يعرض 1 - 20 نتائج من 74 نتيجة بحث عن '"fetal bovine serum (fbs)"', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Journal of Biomedical Science, Vol 32, Iss 1, Pp 1-10 (2025)

    وصف الملف: electronic resource

  2. 2
    Conference
  3. 3
    Conference
  4. 4
    Academic Journal

    المساهمون: Institute for Molecular Medicine Finland

    وصف الملف: application/pdf

    Relation: Böröczky , T , Dobra , G , Bukva , M , Gyukity-Sebestyen , E , Hunyadi-Gulyas , E , Darula , Z , Horvath , P , Buzas , K & Harmati , M 2023 , ' Impact of Experimental Conditions on Extracellular Vesicles' Proteome : A Comparative Study ' , Life (Basel) , vol. 13 , no. 1 , 206 . https://doi.org/10.3390/life13010206; 4d801035-f092-417b-ae56-52452ee53479; http://hdl.handle.net/10138/571133; 000915276100001

  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    Relation: http://hdl.handle.net/2263/74875; Dessels, C., Ambele, M.A. & Pepper, M.S. 2019, 'The effect of medium supplementation and serial passaging on the transcriptome of human adipose-derived stromal cells expanded in vitro', Stem Cell Research and therapy, vol. 10, no. 1, art. 253, pp. 1-17.; 1757-6512 (online)

  15. 15
    Academic Journal
  16. 16
  17. 17
  18. 18
    Academic Journal
  19. 19
    Dissertation/ Thesis

    المساهمون: Becerra Bayona, Silvia Milena, Solarte David, Víctor Alfonso, Solarte David, Víctor Alfonso 0001329391, Becerra Bayona, Silvia Milena 0001568861, Becerra Bayona, Silvia Milena es&oi=ao, Solarte David, Víctor Alfonso 0000-0002-9856-1484, Becerra Bayona, Silvia Milena 0000-0002-4499-5885, Becerra Bayona, Silvia Milena Silvia-Becerra-Bayona, Solarte David, Víctor Alfonso víctor-alfonso-solarte-david, Becerra Bayona, Silvia Milena silvia-milena-becerra-bayona, Becerra Bayona, Silvia Milena silvia-becerra-3174455a

