يعرض 1 - 20 نتائج من 450 نتيجة بحث عن '"expression de gènes"', وقت الاستعلام: 1.29s تنقيح النتائج
  1. 1
    Conference

    المساهمون: Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria), Biology, genetics and statistics (BIGS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Probabilités et statistiques, Interface de Recherche Fondamentale et Appliquée en Cancérologie (IRFAC - Inserm U1113), Centre Paul Strauss (CRLCC Paul Strauss), UNICANCER-UNICANCER-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Société Française de Statistique

    المصدر: 54es Journées de Statistique de la SFdS (JdS 2023)
    https://inria.hal.science/hal-04408929
    54es Journées de Statistique de la SFdS (JdS 2023), Société Française de Statistique, Jul 2023, Bruxelles, Belgique
    https://jds2023.sciencesconf.org/

    جغرافية الموضوع: Bruxelles, Belgium

  2. 2
    Dissertation/ Thesis

    المؤلفون: Gaëtan, Juliette

    المساهمون: Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement IRD : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Cité, Karim Benzerara, Julie Leloup

    المصدر: https://theses.hal.science/tel-04703666 ; Microbiologie et Parasitologie. Université Paris Cité, 2023. Français. ⟨NNT : 2023UNIP7235⟩.

    Relation: NNT: 2023UNIP7235

  3. 3
    Dissertation/ Thesis

    المؤلفون: Defendini, Hélène

    المساهمون: Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Université de Rennes (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Agrocampus Ouest, Jean-Christophe Simon, Julie Jaquiéry

    المصدر: https://theses.hal.science/tel-04617107 ; Agricultural sciences. Agrocampus Ouest, 2023. English. ⟨NNT : 2023NSARA094⟩.

  4. 4
    Dissertation/ Thesis

    المؤلفون: Garnier, Olivia

    المساهمون: Laboratoire Biosciences et bioingénierie pour la santé (BGE), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Université Grenoble Alpes 2020-., Isabelle Vilgrain

    المصدر: https://theses.hal.science/tel-04556676 ; Biologie cellulaire. Université Grenoble Alpes [2020-.], 2023. Français. ⟨NNT : 2023GRALV099⟩.

    Relation: NNT: 2023GRALV099

  5. 5
  6. 6
  7. 7
    Conference

    المساهمون: Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage Rennes (PEGASE), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, 29860, Kuzulia, Casdar Qualiporc

    المصدر: Proceedings ICoMST 2015 ; 61. International congress of meat science and technology (ICoMST) ; https://hal.science/hal-01211009 ; 61. International congress of meat science and technology (ICoMST), Aug 2015, Clermont-Ferrand, France. , 2015, Proceedings ICoMST 2015 ; https://archives-publications.inrae.fr/307384.pdf

    جغرافية الموضوع: Clermont-Ferrand, France

  8. 8
    Academic Journal

    المؤلفون: Masset, Zoé

    وصف الملف: application/pdf

    Relation: https://espace.inrs.ca/id/eprint/15725/1/AFSB_Masset-Z-M-Mars2022.pdf; Masset, Zoé (2022). Elucidation des mecanismes d’action anti-c. Difficile par les souches probiotiques lactobacillus acidophilus CL1285, lacticaseibacillus casei LBC80r et lacticaseibacillus rhamnosus CLR2 Mémoire. Québec, Université du Québec, Institut national de la recherche scientifique, Maîtrise en Microbiologie Appliquée, 122 p.

  9. 9
    Dissertation/ Thesis
  10. 10
    Dissertation/ Thesis
  11. 11
    Conference

    المساهمون: Laboratoire d'Informatique de Grenoble (LIG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Analyse de données, Modélisation et Apprentissage automatique Grenoble (AMA), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Dynamiques Cellulaire, Tissulaire & Microscopie fonctionnelle (TIMC-IMAG-DyCTiM), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: Actes de la Conférence Francophone d'Apprentissage(CAp) ; CAp 2011 - Conférence Francophone d'Apprentissage ; https://hal.science/hal-00744315 ; CAp 2011 - Conférence Francophone d'Apprentissage, May 2011, Chambéry, France. pp.135-150

