786–18798.; Xie X, Xiong Y, Xie W, Li J, Zhang W. Quantitative Risk Analysis of Oil and Gas Fires and Explosions for FPSO Systems in China. Processes. 2022;10. doi:10.3390/pr10050902; Wang S, Li Z, Fang Q, Yan H, Liu Y. Numerical simulation of overpressure loads generated by gas explosions in utility tunnels. Process Saf Environ Prot. 2022;161: 100–117.; Cheng R, Chen W, Hao H, Li J. Dynamic response of road tunnel subjected to internal Boiling liquid expansion vapour explosion (BLEVE). Tunnelling and Underground Space Technology. 2022;123. doi:10.1016/j.tust.2022.104363; Liu C-M, Kong Q, Wang S-P, Liang Y-H. Numerical study on the temporal and spatial distribution law of natural gas explosion load on an ultra-deepwater semi-submersible drilling platform. Ocean Eng. 2022;250. doi:10.1016/j.oceaneng.2022.110965; Li J, Hao H, Chen W, Cheng R. Calculation of BLEVE energy and overpressures inside a tunnel using analytical and CFD methods. Tunnelling and Underground Space Technology. 2022;120. doi:10.1016/j.tust.2021.104263; Zubair M, Al Suwaidi RR, Al Souqi AA. Behavior of Emergency Core Cooling System (ECCS) during the early stage of Loss of Coolant Accident (LOCA) for APR 1400 with Flownex software. Prog Nuclear Energy. 2021;141: 103949.; Rousseau PG, du Toit CG, Jun JS, Noh JM. Code-to-code comparison for analysing the steady-state heat transfer and natural circulation in an air-cooled RCCS using GAMMA+ and Flownex. Nucl Eng Des. 2015;291: 71–89.; ProSAir computational blast loading tool. [cited 1 Dec 2022]. Available: https://www.cranfield.ac.uk/facilities/prosair-computational-blast-loading-tool; Wada Y, Liou M-S. An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities. SIAM J Sci Comput. 1997;18: 633–657.; Castedo R, Reifarth C, Santos AP, Losada J, López LM, Chiquito M, et al. Application of grid convergence index to shock wave validated with LS-DYNA and ProsAir. Ingeniería e Investigación. 2019;39. doi:10.15446/ing.investig.v39n3.81380; Alsubaei FC, El Damatty AA, El Dakhakhni WW. Effectiveness of blast walls designed for blast shielding. Bedard C., Katsanis C.J., editors. Canadian Society for Civil Engineering; 2013.; Abdel‐Jawad M. Validation of BLEVE events using the hybrid code exploCFD. Process Saf Prog. 2021;40. doi:10.1002/prs.12208; Abdel-Jawad M. CSC coupled Graham Kenney source term for hybrid models of BLEVE events: Formulation, implementation and validation. Process Saf Prog. 2021;40: 281–288.; Fluidyn-Ventil - Software for HVAC, indoor air quality, explosion, smoke. FLUIDYN; 1 Feb 2019 [cited 1 Dec 2022]. Available: https://www.fluidyn.com/?page_id=100; Lv P, Zhang J, Ju M, Hu Y, Liang T, Liu K, et al. Influence of branch pipes on the deflagration characteristics of methane in confined space. Process Saf Prog. 2021;40. doi:10.1002/prs.12152; Lv P, Zhang J, Pang L, Yang K, Sun S. Influence of Multiple Factors on the Explosion Characteristics of Flammable Gases in Municipal Sewage Pipelines. Advances in Civil Engineering. 2020;2020. doi:10.1155/2020/3193012; Shukla V, Ganju S, Varma S, Sengupta S, Maheshwari NK. Affect of recombiner location on its performance in closed containment under dry and steam conditions. Int J Hydrogen Energy. 2019;44: 25957–25973.; Europlexus Software - EPX. [cited 1 Dec 2022]. Available: http://www-epx.cea.fr/; Valsamos G, Larcher M, Casadei F. Beirut explosion 2020: A case study for a large-scale urban blast simulation. Saf Sci. 2021;137. doi:10.1016/j.ssci.2021.105190; Aune V, Valsamos G, Casadei F, Langseth M, Børvik T. Fluid-structure interaction effects during the dynamic response of clamped thin steel plates exposed to blast loading. Int J Mech Sci. 2021;195. doi:10.1016/j.ijmecsci.2020.106263; Vyazmina E, Jallais S, Beccantini A, Trélat S. Protective walls against effects of vapor cloud fast deflagration: CFD recommendations for design. Process Saf Prog. 2018;37: 56–66.; Aune V, Valsamos G, Casadei F, Langseth M, Børvik T. On the dynamic response of blast-loaded steel plates with and without pre-formed holes. Int J Impact Eng. 2017;108: 27–46.; Aune V, Valsamos G, Casadei F, Larcher M, Langseth M, Børvik T. Numerical study on the structural response of blast-loaded thin aluminium and steel plates. Int J Impact Eng. 2017;99: 131–144.; Faucher V, Galon P, Beccantini A, Crouzet F, Debaud F, Gautier T. Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale. Ann Nucl Energy. 2015;82: 188–194.; Valsamos G, Casadei F, Solomos G, Larcher M. Risk assessment of blast events in a transport infrastructure by fluid-structure interaction analysis. Saf Sci. 2019;118: 887–897.; Velikorodny A, Studer E, Kudriakov S, Beccantini A. Combustion modeling in large scale volumes using EUROPLEXUS code. J Loss Prev Process Indust. 2015;35: 104–116.; Anderson JD. Basic Philosophy of CFD. In: Wendt JF, editor. Computational Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. pp. 3–14.; Ansys %7C Engineering Simulation Software. [cited 8 Jul 2021]. Available: https://www.ansys.com/; COMSOL - CFD Software for Simulating Fluid Flow Applications. [cited 30 Nov 2022]. Available: https://www.comsol.com/cfd-module; OpenFOAM. [cited 30 Nov 2022]. Available: https://www.openfoam.com/; Binbin W. Comparative Research on FLUENT and FDS’s Numerical Simulation of Smoke Spread in Subway Platform Fire. Procedia Engineering. 