    جغرافية الموضوع: Colombia, UNAB Campus Bucaramanga

    وصف الملف: application/pdf

    Relation: Almalki, S. G., & Agrawal, D. K. (2016). Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation; Research in Biological Diversity, 92(1–2), 41–51. https://doi.org/10.1016/j.diff.2016.02.005; Alvarado-Moreno, J. A., & Mayani, H. (2007). El ciclo celular y su papel en la biología de las células progenitoras hematopoyéticas. Gaceta medica de Mexico, 143(2), 149–161. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=15150; Antebi, B., Rodriguez, L.A., Walker, K.P. et al. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 9, 265 (2018). https://doi.org/10.1186/s13287-018-1007-x; Badimon, L., Oñate, B., & Vilahur, G. (2015). Células madre mesenquimales derivadas de tejido adiposo y su potencial reparador en la enfermedad isquémica coronaria. Revista española de cardiologia, 68(7), 599–611. https://doi.org/10.1016/j.recesp.2015.02.025; Beccia, E., Carbone, A., Cecchino, L. R., Pedicillo, M. C., Annacontini, L., Lembo, F., Di Gioia, S., Parisi, D., Angiolillo, A., Pannone, G., Portincasa, A., & Conese, M. (2021). Adipose Stem Cells and Platelet-Rich Plasma Induce Vascular-Like Structures in a Dermal Regeneration Template. Tissue engineering. Part A, 27(9-10), 631–641. https://doi.org/10.1089/ten.TEA.2020.0175; Bui, H. T. H. (2020, 4 noviembre). Influences of Xeno-Free Media on Mesenchymal Stem Cell Expansion for Clinical Application. SpringerLink. https://link.springer.com/article/10.1007/s13770-020-00306- z?error=cookies_not_supported&code=6a08e5ba-c19a-4018-a4cf-c97ea67e0a96#citeas; Buravkova, L. B., Andreeva, E. R., Gogvadze, V., & Zhivotovsky, B. (2014). Mesenchymal stem cells and hypoxia: where are we? Mitochondrion, 19 Pt A, 105–112. https://doi.org/10.1016/j.mito.2014.07.005; Carmen Lagunas Cruz, M., Mendiola, A. V., & Cruz, I. S. (2014). Ciclo celular: Mecanismos de regulación. Vertientes. Revista Especializada en Ciencias de la Salud, 17(2). http://revistas.unam.mx/index.php/vertientes/article/view/51694; Chen, C. F., & Liao, H. T. (2018). Platelet-rich plasma enhances adipose-derived stem cell-mediated angiogenesis in a mouse ischemic hindlimb model. World Journal of Stem Cells, 10(12), 212–227. https://doi.org/10.4252/wjsc.v10.i12.212; Chen, J., Cheng, Y., Fu, Y., Zhao, H., Tang, M., Zhao, H., Lin, N., Shi, X., Lei, Y., Wang, S., Huang, L., Wu, W., & Tan, J. (2020). Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Research & Therapy, 11(1), 97. https://doi.org/10.1186/s13287-020-01610-0; Chisini, L. A., Karam, S. A., Noronha, T. G., Sartori, L., San Martin, A. S., Demarco, F. F., & Conde, M. (2017). Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin. Acta stomatologica Croatica, 51(2), 133–140. https://doi.org/10.15644/asc51/2/6; Chisini, L., Conde, M., Grazioli, G., Martin, A., Carvalho, R., Nör, J., & Demarco, F. (2017). Venous Blood Derivatives as FBS-Substitutes for Mesenchymal Stem Cells: A Systematic Scoping Review. Brazilian Dental Journal, 28(6), 657-668. doi:10.1590/0103- 6440201701646; CIBIOGEM. (2019). CIBIOGEM. gob.mx. https://conacyt.mx/cibiogem/index.php/11-letra; Egger, D., Lavrentieva, A., Kugelmeier, P., & Kasper, C. (2022). Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell‐based therapy products. Engineering in Life Sciences, 22(3–4), 361–372. https://doi.org/10.1002/elsc.202100097; Ejtehadifar, M., Shamsasenjan, K., Movassaghpour, A., Akbarzadehlaleh, P., Dehdilani, N., Abbasi, P., Molaeipour, Z., & Saleh, M. (2015). The effect of hypoxia on mesenchymal stem cell biology. Advanced Pharmaceutical Bulletin, 5(2), 141–149. https://doi.org/10.15171/apb.2015.021; Felthaus, O., Prantl, L., Skaff-Schwarze, M., Klein, S., Anker, A., Ranieri, M., & Kuehlmann, B. (2017). Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells. Clinical hemorheology and microcirculation, 66(1), 47–55. https://doi.org/10.3233/CH-160203; Formigli, L., Benvenuti, S., Mercatelli, R., Quercioli, F., Tani, A., Mirabella, C., Dama, A., Saccardi, R., Mazzanti, B., Cellai, I., & Zecchi-Orlandini, S. (2012). Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration. Journal of tissue engineering and regenerative medicine, 6(2), 125–134. https://doi.org/10.1002/term.405; Fraga, A., Ribeiro, R., & Medeiros, R. (2009). Hipoxia tumoral: Papel del factor inducible por hipoxia. Actas Urologicas Espanolas, 33(9), 941–951. https://doi.org/10.4321/s0210-48062009000900003; Fu, X., Liu, G., Halim, A., Ju, Y., Luo, Q., & Song, A. G. (2019). Mesenchymal stem cell migration and tissue repair. Cells (Basel, Switzerland), 8(8), 784. https://doi.org/10.3390/cells8080784; Gao, S., Xiang, C., Qin, K. & Sun, C. (2018). Mathematical Modeling Reveals the Role of Hypoxia in the Promotion of Human Mesenchymal Stem Cell Long-Term Expansion. Stem Cells International, 2018, 1-13. https://doi.org/10.1155/2018/9283432; Garcia, G. A., Oliveira, R. G., Dariolli, R., Rudge, M. V. C., Barbosa, A. M. P., Floriano, J. F., & Ribeiro-Paes, J. T. (2022). Isolation and characterization of farm pig adipose tissue-derived mesenchymal stromal/stem cells. Brazilian Journal of Medical and Biological Research, 55, e12343. https://doi.org/10.1590/1414-431X2022e12343; Haque, N., Rahman, M. T., Abu Kasim, N. H., & Alabsi, A. M. (2013). Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. TheScientificWorldJournal, 2013, 1–12. https://doi.org/10.1155/2013/632972; Hatakeyama, I., Marukawa, E., Takahashi, Y., Omura, K. (2014). Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs. Tissue engineering. Part A, 20(3-4), 874–882. https://doi.org/10.1089/ten.TEA.2013.0058; Jochems, C. E. A., van der Valk, J. B. F., Stafleu, F. R., & Baumans, V. (2002). The use of fetal bovine serum: ethical or scientific problem? Alternatives to Laboratory Animals: ATLA, 30(2), 219–227. https://doi.org/10.1177/026119290203000208; Kolios, G., & Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration; International Review of Thoracic Diseases, 85(1), 3–10. https://doi.org/10.1159/000345615; Kumar, S., & Vaidya, M. (2016). Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27. Molecular And Cellular Biochemistry, 415(1-2), 29-38. doi:10.1007/s11010-016-2674-5.; Lavrentieva, A. (2010, 16 julio). Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells - Cell Communication and Signaling. BioMed Central. https://biosignaling.biomedcentral.com/articles/10.1186/1478-811X-8-18; Lavrentieva, A., Hoffmann, A., & Lee-Thedieck, C. (2020). Limited potential or unfavorable manipulations? Strategies toward efficient mesenchymal stem/stromal cell applications. Frontiers in Cell and Developmental Biology, 8, 316. https://doi.org/10.3389/fcell.2020.00316; Le, A., Enweze, L., DeBaun, M. R., & Dragoo, J. L. (2019). Platelet-Rich Plasma. Clinics in sports medicine, 38(1), 17–44. https://doi.org/10.1016/j.csm.2018.08.001; Mansilla E. Díaz Aquino V. Zambón D. Marin GH. Mártire K. Roque G. etal.Couldmetabolicsyndrome.lipodystrophy.andagingbemesenchymalstemcellexhaustionsy ndromes?StemCellsInt.2011;943216.http://dx.doi.org/10.4061/2011/943216; Martínez, C. E., Gómez, R., Kalergis, A. M., & Smith, P. C. (2019). Comparative effect of platelet-rich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clinical oral investigations, 23(5), 2455–2463. https://doi.org/10.1007/s00784-018-2637-1; Martínez, C. E., Smith, P. C., & Palma Alvarado, V. A. (2015). The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Frontiers in Physiology, 6, 290. https://doi.org/10.3389/fphys.2015.00290; Mohamed-Ahmed, S., Fristad, I., Lie, S. A., Suliman, S., Mustafa, K., Vindenes, H., & Idris, S. B. (2018). Adipose-derived and bone marrow mesenchymal stem cells: a donor matched comparison. Stem Cell Research & Therapy, 9(1). https://doi.org/10.1186/s13287- 018-0914-1; Moussavi-Harami, F., Duwayri, Y., Martin, J. A., Moussavi-Harami, F., & Buckwalter, J. A. (2004). Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. The Iowa Orthopaedic Journal, 24, 15–20.; NATIONAL LIBRARY OF MEDICINE. (1979, enero). THE NLM TECHNICAL BULLETIN. THE NLM TECHNICAL BULLETIN. https://www.nlm.nih.gov/hmd/manuscripts/nlmarchives/techbull/117-128-1979.pdf; Pacifici, L., Casella, F., & Maggiore, C. (2002). Plasma arricchito di piastrine (PRP): metodi di estrazione e potenzialità d'uso [Platelet rich plasma (PRP): potentialities and techniques of extraction]. Minerva stomatologica, 51(7-8), 341–350.; Plasma Rico en Plaquetas vs Plasma Pobre en Plaquetas %7C National Stem Cell Clinic. (2022). Retrieved 19 August 2022, from https://www.nationalstemcellclinic.com/plasma rico-en-plaquetas-vs-plasma-pobre-en-plaquetas; Qiu, P., Song, W., Niu, Z., Bai, Y., Li, W., Pan, S., Peng, S., & Hua, J. (2013). Platelet-derived growth factor promotes the proliferation of human umbilical cord-derived mesenchymal stem cells: PDGF PROMOTES THE PROLIFERATION OF hUC-MSCs. Cell Biochemistry and Function, 31(2), 159–165. https://doi.org/10.1002/cbf.2870; Shaikh, M. V., Kala, M., & Nivsarkar, M. (2016). CD90 a potential cancer stem cell marker and a therapeutic target. Cancer Biomarkers: Section A of Disease Markers, 16(3), 301–307. https://doi.org/10.3233/CBM-160590; Silva-Carvalho, A. É., Neves, F. A. R., & Saldanha-Araujo, F. (2020). The immunosuppressive mechanisms of mesenchymal stem cells are differentially regulated by platelet poor plasma and fetal bovine serum supplemented media. International Immunopharmacology, 79(106172), 106172. https://doi.org/10.1016/j.intimp.2019.106172; Sylakowski, K., Bradshaw, A., & Wells, A. (2020). Mesenchymal stem cell/multipotent stromal cell augmentation of wound healing: Lessons from the physiology of matrix and hypoxia support. The American Journal of Pathology, 190(7), 1370–1381. https://doi.org/10.1016/j.ajpath.2020.03.017; Wenger, R. H., Kurtcuoglu, V., Scholz, C. C., Marti, H. H., & Hoogewijs, D. (2015). Frequently asked questions in hypoxia research. Hypoxia (Auckland, N.Z.), 3, 35– 43. https://doi.org/10.2147/HP.S92198; Wu, D., & Yotnda, P. (2022). Induction and Testing of Hypoxia in Cell Culture. Retrieved 1 September 2022, from https://pubmed.ncbi.nlm.nih.gov/21860378/; Yang, YH.K., Ogando, C.R., Wang See, C. et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9, 131 (2018). https://doi.org/10.1186/s13287-018-0876-3; Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 68. https://doi.org/10.1186/s13287-019-1165-5; Zhao, A., Shah, K., Freitag, J., Cromer, B., & Sumer, H. (2020). Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells International, 2020, 1-11. doi:10.1155/2020/8898221; Zheng, X., Baker, H., Hancock, W. S., Fawaz, F., McCaman, M., & Pungor, E., Jr. (2006). Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnology Progress, 22(5), 1294–1300. https://doi.org/10.1021/bp060121o; https://apolo.unab.edu.co/en/persons/v%C3%ADctor-alfonso-solarte-david; http://hdl.handle.net/20.500.12749/21073; instname:Universidad Autónoma de Bucaramanga - UNAB; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  20. 20
    Dissertation/ Thesis