    جغرافية الموضوع: Chambéry, France

  12. 12
  13. 13
  14. 14

    المؤلفون: Gomes, Elisa

    المساهمون: Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Emmanuel Desouhant, Isabelle Amat

    المصدر: Populations and Evolution [q-bio.PE]. Université de Lyon, 2021. English. ⟨NNT : 2021LYSE1055⟩

  15. 15
    Academic Journal

    المساهمون: Qianqian Song, Zhixiu Wang, Hongliang Zhang, Xiangxiang Li, Yang Zhang, Qi Xu, Guobin Chang, Hao Zhang, Guohong Chen

    مصطلحات موضوعية: ACSL1, dépôt de lipides, expression de gènes

    جغرافية الموضوع: world

    وصف الملف: text/HTML

  16. 16
    Academic Journal

    المصدر: Scientia Marina; Vol. 78 No. 4 (2014); 493-503 ; Scientia Marina; Vol. 78 Núm. 4 (2014); 493-503 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2014.78n4

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1552/1835; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1552/1816; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1552/1836; Allegrucci G., Fortunato C., Cataudella S., et al. 1994. Acclimation to fresh water of the sea bass: evidence of selective mortality and allozyme genotypes. In: Beaumont A.R. (ed.), Genetics and evolution of marine organisms. Chapman and Hall, London, pp. 486-502.; Allegrucci G., Fortunato C., Sbordoni V. 1997. Genetic structure and allozyme variation of sea bass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Mar. Biol. 128: 347-358. http://dx.doi.org/10.1007/s002270050100; Alliot E., Pastoureaud A., Thébault H. 1983. Influence de la température et de la salinité sur la croissance et la composition corporelle d'alevins de Dicentrarchus labrax. Aquaculture 31: 181-194. http://dx.doi.org/10.1016/0044-8486(83)90312-5; Andersen C.L., Jensen J.L., Ørntoft T.F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64: 5245–5250. http://dx.doi.org/10.1158/0008-5472.CAN-04-0496 PMid:15289330; Angers B., Castonguay E., Massicotte R. 2010. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19: 1283-1295. http://dx.doi.org/10.1111/j.1365-294X.2010.04580.x PMid:20298470; Avarre J.C., Dugué R., Alonso P., et al. 2014. Analysis of the black-chinned tilapia Sarotherodon melanotheron heudelotii reproducing under a wide range of salinities: from RNA-seq to candidate genes. Mol. Ecol. Res. 19: 1283-1295.; Barnabé G. 1973. Étude morphologique du loup, Dicentrarchus labrax (L.) de la région de Sète. Rev. Trav. Instit. Pêches Marit. 37: 397-410.; Bahri-Sfar L., Ben Hassine O.K. 2009. Clinal variations of discriminative meristic characters of sea bass, Dicentrarchus labrax (Moronidae, Perciformes) populations on Tunisian coasts. Cybium 33: 211-218.; Blel H., Panfili J., Guinand B., et al. 2010. Selection footprint at the first intron of the Prl gene in natural populations of the flathead mullet (Mugil cephalus, L. 1758). J. Exp. Mar. Biol. Ecol. 387: 60-67. http://dx.doi.org/10.1016/j.jembe.2010.02.018; Bodinier C., Lorin-Nebel C., Charmantier G., Boulo V. 2009. Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of juvenile Dicentrarchus labrax exposed to seawater and freshwater. Comp. Biochem. Physiol. A153: 345-351. http://dx.doi.org/10.1016/j.cbpa.2009.03.011 PMid:19328865; Boeuf G., Payan P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C130: 411-423.; Boutet I., Lorin-Nebel C., De Lorgeril J., et al. 2007. Molecular characterisation of prolactin and analysis of extrapituitary expression in the European sea bass Dicentrarchus labrax under various salinity conditions. Comp. Biochem. Physiol. D2: 74-83.; Bustin S.A., Benes V., Garson J.A., et