2011;26: 1065–1075.; Zhong CH. Fire Dynamics Simulation (FDS) Study of Fire in Structures with Curved Geometry. Fah TC, editor. Mechanical Engineering, Universiti Tunku Abdul Rahman. 2013.; NIST. CFAST, Fire Growth and Smoke Transport Modeling. [cited 13 Jun 2022]. Available: https://www.nist.gov/el/fire-research-division-73300/product-services/consolidated-fire-and-smoke-transport-model-cfast; ANSYS Fluent Theory Guide. Ansys, Inc; 2013.; Cherbański R, Rudniak L, Machniewski P, Molga E, Tępiński J, Klapsa W, et al. Ethanol pool fire on a one-meter test tray - validation of CFD results. Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa. 2022;43: 23–44.; Król M, Król A. An Experimental and Numerical Study on Fire Spread in a Furnished Room. Buildings. 2022;12: 2189.; Singh GP, Sharma JD, Arora R, Sandhu IS. CFD analysis of shock tube for blast impact testing. Materials Today: Proceedings. 2020;28: 1872–1878.; Fedorova NN, Fomin PA, Valger SA. Propagation of shock waves formed by explosion of the air-propylene mixture in a T-pipeline. J Phys Conf Ser. 2019;1404: 012057.; Valger SA, Fomin PA, Fedorova NN. Numerical study of explosion of “propylene-air” mixture cloud in recessed cavity located near complex of bluff bodies. IOP Conf Ser: Mater Sci Eng. 2018;456: 012031.; Hajji Y, Bouteraa M, Bournot P, Bououdina M. Assessment of an accidental hydrogen leak from a vehicle tank in a confined space. Int J Hydrogen Energy. 2022;47: 28710–28720.; Smirnyakov VV, Rodionov VA, Smirnyakova VV, Orlov FA. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Journal of Mining Institute. 2022;253: 71–81.; Alutu C, El-Hassan Z, Leslie T, Durrant A, Rodriguez C. Application of computational fluid dynamics in the study of the caribbean petroleum corporation gasoline vapour dispersion. J Loss Prev Process Indust. 2021;71: 104513.; Węgrzyński W, Krajewski G, Kimbar G. Smart Smoke Control as an Efficient Solution for Smoke Ventilation in Converted Cellars of Historic Buildings. Fire Technol. 2021;57: 3101–3123.; Kubinyecz V, Teodosiu C. Review of numerical studies on ventilation systems for subway networks in emergency situations. IOP Conf Ser: Earth Environ Sci. 2021;664: 012093.; Król A, Król M. Some Tips on Numerical Modeling of Airflow and Fires in Road Tunnels. Energies. 2021;14: 2366.; Francisc-Vladimir K, Cătălin T. Verification of Ventilation System Efficiency in a Curved Subway Tunnel in Case of Fire Using Numerical Modeling. 2021 10th International Conference on Energy and Environment (CIEM). 2021. doi:10.1109/CIEM52821.2021.9614790; Li T, Chen L, Zhang Y, Ma W, Yang C, Shang F. Study on the smoke movement characteristics in large scale interchange tunnel fire. Int J Vent. 2020;19: 224–232.; Ding Y, Chen W, Zhang W, Zhang X, Li C, Zhou R, et al. Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales. Energy. 2022;258. doi:10.1016/j.energy.2022.124863; Ang CD, Peiró J, Riess I, Rein G. Analysis of Fire Throttling in Longitudinally Ventilated Tunnels With a One-dimensional Model. Fire Technol. 2022;58: 2925–2947.; Maragkos G, Funk E, Merci B. Analysis of adaptive mesh refinement in a turbulent buoyant helium plume. Int J Numer Methods Fluids. 2022;94: 1398–1415.; Henriksen M, Vaagsaether K, Lundberg J, Forseth S, Bjerketvedt D. Numerical study of premixed gas explosion in a 1-m channel partly filled with 18650 cell-like cylinders with experiments. J Loss Prev Process Indust. 2022;77. doi:10.1016/j.jlp.2022.104761; Vendra CMR, Shelke AV, Buston JEH, Gill J, Howard D, Read E, et al. Numerical and experimental characterisation of high energy density 21700 lithium-ion battery fires. Process Saf Environ Prot. 2022;160: 153–165.; McCarthy-Singh B, Gambaruto A. Experimental and numerical modelling of pressure piling using homogeneous explosive mixtures. Process Saf Environ Prot. 2022;167: 12–20.; Kang H-S, Kim S-M, Kim J. Safety Issues of a Hydrogen Refueling Station and a Prediction for an Overpressure Reduction by a Barrier Using OpenFOAM Software for an SRI Explosion Test in an Open Space. Energies. 2022;15. doi:10.3390/en15207556; Islas A, Fernández AR, Betegón C, Martínez-Pañeda E, Pandal A. Computational assessment of biomass dust explosions in the 20L sphere. Process Saf Environ Prot. 2022;165: 791–814.; Pan Y, Spijker C, Raupenstrauch H. CFD modeling of particle dispersion behavior in the MIKE 3 apparatus. Alex Eng J. 2022;61: 9305–9313.; Davidy A. Multiphysics Design of Pet-Coke Burner and Hydrogen Production by Applying Methane Steam Reforming System. Clean Technol Environ Policy. 2021;3: 260–287.; Davidy A. CFD simulation of forced recirculating fired heated reboilers. Processes. 2020;8. doi:10.3390/pr8020145; Davidy A. CFD simulation of ethanol steam reforming system for hydrogen production. ChemEngineering. 2018;2: 1–24.; Davidy A. Thermal Hydraulics and Thermochemical Design of Fatty Acid Methyl Ester (Biodiesel) Esterification Reactor by Heating with High Boiling Point Phenyl‐Naphthalene Liquid. Fluids Barriers CNS. 2022;7. doi:10.3390/fluids7030093; Davidy A. CFD design of hydrogenation reactor for transformation of levulinic acid to γ-valerolactone (GVL) by using high boiling point organic fluids. ChemEngineering. 2019;3: 1–14.; Davidy A. CFD simulation and mitigation with boiling liquid expanding vapor explosion (BLEVE) caused by jet fire. ChemEngineering. 