    المساهمون: Becerra Bayona, Silvia Milena, Solarte David, Víctor Alfonso, Arenas Rodríguez, Duván Camilo 1007693728, Luque Acevedo, Luisa Fernanda 1005335356, Becerra Bayona, Silvia Milena 0001568861, Solarte David, Víctor Alfonso 0001329391, Becerra Bayona, Silvia Milena es&oi=ao, Becerra Bayona, Silvia Milena 0000-0002-4499-5885, Solarte David, Víctor Alfonso 0000-0002-9856-1484, Becerra Bayona, Silvia Milena Silvia-Becerra-Bayona, Becerra Bayona, Silvia Milena silvia-milena-becerra-bayona, Solarte David, Víctor Alfonso víctor-alfonso-solarte-david

    جغرافية الموضوع: Colombia, UNAB Campus Bucaramanga

    وصف الملف: application/pdf

    Relation: Almansoori, A. A., Kwon, O.-J., Nam, J.-H., Seo, Y.-K., Song, H.-R., & Lee, J.-H. (2021). Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants. International Journal of Implant Dentistry, 7(1), 35. https://doi.org/10.1186/s40729-021-00317-y; Amable, P. R., Carias, R. B. V., Teixeira, M. V. T., da Cruz Pacheco, Í., Corrêa do Amaral, R. J. F., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Research & Therapy, 4(3), 67. https://doi.org/10.1186/scrt218; American Academy of Orthopaedic Surgeons. (2014). Nonunions. OrthoInfo. https://orthoinfo.aaos.org/en/diseases--conditions/nonunions/; Amrichová, J., Špaková, T., Rosocha, J., Harvanová, D., Bačenková, D., Lacko, M., & Horňák, S. (2014). Effect of PRP and PPP on proliferation and migration of human chondrocytes and synoviocytes in vitro. Open Life Sciences, 9(2), 139–148. https://doi.org/10.2478/s11535-013- 0255-0; Becerra-Bayona, S. M., Solarte, V. A., Alviar Rueda, J. D., Sossa, C. L., & Arango-Rodríguez, M. L. (2022). Effect of biomolecules derived from human platelet-rich plasma on the ex vivo expansion of human adipose-derived mesenchymal stem cells for clinical applications. Biologicals, 75, 37– 48. https://doi.org/10.1016/j.biologicals.2021.11.001; Durgam, S. S., Altmann, N. N., Coughlin, H. E., Rollins, A., & Hostnik, L. D. (2019). Insulin enhances the in vitro osteogenic capacity of flexor tendon-derived progenitor cells. Stem Cells International, 2019. https://doi.org/10.1155/2019/1602751; El-Sharkawy, H., Kantarci, A., Deady, J., Hasturk, H., Liu, H., Alshahat, M., & Van Dyke, T. E. (2007). Platelet-Rich Plasma: Growth Factors and Pro- and Anti-Inflammatory Properties. Journal of Periodontology, 78(4), 661–669. https://doi.org/10.1902/jop.2007.060302; Gómez-Barrena, E., Padilla-Eguiluz, N. G., & Rosset, P. (2020). Frontiers in non-union research. EFORT Open Reviews, 5(10), 574–583. https://doi.org/10.1302/2058-5241.5.190062; Han, S., Kim, J., Lee, G., & Kim, D. (2020). Mechanical Properties of Materials for Stem Cell Differentiation. Advanced Biosystems, 4(11), 2000247. https://doi.org/10.1002/adbi.202000247; Hanna, H., Mir, L. M., & Andre, F. M. (2018). In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Research & Therapy, 9(1), 203. https://doi.org/10.1186/s13287-018-0942-x; Hwang, N. S., Zhang, C., Hwang, Y., & Varghese, S. (2009). Mesenchymal stem cell differentiation and roles in regenerative medicine. WIREs Systems Biology and Medicine, 1(1), 97–106. https://doi.org/10.1002/wsbm.26; Kazem-Arki, M., Kabiri, M., Rad, I., Roodbari, N. H., Hosseinpoor, H., Mirzaei, S., Parivar, K., & Hanaee-Ahvaz, H. (2018). Enhancement of osteogenic differentiation of adipose-derived stem cells by PRP modified nanofibrous scaffold. Cytotechnology, 70(6), 1487–1498. https://doi.org/10.1007/s10616-018-0226-4; Lan, Y., Huang, N., Fu, Y., Liu, K., Zhang, H., Li, Y., & Yang, S. (2022). Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.802794; Li, S., Yang, H., Duan, Q., Bao, H., Li, A., Li, W., Chen, J., & He, Y. (2022). A comparative study of the effects of platelet-rich fibrin, concentrated growth factor and platelet-poor plasma on the healing of tooth extraction sockets in rabbits. BMC Oral Health, 22(1), 87. https://doi.org/10.1186/s12903-022-02126-0; Lu, Y., & Lekszycki, T. (2015). Modeling of an initial stage of bone fracture healing. Continuum Mechanics and Thermodynamics, 27(4–5), 851–859. https://doi.org/10.1007/s00161-014-0380-7; Martínez, C. E., Gómez, R., Kalergis, A. M., & Smith, P. C. (2019). Comparative effect of plateletrich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clinical Oral Investigations, 23(5), 2455–2463. https://doi.org/10.1007/s00784-018-2637-1; Martínez, C. E., González, S. A., Palma, V., & Smith, P. C. (2016). Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells. Journal of Periodontology, 87(2), e18–e26. https://doi.org/10.1902/jop.2015.150360; Mushahary, D., Spittler, A., Kasper, C., Weber, V., & Charwat, V. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19–31. https://doi.org/10.1002/cyto.a.23242; Naji, A., Eitoku, M., Favier, B., Deschaseaux, F., Rouas-Freiss, N., & Suganuma, N. (2019). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 76(17), 3323–3348. https://doi.org/10.1007/s00018-019-03125-1; Narváez-Tovar, C. A., Velasco-Peña, M. A., & Garzón-Alvarado, A. (2011). Modelos computacionales de diferenciación y adaptación ósea Computational models of bone differentiation and adaptation. Revista Cubana de Investigaciones Biomédicas, 30(1), 126–140. http://scielo.sld.cu; Nicholson, J., Makaram, N., Simpson, A., & Keating, J. (2021). Fracture nonunion in long bones: A literature review of risk factors and surgical management. Injury, 52, S3–S11. https://doi.org/10.1016/j.injury.2020.11.029; Song, D., Shujaat, S., Huang, Y., Van Dessel, J., Politis, C., Lambrichts, I., & Jacobs, R. (2021). Effect of platelet-rich and platelet-poor plasma on 3D bone-to-implant contact: a preclinical micro-CT study. International Journal of Implant Dentistry, 7(1), 11. https://doi.org/10.1186/s40729-021-00291-5; Thurairajah, K., Briggs, G. D., & Balogh, Z. J. (2021). Stem cell therapy for fracture non-union: The current evidence from human studies. Journal of Orthopaedic Surgery, 29(3), 230949902110365. https://doi.org/10.1177/23094990211036545; Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2). https://doi.org/10.1042/BSR20150025; Universidad Complutense de Madrid. (2014). FISIOPATOLOGÍA ÓSEA  CONCEPTO Y FUNCIONES. https://www.ucm.es/data/cont/docs/420-2014-02-18- 01%20fisiopatologia%20osea.pdf; Weinkamer, R., Kollmannsberger, P., & Fratzl, P. (2019). Towards a Connectomic Description of the Osteocyte Lacunocanalicular Network in Bone. Current Osteoporosis Reports, 17(4), 186–194. https://doi.org/10.1007/s11914-019-00515-z; Yang, Y. H. K., Ogando, C. R., Wang See, C., Chang, T. Y., & Barabino, G. A. (2018). Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research and Therapy, 9(1). https://doi.org/10.1186/s13287-018-0876-3; Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs In Vitro. Analytical Cellular Pathology, 2020, 1–11. https://doi.org/10.1155/2020/8546231; http://hdl.handle.net/20.500.12749/21075; instname:Universidad Autónoma de Bucaramanga - UNAB; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co