2019;3: 1–22.; Liu Z, Xie K, Li L, Chen Y. A paradigm of safety management in Industry 4.0. Syst Res Behav Sci. 2020;37: 632–645.; Laciok V, Sikorova K, Fabiano B, Bernatik A. Trends and Opportunities of Tertiary Education in Safety Engineering Moving towards Safety 4.0. Sustain Sci Pract Policy. 2021;13: 524.; Antonopoulos I, Robu V, Couraud B, Kirli D, Norbu S, Kiprakis A, et al. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable Sustainable Energy Rev. 2020;130: 109899.; Murphy KP. Machine Learning: a probabilistic perspective. MIT Press; 2012.; Jain P, Coogan SCP, Subramanian SG, Crowley M, Taylor S, Flannigan MD. A review of machine learning applications in wildfire science and management. doi:10.1139/er-2020-0019; Parker S, Wu Z, Christofides PD. Cybersecurity in process control, operations, and supply chain. Comput Chem Eng. 2023;171: 108169.; Jiao Z, Hu P, Xu H, Wang Q. Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications. ACS Chem Health Saf. 2020;27: 316–334.; Lattimer BY, Hodges JL, Lattimer AM. Using machine learning in physics-based simulation of fire. Fire Saf J. 2020;114: 102991.; Hodges JL, Lattimer BY, Luxbacher KD. Compartment fire predictions using transpose convolutional neural networks. Fire Saf J. 2019;108: 102854.; Hodges JL, Lattimer BY. Wildland Fire Spread Modeling Using Convolutional Neural Networks. Fire Technol. 2019;55: 2115–2142.; Lo SM, Liu M, Zhang PH, Yuen RKK. An Artificial Neural-network Based Predictive Model for Pre-evacuation Human Response in Domestic Building Fire. Fire Technol. 2009;45: 431–449.; Arshad U, Taqvi SAA, Buang A. Experimental analysis and data-driven machine learning modelling of the minimum ignition temperature (MIT) of aluminium dust. Fuel. 2022;324: 124569.; Sarbayev M, Yang M, Wang H. Risk assessment of process systems by mapping fault tree into artificial neural network. J Loss Prev Process Indust. 2019;60: 203–212.; Harhara A, Arora A, Faruque Hasan MM. Process safety consequence modeling using artificial neural networks for approximating heat exchanger overpressure severity. Comput Chem Eng. 2023;170: 108098.; Grégoire Y, Daubech J, Proust C, Leprette E. Vented gas explosion overpressure calculation based on a multi-layered neural network. J Loss Prev Process Indust. 2022;74: 104641.; Arshad U, Taqvi SAA, Buang A. Modelling of the minimum ignition temperature (MIT) of corn dust using statistical analysis and artificial neural networks based on the synergistic effect of concentration and dispersion pressure. Process Saf Environ Prot. 2021;147: 742–755.; Patnaik G, Kaushik A, Singh MJ, Rajput A, Prakash G, Borana L. Damage Prediction of Underground Pipelines Subjected to Blast Loading. Arab J Sci Eng. 2022;47: 13559–13578.; Lo SM. A Fire Safety Assesment System for Existing Buildings. Fire Technol. 1999;35.; Liu M, Lo SM. The quantitative investigation on people’s pre-evacuation behavior under fire. Autom Constr. 2011;20: 620–628.; Bilgehan M, Kurtoğlu AE. ANFIS-based prediction of moment capacity of reinforced concrete slabs exposed to fire. Neural Comput Appl. 2016;27: 869–881.; Ahmad MA, Rashid ZA, Alzahrani AA, El-Harbawi M. Safety assessment: predicting fatality rates in methanol plant incidents. Heliyon. 2022;8: e11610.; Rao MB, Rao CR. Chapter 10 - Bayesian Networks. In: Rao MB, Rao CR, editors. Handbook of Statistics. Elsevier; 2014. pp. 357–385.; Mirończuk MM. Information Extraction System for Transforming Unstructured Text Data in Fire Reports into Structured Forms: A Polish Case Study. Fire Technol. 2020;56: 545–581.; Abidha TE, Mathai PP. Reducing false alarms in vision based fire detection with nb classifier in eadf framework. International Journal of Scientific and Research Publications. 2013;3: 50.; Nikolić S, Knežević M, Ivančević V, Luković I. Building an ensemble from a single Naive Bayes classifier in the analysis of key risk factors for Polish State Fire Service. 2014 Federated Conference on Computer Science and Information Systems. 2014. pp. 361–367.; Bahrepour M, Meratnia N, Havinga P. Use of AI Techniques for Residential Fire Detection in Wireless Sensor Networks. IFIP International Conference on Artificial Intelligence Applications & Innovations. 2009.; Namazi S, Brankovic L, Moghtaderi B, Zanganeh J. Predicting Deflagration and Detonation in Detonation Tube. Applications of Artificial Intelligence and Machine Learning. Springer Nature Singapore; 2022. pp. 529–543.; Davidson Rachel A. Modeling Postearthquake Fire Ignitions Using Generalized Linear (Mixed) Models. J Infrastruct Syst. 2009;15: 351–360.; Hasofer AM, Thomas I. Analysis of fatalities and injuries in building fire statistics. Fire Saf J. 2006;41: 2–14.; Finney M, Grenfell IC, Mc Hugh CW. Modeling containment of large wildfires using generalized linear mixed-model analysis. Forest Science. 2009;55: 249.; Guo F, Wang G, Innes JL, Ma Z, Liu A, Lin Y. Comparison of six generalized linear models for occurrence of lightning-induced fires in northern Daxing’an Mountains, China. Res J For. 2016;27: 379–388.; Vilar del Hoyo L, Isabel MPM, Vega FJM. Logistic regression models for human-caused wildfire risk estimation: Analysing the effect of the spatial accuracy in fire occurrence data. Eur J For Res. 2011;130: 983–996.; Pan J, Wang W, Li J. Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China. Nat Hazards. 2016;81: 1879–1899.; Yang L, Dawson CW, Brown MR, Gell M. Neural network and GA approaches for dwelling fire occurrence prediction. Knowledge-Based Systems. 2006;19: 213–219.; Boxer PA, Wild D. Psychological distress and alcohol use among fire fighters. Scand J Work Environ Health. 1993;19: 121–125.; Kim W, Kim J, Jang JA, Kim S-H. Do Perceptions of Hydrogen Energy Effect on Vehicle Preference? A Learning-Based Model Approach. KSCE Journal of Civil Engineering. 2023;27: 805–813.; Restrepo CE, Simonoff JS, Zimmerman R. Causes, cost consequences, and risk implications of accidents in US hazardous liquid pipeline infrastructure. Int J Crit Infrastruct Prot. 2009;2: 38–50.; Wu X, Hou L, Wu Z. Quantitative Analysis of the Cause-Effect Relationship of Incidents Occurred in Tank Farm Based on the Method of Logistic Regression. ASME 2019 Pressure Vessels & Piping Conference. 2019; V007T07A023.; Eckhoff RK, Ngo M, Olsen W. On the minimum ignition energy (MIE) for propane/air. J Hazard Mater. 2010;175: 293–297.; Song X. Parameterized fragility analysis of steel frame structure subjected to blast loads using Bayesian logistic regression method. Struct Saf. 2020;87: 102000.; Harmathy TZ. Design of Buildings for Fire Safety. ASTM International; 1976.; Amatulli G, Rodrigues MJ, Trombetti M, Lovreglio R. Assessing long-term fire risk at local scale by means of decision tree technique. Journal of Geophysical Research: Biogeosciences. 2006;111. doi:10.1029/2005JG000133; Chu G, Sun J. Decision analysis on fire safety design based on evaluating building fire risk to life. Saf Sci. 2008;46: 1125–1136.; McNeil JG, Lattimer BY. Autonomous Fire Suppression System for Use in High and Low Visibility Environments by Visual Servoing. Fire Technol. 2016;52: 1343–1368.; Kusiak A, Song Z. Combustion efficiency optimization and virtual testing: A data-mining approach. IEEE Trans Ind Inf. 2006;2: 176–184.; Jogarah KK, Soopaul K, Beeharry Y, Hurbungs V. Hybrid machine learning algorithms for fault detection in android smartphones. Trans Emerg Telecommun Technol. 2018;29: e3272.; Lei C, Deng J, Cao K, Ma L, Xiao Y, Ren L. A random forest approach for predicting coal spontaneous combustion. Fuel. 2018;223: 63–73.; Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For Ecol Manage. 2012;275: 117–129.; Kim O, Kang D-J. Fire detection system using random forest classification for image sequences of complex background. Opt Eng. 2013;52. doi:10.1117/1.OE.52.6.067202; El-Amin MF, Subasi A. Forecasting a Small-Scale Hydrogen Leakage in Air using Machine Learning Techniques. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). 2020. pp. 1–5.; Ko BC, Cheong K-H, Nam J-Y. Fire detection based on vision sensor and support vector machines. Fire Saf J. 2009;44: 322–329.; Wei Y-Y, Zhang J-Y, Wang J. Research on Building Fire Risk Fast Assessment Method Based on Fuzzy comprehensive evaluation and SVM. Pan X., Wang J., Yao H., editors. Elsevier Ltd; 2018.; Pundir AS, Raman B. Dual Deep Learning Model for Image Based Smoke Detection. Fire Technol. 2019;55: 2419–2442.; Ishola AA, Valles D. Using Machine Learning and Regression Analysis to Classify and Predict Danger Levels in Burning Sites. 2022 IEEE World AI IoT Congress (AIIoT). 2022. pp. 453–459.; Chen P, Xie Y, Jin P, Zhang D. A wireless sensor data-based coal mine gas monitoring algorithm with least squares support vector machines optimized by swarm intelligence techniques. Int J Distrib Sens Netw. 2018;14: 1550147718777440.; Liu K-W, Wan J-H, Han Z-Z. Hazardous chemicals accident prediction based on accident state vector using multimodal data. Fuzzy Systems and Data Mining II. Amsterdam, NY: IOS Press; 2016. pp. 232–240.; Wang Q, Teng G, Li C, Zhao Y, Peng Z. Identification and classification of explosives using semi-supervised learning and laser-induced breakdown spectroscopy. J Hazard Mater. 2019;369: 423–429.; Goumagias N, Whalley J, Dilaver O, Cunningham J. Making sense of the internet of things: a critical review of internet of things definitions between 2005 and 2019. Internet Res. 2021;31: 1583–1610.; Sacramento ICC, de Oliveira Fernandes V, Rösch N, de Andrade Marques E. Low-cost multipurpose sensor network integrated with iot and webgis for fire safety concerns. Acta Scientiarum Technology. 2023;45: e61451–e61451.; Hajovsky R, Pies M, Velicka J, Slany V, Rous R, Danys L, et al. Design of an IoT-Based Monitoring System as a Part of Prevention of Thermal Events in Mining and Landfill Waste Disposal Sites: A Pilot Case Study. IEEE Trans Instrum Meas. 2023;72: 1–14.; Safi A, Ahmad Z, Jehangiri AI, Latip R, Zaman SKU, Khan MA, et al. A Fault Tolerant Surveillance System for Fire Detection and Prevention Using LoRaWAN in Smart Buildings. Sensors . 2022;22. doi:10.3390/s22218411; Hitimana E, Bajpai G, Musabe R, Sibomana L, Jayavel K. Containerized Architecture Performance Analysis for IoT Framework Based on Enhanced Fire Prevention Case Study: Rwanda. Sensors . 2022;22. doi:10.3390/s22176462; Singh N, Gunjan VK, Chaudhary G, Kaluri R, Victor N, Lakshmanna K. IoT enabled HELMET to safeguard the health of mine workers. Computer communications. 2022;193: 1–9.; Chen M, Wu Y, Wang K, Guo H, Ke W. An explosion accident analysis of the laboratory in university. Process Saf Prog. 2020;39: e12150.; Xie S, Chen Y, Dong S, Zhang G. Risk assessment of an oil depot using the improved multi-sensor fusion approach based on the cloud model and the belief Jensen-Shannon divergence. J Loss Prev Process Indust. 2020;67: 104214.; Zahid HM, Ahammed R. Application of Industry 4.0 in LPG condition monitoring and emergency systems using IoT approach. World Journal of Engineering. 2021;18: 971–984.; Sagiroglu S, Sinanc D. Big data: A review. 2013 International Conference on Collaboration Technologies and Systems (CTS). 2013. pp. 42–47.; Sung Kim B, Yeon Kim D, Won Kim K, Taek Park S. The improvement plan for fire response time using big data. Indian J Sci Technol. 2015;8. doi:10.17485/ijst/2015/v8i23/79198; Sun X, Cai K, Chen B, Zha J, Zhou G. Application of voice recognition interaction and big data internet of things in urban fire fighting. Journal of Location Based Services. 2022; 1–22.; Kim J-S, Kim B-S. Analysis of Fire-Accident Factors Using Big-Data Analysis Method for Construction Areas. KSCE Journal of Civil Engineering. 2018;22: 1535–1543.; Jia J, Chen X, Sun Q. Surrounding Environment and Civil Airport Fire Emergency Management Based on Big Data Simulation. Mobile Information Systems. 2022;2022. doi:10.1155/2022/9050406; Muhammad K, Rodrigues JJPC, Kozlov S, Piccialli F, Albuquerque VHC de. Energy-Efficient Monitoring of Fire Scenes for Intelligent Networks. IEEE Netw. 2020;34: 108–115.; Lee C-A, Sung Y-C, Lin Y-S, Hsiao GL-K. Evaluating the severity of building fires with the analytical hierarchy process, big data analysis, and remote sensing. Nat Hazards. 2020;103: 1843–1856.; Wang L, Zhao Q, Wen Z, Qu J. RAFFIA: Short-term Forest Fire Danger Rating Prediction via Multiclass Logistic Regression. Sustain Sci Pract Policy. 2018;10: 4620.; Zhou L, Yuan L, Bahrami D, Thomas RA, Cole GP, Rowland JH. Study on integration of real-time atmospheric monitoring system data and MFIRE simulation. CIM Journal. 2020;11: 131–138.; Cheng X, Zhang Y. Study on Explosion Safety Distance in LPG Tank Fire. 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). 2019. pp. 682–686.; Znamenskaya IA, Doroshchenko IA, Sysoev NN, Tatarenkova DI. Results of Quantitative Analysis of High-Speed Shadowgraphy of Shock Tube Flows Using Machine Vision and Machine Learning. Dokl Phys. 2021;66: 93–96.; Schunk DH. Learning theories an educational perspective. Pearson Education, Inc; 2012.; Garzón J, Kinshuk, Baldiris S, Gutiérrez J, Pavón J. How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review. 2020;31: 100334.; Park HY, Licon CV, Sleipness OR. Teaching Sustainability in Planning and Design Education: A Systematic Review of Pedagogical Approaches. Sustain Sci Pract Policy. 2022;14: 9485.; Woodrow M, Gillen AL, Woodrow R, Torero J. Investigating varied pedagogical approaches for problem-based learning in a fire safety engineering course. International Journal of Engineering Education. 2020;36: 1605–1614.; Lozano R, Merrill MY, Sammalisto K, Ceulemans K, Lozano FJ. Connecting Competences and Pedagogical Approaches for Sustainable Development in Higher Education: A Literature Review and Framework Proposal. Sustain Sci Pract Policy. 2017;9: 1889.; Sprain L, Timpson WM. Pedagogy for Sustainability Science: Case-Based Approaches for Interdisciplinary Instruction. Environmental Communication. 2012;6: 532–550.; Stalmeijer RE, Gijselaers WH, Wolfhagen IHAP, Harendza S, Scherpbier AJJA. How interdisciplinary teams can create multi-disciplinary education: the interplay between team processes and educational quality. Med Educ. 2007;41: 1059–1066.; Segalàs J, Ferrer-Balas D, Mulder KF. What do engineering students learn in sustainability courses? The effect of the pedagogical approach. J Clean Prod. 2010;18: 275–284.; Davies M. Concept mapping, mind mapping and argument mapping: what are the differences and do they matter? Higher Education. 2011;62: 279–301.; National Fire Protection Association. Flammable and Combustible Liquids Code: NFPA 30. National fire protection Association; 2014. Report No.: NFPA 30.; McGrattan KB, Baum HR, Hamins A. Thermal radiation from large pool fires. Gaithersburg, MD: National Institute of Standards and Technology; 2000 Nov. doi:10.6028/nist.ir.6546; Drysdale DD. Fire Dynamics. In: Meyers RA, editor. Encyclopedia of Physical Science and Technology (Third Edition). New York: Academic Press; 2003. pp. 869–892.; Lafdal B, Djebbar R, Boulet P, Mehaddi R, Koutaiba E, Beji T, et al. Numerical study of the combustion regimes in naturally-vented compartment fires. Fire Saf J. 2022;131: 103604.; Fontana M, Kohler J, Fischer K, De Sanctis G. Fire Load Density. In: Hurley MJ, Gottuk D, Hall JR, Harada K, Kuligowski E, Puchovsky M, et al., editors. SFPE Handbook of Fire Protection Engineering. New York, NY: Springer New York; 2016. pp. 1131–1142.; Real Decreto 2267/2004, de 3 de diciembre, por el que se aprueba el Reglamento de seguridad contra incendios en los establecimientos industriales. BOE-A-2004-21216. Available: https://www.boe.es/buscar/pdf/2004/BOE-A-2004-21216-consolidado.pdf; Polyethylene terephthalate (PET). [cited 12 Jul 2023]. Available: https://materials.fsri.org/materialdetail/polyethylene-terephthalate-pet; Haddad RK, Maluk C, Reda E, Harun Z. Critical Velocity and Backlayering Conditions in Rail Tunnel Fires: State-of-the-Art Review. Journal of Combustion. 2019;2019. doi:10.1155/2019/3510245; Ho YT, Kawabata N, Seike M, Hasegawa M, Chien SW, Shen TS. Scale Model Experiments and Simulations to Investigate the Effect of Vehicular Blockage on Backlayering Length in Tunnel Fire. Buildings 2022, Vol 12, Page 1006. 2022;12: 1006.; Weng MC, Lu XL, Liu F, Du CX. Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation. Appl Therm Eng. 2016;C: 422–434.; Li YZ, Lei B, Ingason H. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J. 2010;45: 361–370.; Zhang Y, Yao Y, Ren F, Zhu H, Zhang S, Jiang L. Effects of ambient pressure on smoke propagation in inclined tunnel fires under natural ventilation. Environ Sci Pollut Res Int. 2023. doi:10.1007/s11356-023-26774-z; Abella A, García-Arango I, Hacar F. Historia y funcionamiento de los sistemas de ventilación en túneles de carretera. Obras y Proyectos. 2021; 16–30.; Cheong MK, Spearpoint M, Fleischmann CM. Using the peak heat release rate to determine the fire risk level of road tunnels. 2008. doi:10.1243/1748006XJRR169; Chen F, Leong JC. Smoke flow phenomena and turbulence characteristics of tunnel fires. Appl Math Model. 2011;35: 4554–4566.; Gheorghe GC, Manrique-Hernández EF, Idrovo AJ. Injuries and fatalities in Colombian mining emergencies (2005 - 2018). medRxiv. 2021. p. 2021.04.04.21254888. doi:10.1101/2021.04.04.21254888; Jaramillo-Urrego LM. Safety in small-scale underground coal mining in Colombia. University of Leoben. 2019.; Sekhar BS, Shah Y. Emerging technologies in Indian mining industry: an exploratory empirical investigation regarding the adoption challenges. Journal of Science and Technology Policy Management. 2021;13: 358–381.; Wang J, Huang Y, Li J, Zhai W, Ouyang S, Gao H, et al. Research on coal mine safety management based on digital twin. Heliyon. 2023;0. doi:10.1016/j.heliyon.2023.e13608; Dong X, Yang Z, Guo L, Gao Y. Assessment of the Explosion Accident Risk in Non-Coal Mining by Hasse Diagram Technique. Processes. 2023;11: 582.; Hosseini S, Poormirzaee R, Gilani S-O, Jiskani IM. A reliability-based rock engineering system for clean blasting: risk analysis and dust emissions forecasting. Clean Technologies and Environmental Policy. 2023. doi:10.1007/s10098-023-02479-2; Ji P, Shi S. Hazard prediction of coal and gas outburst based on the Hamming distance artificial intelligence algorithm (HDAIA). Journal of Safety Science and Resilience. 2023. doi:10.1016/j.jnlssr.2022.12.001; Yang S, Lian H, Xu B, Thanh HV, Chen W, Yin H, et al. Application of robust deep learning models to predict mine water inflow: Implication for groundwater environment management. Science of The Total Environment. 2023;871: 162056.; Kamran M, Shahani NM. Decision Support System for the Prediction of Mine Fire Levels in Underground Coal Mining Using Machine Learning Approaches. Mining, Metallurgy and Exploration. 2022;39: 591–601.; Dey P, Chaulya SK, Kumar S. Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system. Process Safety and Environmental Protection. 2021;152: 249–263.; Adjiski V, Despodov Z, Serafimovski D. Prototype Model for Fire Safety System in Underground Mining. American Journal of Mining and Metallurgy. 2017;4: 62–67.; Meng F, Li C. Safety warning of coal mining face based on big data association rule mining. Journal of Computational Methods in Science and Engineering. 2022;22: 1035–1052.; Juganda A, Pinheiro H, Wilson F, Sandoval N, Bogin GE, Brune JF. Investigation of Explosion Hazard in Longwall Coal Mines by Combining CFD with a 1/40th-Scale Physical Model. Mining, Metallurgy & Exploration. 2022;39: 2273–2290.; Demirkan DC, Duzgun HS, Juganda A, Brune J, Bogin G. Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI. Energies. 2022;15: 6486.; Cai Y, Wu S, Zhou M, Gao S, Yu H. Early Warning of Gas Concentration in Coal Mines Production Based on Probability Density Machine. Sensors. 2021;21: 5730.; Sun S, Gura D, Dong B. Fire safety assessment models based on machine learning methods for the coal industry. Chemometrics and Intelligent Laboratory Systems. 2022;231: 104693.; Barros-Daza MJ, Luxbacher KD, Lattimer BY, Hodges JL. Real Time Mine Fire Classification to Support Firefighter Decision Making. Fire Technol. 2022;58: 1545–1578.; Barros-Daza MJ, Luxbacher KD, Lattimer BY, Hodges JL. Fire Size and Response Time Predictions in Underground Coal Mines Using Neural Networks. Mining, Metallurgy & Exploration. 2022;39: 1087–1098.; Khan AU, Salman S, Muhammad K, Habib M. Modelling Coal Dust Explosibility of Khyber Pakhtunkhwa Coal Using Random Forest Algorithm. Energies. 2022;15: 3169.; Zhang Y, Yang Y, Zhang J, Wang Y. Sensitivity study of multi-field information maps of typical landslides in mining areas based on transfer learning. Frontiers of Earth Science in China. 2023;11. doi:10.3389/feart.2023.1105985; Potapov VP, Oparin VN, Mikov LS, Popov SE. Information Technologies in Problems of Nonlinear Geomechanics. Part I: Earth Remote Sensing Data and Lineament Analysis of Deformation Wave Processes. Journal of Mining Science. 2022;58: 486–502.; Zhang Y, Zhang J, Wang Q. Scene analysis of landslide geoscience and characterization of scene evolution. Acta Geophysica. 2022. doi:10.1007/s11600-022-00845-0; Su Q, Tao W, Mei S, Zhang X, Li K, Su X, et al. Landslide Susceptibility Zoning Using C5.0 Decision Tree, Random Forest, Support Vector Machine and Comparison of Their Performance in a Coal Mine Area. Frontiers of Earth Science in China. 2021;9. doi:10.3389/feart.2021.781472; Anantrasirichai N, Biggs J, Kelevitz K, Sadeghi Z, Wright T, Thompson J, et al. Detecting Ground Deformation in the Built Environment Using Sparse Satellite InSAR Data With a Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing. 2021;59: 2940–2950.; Córdoba Quiceno CC, Molina Escobar JM. Caracterización de sistemas de ventilación en minería subterránea. Boletín de Ciencias de la Tierra. 2011;29: 73–86.; Molina A, López S, Molina JM, Copete H, Soto D, Jaramillo L, et al. Hacia una estructura de investigación y educación para la prevención de accidentes por incendios y explosiones en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. 2022;46: 50–67.; Perrin L, Muñoz-Giraldo F, Dufaud O, Laurent A. Normative barriers improvement through the MADS/MOSAR methodology. Safety science. 2012;50: 1502–1512.; Urrego LJ, Escobar JM, Torrent JG, Pejic L. Implementation of ATEX standards in the context of mining activity in Colombia. Revista Facultad de Ingeniería. 2017;26: 47–60.; McPherson MJ. Incompressible flow relationships. Subsurface Ventilation and Environmental Engineering. 1993. pp. 134–174. doi:10.1007/978-94-011-1550-6_5; Soto D, Vallejo-Molina LF, López S, Molina-Escobar JM, Torero J, Molina A. Use of physical modeling tools in the prediction and alert of methane layering in underground mines [Unpublished manuscript]. Process Safety and Environmental Protection. Universidad Nacional de Colombia; Rahimi S, Ataee-pour M, Madani H. CFD Modeling of Impact of Gas Content Uncertainty on Methane Distribution in Underground Coal Mine Roadways. Journal of Mining and Environment. 2022;13: 493–502.; Wang C, Wei L, Hu H, Wang J, Jiang M. Early Warning Method for Coal and Gas Outburst Prediction Based on Indexes of Deep Learning Model and Statistical Model. Front Earth Sci Chin. 2022;10: 1–17.; Li M, Wang H, Wang D, Shao Z, He S. Risk assessment of gas explosion in coal mines based on fuzzy AHP and bayesian network. Process Safety and Environmental Protection. 2020;135: 207–218.; Tan B, Zhang H, Cheng G, Liu Y, Zhang X. Constructing a Gas Explosion Inversion Model in a Straight Roadway Using the GA–BP Neural Network. ACS Omega. 2021;6: 32485–32494.; Bohannon R, Andrews W. Normal walking speed: a descriptive meta-analysis. Physiotherapy. 97: “182–189.”; Magnusson SE, Drysdale DD, Fitzgerald RW, Motevalli V, Mowrer F, Quintiere J, et al. A proposal for a model curriculum in fire safety engineering. Fire Saf J. 1995;25: 1–88.; Chow WK, Wong LT, Chan KT, Fong NK, Ho PL. Fire safety engineering: comparison of a new degree programme with the model curriculum. Fire Saf J. 1999;32: 1–15.; Gehandler J. The theoretical framework of fire safety design: Reflections and alternatives. Fire Saf J. 2017;91: 973–981.; Li G-Q, Zhang C, Jiang J. A Review on Fire Safety Engineering: Key Issues for High-Rise Buildings. International Journal of High-Rise Buildings. 2018;7: 265–285.; Lange D, Torero JL, Osorio A, Lobel N, Maluk C, Hidalgo JP, et al. Identifying the attributes of a profession in the practice and regulation of fire safety engineering. Fire Saf J. 2021;121: 103274.; Lange D, Torero JL, Spinardi G, Law A, Johnson P, Brinson A, et al. A competency framework for fire safety engineering. Fire Saf J. 2022;127: 103511.; Woodrow M, Bisby L, Torero JL. A nascent educational framework for fire safety engineering. 2013. doi:10.1016/j.firesaf.2013.02.004; Willey RJ, Fogler HS, Cutlip MB. The integration of process safety into a chemical reaction engineering course: Kinetic modeling of the T2 incident. Process Saf Prog. 2011;30: 39–44.; Ma C, Jing M, Hou S, Jiang J, Zhang B. Current status of safety engineering education in China. Process Saf Prog. 2022;41: 218–225.; Sofri S, Reddy Prasad DM, Bin Azri MH, Timbang A. Analysis of chemical engineering curriculum to improve process safety competency. Int J Occup Saf Ergon. 2022; 1–9.; Amaya-Gómez R, Dumar V, Sánchez-Silva M, Romero R, Arbeláez C, Muñoz F, et al. Process safety part of the engineering education DNA. Educ Chem Eng. 2019;27: 43–53.; Nolan DP. Handbook of Fire and Explosion Protection Engineering Principles: for Oil, Gas, Chemical and Related Facilities. William Andrew; 2014.; Sheppard CM. Process safety in the curriculum: Explosion prevention technical elective. Chemical Engineering Education. 1998;32: 270–276.; Louvar J, Hendershot D. Education materials for universities and industry. Process Saf Prog. 2007;26: 85–89.; Inicio - Consejo Nacional de Acreditación - CNA. [cited 3 Apr 2023]. Available: https://www.cna.gov.co/portal/; Accreditation Board for Engineering and Technology - ABET. [cited 1 Feb 2023]. Available: https://www.abet.org/; Engineering Council. [cited 30 Mar 2023]. Available: https://www.engc.org.uk/; European Network for Accreditation of Engineering Education - ENAEE. [cited 30 Mar 2023]. Available: https://www.enaee.eu/; New Jersey Institute of Technology. Accreditation. [cited 31 Jul 2023]. Available: https://accreditation.org/; ABET - Engineering Accreditation Commission. 2023 - 2024 Criteria for Accrediting Engineering Programs. ABET; 2022.; Engineering Council. The UK standard for professional engineering competence and commitment (UK-SPEC). Engineering Council; 2020.; European Accreditation of Engineering Programmes EUR-ACE. EUR-ACE Framework Standards and Guidelines. European Network for Accreditation of Engineering Education ENAEE; 2021.; Uniandes. Clasificación de áreas en atmósferas explosivas y gestión del riesgo de ignición. Universidad de Los Andes; [cited 31 Jul 2023]. Available: https://educacioncontinua.uniandes.edu.co/en/programs/clasificacion-de-areas-en-atmosferas-explosivas-y-gestion-del-riesgo-de-ignicion; Universidad Pontificia Bolivariana-Bucaramanga. Curso de Fundamentos de la Seguridad de Procesos. [cited 31 Jul 2023]. Available: https://www.upb.edu.co/es/formacioncontinua/curso-de-fundamentos-de-la-seguridad-de-procesos-upb-bucaramanga; Consejo Colombiano de Seguridad. Seguridad de Procesos. [cited 31 Jul 2023]. Available: https://ccs.org.co/events/seguridad-de-procesos/; U.S. Fire Administration. [cited 27 Dec 2022]. Available: https://www.usfa.fema.gov/index.html; National Fire Protection Association - NFPA. [cited 30 Jan 2023]. Available: https://www.nfpa.org/; U.S. Fire Administration. National Fire Incident Reporting System. [cited 30 Jan 2023]. Available: https://www.usfa.fema.gov/nfirs/; Xiong Y, Zhang C, Qi H, Liu X. Characteristics and Situation of Fire in China From 1999 to 2019: A Statistical Investigation. Front Environ Sci Eng China. 2022;10. doi:10.3389/fenvs.2022.945171; Coal and lignite Production Data. [cited 31 Jul 2023]. Available: https://yearbook.enerdata.net/coal-lignite/coal-production-data.html; Mine Safety and Health Administration - MSHA. [cited 30 Jan 2023]. Available: https://www.msha.gov/; The state council-People’s Republic of China. State Administration of Coal Mine Safety. [cited 30 Jan 2023]. Available: http://english.www.gov.cn/state_council/2014/10/06/content_281474992926692.htm; Stewart CM. Rapid Dynamic Ventilation Modelling for Improving Health and Safety in Underground Mining. Doctor of Philosophy, The University of Queensland. 2021.; Bankel J, Berggren KF, Blom K, Crawley EF, Wiklund I, Östlund S. The CDIO syllabus: a comparative study of expected student proficiency. Eur J Eng Educ. 2003;28: 297–315.; Woodrow M. Educating Engineers for a Holistic Approach to Fire Safety. Torero J, editor. Doctor of Philosophy, University of Edinburgh. 2013.; Ramírez J, Soto D, López S, Akroyd J, Nurkowski D, Botero ML, et al. A virtual laboratory to support chemical reaction engineering courses using real-life problems and industrial software. Educ Chem Eng. 2020;33: 36–44.; Bloom BS, Engelhart MD, Furst EJ, Hill WH, Krathwohl DR. Handbook I: cognitive domain. New York: David McKay. 1956.; Vallejo-Molina LF, Blandon-Montes A, Lopez S, Molina-Escobar JM, Ortiz A, Soto D, et al. Application of Artificial Intelligence to the Alert of Explosions in Colombian Underground Mines. Mining, Metallurgy & Exploration. Universidad Nacional de Colombia Sede Medellín; 2023.; Phillips RL, Urosek JE, Stephan CR, Stolz RT, Swentosky DJ, Harris GW, et al. Report of investigation, fatal underground coal mine explosion, January 2, Sago Mine, Wolf Run Mining Company, Tallmansville, Upshur County, West Virginia. United States Department Of Labor. Mine Safety And Health Administration. Coal Mine Safety And Health; 2007.; Zipf RK, Gamezo VN, Sapko MJ, Marchewka WP, Mohamed KM, Oran ES, et al. Methane–air detonation experiments at NIOSH Lake Lynn Laboratory. J Loss Prev Process Indust. 2013;26: 295–301.; Drysdale D. An Introduction to Fire Dynamics. Scotland: Wiley; 2011.; Barros-Daza MJ, Luxbacher KD, Lattimer BY, Hodges JL. Fire Size and Response Time Predictions in Underground Coal Mines Using Neural Networks. Mining, Metallurgy and Exploration. 2022;39: 1087–1098.; Bahrami D, Zhou L, Yuan L. Field Verification of an Improved Mine Fire Location Model. Mining, Metallurgy and Exploration. 2021;38: 559–566.; Yuan L, Thomas RA, Zhou L. Characterization of a mine fire using atmospheric monitoring system sensor data. Mining Eng. 2017;69: 57.; Rowland JH, Litton CD, Thomas RA. Evaluation of detection and response times of fire sensors using an atmospheric monitoring system. Physiol Behav. 2019;176: 139–148.; Vorderbrueggen JB. Imperial sugar refinery combustible dust explosion investigation. Process Saf Prog. 2011;30: 66–81.; Li G, Yang H-X, Yuan C-M, Eckhoff RK. A catastrophic aluminium-alloy dust explosion in China. J Loss Prev Process Indust. 2016;39: 121–130.; Fumagalli A, Derudi M, Rota R, Copelli S. Estimation of the deflagration index KSt for dust explosions: A review. J Loss Prev Process Indust. 2016;44: 311–322.; Royal Academy of Engineering. [cited 6 Jun 2022]. Available: https://www.raeng.org.uk/; Golden BL, Wasil EA, Harker PT, editors. The Analytic Hierarchy Process. Springer Berlin, Heidelberg; 2012.; Shyr W-J, Shih F-Y, Liau H-M, Liu P-W. Constructing and Validating Competence Indicators for Professional Technicians in Fire Safety in Taiwan. Sustain Sci Pract Policy. 2021;13: 7058.; https://repositorio.unal.edu.co/handle/unal/85807; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    المصدر: Науковий журнал «Енергетика: економіка, технології, екологія»; № 2 (2015): Енергетика: економіка, технології, екологія, 2015, Вип. 2(40); 30-37
    POWER ENGINEERING: economics, technique, ecology; № 2 (2015): POWER ENGINEERING: economics, technique, ecology; 30-37

    وصف الملف: application/pdf

  16. 16
  17. 17
    Academic Journal

    المصدر: Енергетика: економіка, технології, екологія : науковий журнал

    وصف الملف: С. 30-37; application/pdf

    Relation: Костюк, В. Е. Численное исследование теплового состояния оборудования силового блока турбокомпрессорного агрегата при наличии тепловой изоляции горячих узлов / В. Е. Костюк, Е. И. Кирилаш // Енергетика: економіка, технології, екологія : науковий журнал. – 2015. – № 2 (40). – С. 30–37. – Бібліогр.: 20 назв.; https://ela.kpi.ua/handle/123456789/15174

  18. 18
  19. 19
    Periodical
  20. 20
    Dissertation/ Thesis