al. 2009. The MIQE Guidelines: minimum information for publication of quantitative real-Time PCR experiments. Clin. Chem. 55: 611-622. http://dx.doi.org/10.1373/clinchem.2008.112797 PMid:19246619; Calduch-Giner J.A., Mingarro M., de Celis S.V.R., et al. 2003. Molecular cloning and characterization of gilthead sea bream, (Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing. Comp. Biochem. Physiol. B136: 1-13. http://dx.doi.org/10.1016/S1096-4959(03)00150-7; Cataudella S., Allegrucci G., Bronzi P., et al. 1991. Multidisciplinary approach to the optimisation of sea bass (Dicentrarchus labrax) rearing in freshwater – Basic morpho-physiology and osmoregulation. In: De Pauw N. and Joyce J. (eds), Aquaculture and the environment. European Aquaculture Society - Special Publication n° 14. Bredene, Belgium, pp. 55-57.; Chaoui L., Gagnaire P.A., Guinand B., et al. 2012. Microsatellite length variation in candidate genes correlates with habitat in the gilthead sea bream Sparus aurata. Mol. Ecol. 21: 5497-5515. http://dx.doi.org/10.1111/mec.12062 PMid:23061421; Chatain B., Chavanne H. 2009. La génétique du bar (Dicentrarchus labrax, L.). Cah. Agric. 18: 249-255.; Chervinski J. 1974. Sea bass, Dicentrarchus labrax L. (Pisces, Serranidae) a "police fish" in freshwater ponds and its adaptability to various saline condition. Isr. J. Aquacult. - Bamidgeh 26: 110-113.; Chervinski J. 1975. Sea basses Dicentrarchus labrax (Linné) and D. punctatus (Boch) (Pisces: Serranidae), a control fish in fresh-water. Aquaculture 6: 249-256. http://dx.doi.org/10.1016/0044-8486(75)90045-9; Claireaux G., Lagardère J.P. 1999. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J. Sea Res. 42: 157-168. http://dx.doi.org/10.1016/S1385-1101(99)00019-2; Conides A.J., Glamuzina B. 2006. Laboratory simulation of the effects of environmental salinity on acclimation, feeding and growth of wild-caught juveniles of European sea bass Dicentrarchus labrax and gilthead sea bream, Sparus aurata. Aquaculture 256: 235-245. http://dx.doi.org/10.1016/j.aquaculture.2006.02.029; Corti M., Loy A., Cataudella S. 1996. Form changes in the sea bass, Dicentrarchus labrax (Moronidae: Teleostei), after acclimation to freshwater: an analysis using shape coordinates. Env. Biol. Fishes 47: 165-175. http://dx.doi.org/10.1007/BF00005039; Côté G., Perry G., Blier P., et al. 2007. The influence of gene-environment interactions on GHR and IGF-1 expression and their association with growth in brook charr, Salvelinus fontinalis (Mitchill). BMC Genet. 8: 87. http://dx.doi.org/10.1186/1471-2156-8-87 PMid:18154679 PMCid:PMC2257973; Costa C., Vandeputte M., Antonucci F., et al. 2010. Genetic and environmental influences on shape variation in the European sea bass (Dicentrarchus labrax). Biol. J. Linn. Soc. 101: 427-436. http://dx.doi.org/10.1111/j.1095-8312.2010.01512.x; Dendrinos P., Thorpe J.P. 1985. Effects of reduced salinity on growth and body composition in the European bass Dicentrarchus labrax (L.). Aquaculture 49: 333-358. http://dx.doi.org/10.1016/0044-8486(85)90090-0; Duan C. 1997. The insulin-like growth factor system and its biological actions in fish. Am. Zool. 37: 491-503.; Dufour V., Cantou M., Lecomte F. 2009. Identification of sea bass (Dicentrarchus labrax) nursery areas in the north-western Mediterranean Sea. J. Mar. Biol. Ass. UK 89: 1367-1374. http://dx.doi.org/10.1017/S0025315409000368; Eroldogan O.T., Kumlu M. 2002. Growth performance, body traits and fillet composition of the European sea bass (Dicentrarchus labrax) reared in various salinities and freshwater. Turk. J. Vet. Anim. Sci. 26: 993-1001.; Ferraresso S., Milan M., Pellizzari C., et al. 2010. Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformity. BMC Genomics 11 : 354. http://dx.doi.org/10.1186/1471-2164-11-354 PMid:20525278 PMCid:PMC2889902; Fox B.K., Breves J.P., Davis L.K., et al. 2010. Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: Importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia. Gen. Comp. Endocrinol. 166: 573-580. http://dx.doi.org/10.1016/j.ygcen.2009.11.012 PMid:19932110; Fukamachi S., Meyer A. 2007. Evolution of receptors for growth hormone and somatolactin in fish and land vertebrates: lessons from the lungfish and sturgeon orthologues. J. Mol. Evol. 65: 359-372. http://dx.doi.org/10.1007/s00239-007-9035-7 PMid:17917757; Gabriel W., Luttbeg B., Sih A., et al. 2005. Environmental tolerance, heterogeneity, and the evolution of reversible plastic responses. Am. Nat. 166: 339-353. http://dx.doi.org/10.1086/432558 PMid:16224689; Gemayel R., Vinces M.D., Legendre M., et al.2010. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Ann. Rev. Genet. 44: 445-477. http://dx.doi.org/10.1146/annurev-genet-072610-155046 PMid:20809801; Ghalambor C.K., McKay J.K., Carroll S.P., et al. 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21: 394-407. http://dx.doi.org/10.1111/j.1365-2435.2007.01283.x; Gienapp P., Teplitsky C., Alho J.S., et al. 2008. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17: 167-178. http://dx.doi.org/10.1111/j.1365-294X.2007.03413.x PMid:18173499; Giffard-Mena I., Lorin-Nebel C., Charmantier G., et al. 2008. Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: Role of aquaporins and Na+/K+-ATPases. Comp. Biochem. Physiol. A150: 332-338. http://dx.doi.org/10.1016/j.cbpa.2008.04.004 PMid:18485772; González-Wangüemert G, Pérez-Ruzafa Á. 2012. In two waters: contemporary evolution of lagoonal and marine white seabream (Diplodus sargus) populations. Mar. Ecol. 33: 337-349. http://dx.doi.org/10.1111/j.1439-0485.2011.00501.x; González-Wangüemert M, Vergara-Chen C. 2014. Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus minutus. Helgol. Mar. Res. 68: 357-371. http://dx.doi.org/10.1007/s10152-014-0396-1; Guderley H., Pörtner H.O. 2010. Metabolic power budgeting and adaptive strategies in zoology: examples from scallops and fish. Can. J. Zool. 88: 753-763. http://dx.doi.org/10.1139/Z10-039; Havird J.C., Henry R.P., Wilson A.E. 2013. Altered expression of Na+/K+–ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer: A meta-analysis of 59 quantitative PCR studies over 10 years. Comp. Biochem. Physiol. D8: 131-140.; Hoffmann A.A., Parsons P.A. 1991. Evolutionary genetics and environmental stress. Oxford University Press, Oxford, 296 pp.; Jensen K., Madsen S.S., Kristiansen K. 1998. Osmoregulation and salinity effects on the expression and activity of Na+,K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. 282: 290-300. 3.0.CO;2-H" target="_blank">http://dx.doi.org/10.1002/(SICI)1097-010X(19981015)282:33.0.CO;2-H; Kuhl H., Beck A., Wozniak G., et al. 2010. The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing. BMC Genomics 11: 68. http://dx.doi.org/10.1186/1471-2164-11-68 PMid:20105308 PMCid:PMC2837037; Larsen P.F., Schulte P.M., Nielsen E.E. 2011. Gene expression analysis for the identification of selection and local adaptation in fishes. J. Fish Biol. 78:1-22. http://dx.doi.org/10.1111/j.1095-8649.2010.02834.x PMid:21235543; Lasserre P, Gallis JL. 1975. Osmoregulation and differential penetration of two grey mullets, Chelon labrosus (Risso) and Liza ramada (Risso) in estuarine fish ponds. Aquaculture 5: 323-344. http://dx.doi.org/10.1016/0044-8486(75)90053-8; Lemaire C., Allegrucci G., Naciri M., et al. 2000. Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrar chus labrax)? Mol. Ecol. 9: 457-467. http://dx.doi.org/10.1046/j.1365-294x.2000.00884.x PMid:10736048; Lerner D.T., Sheridan M.A., McCormick S.D. 2012. Estrogenic compounds decrease growth hormone receptor abundance and alter osmoregulation in Atlantic salmon. Gen. Comp. Endocrinol. 179: 196-204. http://dx.doi.org/10.1016/j.ygcen.2012.08.001 PMid:22906423; Link K., Berishvili G., Shved N., et al. 2010: Seawater and freshwater challenges affect the insulin-like growth factors IGF-I and IGF-II in liver and osmoregulatory organs of the tilapia. Mol. Cell. Endocrinol. 327: 40-46. http://dx.doi.org/10.1016/j.mce.2010.05.011 PMid:20621706; Loy A, Corti M., Cataudella S. 1999. Variation in gill rakers number during growth of the sea bass, Dicentrarchus labrax (Perciformes: Moronidae), reared at different salinities. Env. Biol. Fishes 55: 391-398. http://dx.doi.org/10.1023/A:1007548102060; Magdeldin S., Uchida K., Hirano T., et al. 2007. Effects of environmental salinity on somatic growth and growth hormone/insulin-like growth factor-I axis in juvenile tilapia (Oreochromis mossambicus). Fish. Sci. 73: 1025-1034. http://dx.doi.org/10.1111/j.1444-2906.2007.01432.x; Magnanou E., Klopp C., Noirot C., et al. 2014. Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes. Gene 544:56-66. http://dx.doi.org/10.1016/j.gene.2014.04.032 PMid:24768179; Marino G., Cataldi E., Pucci P., et al. 1994. Acclimation trials of wild and hatchery sea bass (Dicentrarchus labrax) fry at different salinities. J. Appl. Ichthyol. 10: 57-63. http://dx.doi.org/10.1111/j.1439-0426.1994.tb00142.x; Marshall D.J., Monro K., Bode M., et al. 2010. Phenotype-environment mismatches reduce connectivity in the sea. Ecol. Lett. 13: 128-140. http://dx.doi.org/10.1111/j.1461-0248.2009.01408.x PMid:19968695; Mazurais D., Darias M.J., Gouillou-Coustans M.F., et al. 2008. Dietary vitamin mix levels influence the ossification process in European sea bass (Dicentrarchus labrax) larvae. Am. J. Physiol. – Regul. Integr. Comp. Physiol. 294: R520-R527. http://dx.doi.org/10.1152/ajpregu.00659.2007 PMid:18032465; McCairns R.J.S., Bernatchez L. 2010. Adaptive divergence between freshwater and marine sticklebacks: insights into the role of phenotypic plasticity from an integrated analysis of candidate gene expression. Evolution 64: 1029-1047. http://dx.doi.org/10.1111/j.1558-5646.2009.00886.x PMid:19895556; Montserrat N., Gabillard J.C., Capilla E., et al. 2007. Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 150: 462-472. http://dx.doi.org/10.1016/j.ygcen.2006.11.009 PMid:17196198; Moriyama S., Ayson F.G., Kawauchi H., 2000. Growth regulation by insulin-like growth factor-I in fish. Biosci. Biotech. Biochem. 64: 1553-1562. http://dx.doi.org/10.1271/bbb.64.1553 PMid:10993139; Nebel C., Romestand B., Nègre-Sadargues G., et al. 2005. Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: involvement of gills and urinary system. J. Exp. Biol. 208: 3859-3871. http://dx.doi.org/10.1242/jeb.01853 PMid:16215214; Norman J.D., Danzmann R.G., Glede B., et al. 2011. The genetic basis of salinity tolerance traits in Arctic charr (Salvelinus alpinus). BMC Genet. 12: 81. http://dx.doi.org/10.1186/1471-2156-12-81 PMid:21936917 PMCid:PMC3190344; Palaima A. 2007. The fitness cost of generalization: present limitations and future possible solutions. Biol. J. Linn. Soc. 90: 583-590. http://dx.doi.org/10.1111/j.1095-8312.2007.00745.x; Pfaffl M. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nuc. Acids Res. 29: e45. http://dx.doi.org/10.1093/nar/29.9.e45 PMid:11328886 PMCid:PMC55695; Pfennig D.W., Wund M.A., Snell-Rodd E.C., et al. 2010. Phenotypic plasticity's impact on diversification and speciation. Trends Ecol. Evol. 25: 459-467. http://dx.doi.org/10.1016/j.tree.2010.05.006 PMid:20557976; Pickett G.D., Pawson M.G. 1994. Sea bass biology, exploitation and conservation. Fish and fisheries series, Chapman and Hall, London, 337 pp.; Plaut I. 1998. Comparison of salinity tolerance and osmoregulation in two closely related species of blennies from different habitats. Fish Physiol. Biochem. 19: 181-188. http://dx.doi.org/10.1023/A:1007798712727; Quéré N., Guinand B., Kuhl H., etal. 2010. Genomic sequences and genetic differentiation at associated tandem repeat markers in growth hormone, somatolactin and insulin-like growth factor 1 genes of the sea bass, Dicentrarchus labrax. Aquat. Living Resour. 23: 285-296. http://dx.doi.org/10.1051/alr/2010021; Räsänen K, Hendry A.P. 2008. Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol. Lett. 11: 624-636. http://dx.doi.org/10.1111/j.1461-0248.2008.01176.x PMid:18384363; Reindl K.L., Sheridan M.A. 2012. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Gene Comp. Endocrinol. 163: 231-245.; Reinecke M. 2010. Influences of the environment on the endocrine and paracrine fish growth hormone–insulin-like growth factor-I system. J. Fish Biol. 76:1233-1254. http://dx.doi.org/10.1111/j.1095-8649.2010.02605.x PMid:20537012; Rigal F., Chevalier T., Lorin-Nebel C., et al. 2008. Osmoregulation as a potential factor for the differential distribution of two cryptic gobiid species, Pomatoschistus microps and P. marmoratus in French Mediterranean lagoons. Sci. Mar. 72: 469-476.; Riley L.G., Hirano T., Gray E.G. 2003. Effects of transfer from seawater to fresh water on the growth hormone/insulin-like growth factor-I axis and prolactin in the tilapia, Oreochromis mossambicus. Comp. Biochem. Physiol. B136: 647-655. http://dx.doi.org/10.1016/S1096-4959(03)00246-X; Roff D.A., 1992. The evolution of life histories. Chapman and Hall, New York, 595 pp.; Rubio V.C., Sánchez-Vázquez F.J., Madrid J.A. 2005. Effects of salinity on food intake and macronutrient selection in European sea bass. Physiol. Behav. 85: 333-339. http://dx.doi.org/10.1016/j.physbeh.2005.04.022 PMid:15932763; Saillant A., Fostier E., Haffray P., et al. 2003. Saline preferendum for the European sea bass, Dicentrarchus labrax, larvae and juveniles: effect of salinity on early development and sex determination. J. Exp. Mar. Biol. Ecol. 287: 103-117. http://dx.doi.org/10.1016/S0022-0981(02)00502-6; Sakamoto T., Hirano T. 1991. Growth hormone receptors in the liver and osmoregulatory organs of rainbow trout: characterization and dynamics during adaptation to seawater. J. Endocrinol. 130: 425-433. http://dx.doi.org/10.1677/joe.0.1300425 PMid:1940716; Sánchez Vázquez F.J., Muñoz-Cueto J.A. 2014. Biology of European sea bass. CRC Press, Cambridge, 436 pp.; Scott G.R., Baker D.W., Schulte P.M., et al. 2008. Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer. J. Exp. Biol. 211: 2450-2459. http://dx.doi.org/10.1242/jeb.017947 PMid:18626079; Shikano T., Ramadevi J., Merilä J. 2010. Identification of local- and habitat-dependent selection: scanning functionally important genes in nine-spined sticklebacks (Pungitius pungitius). Mol. Biol. Evol. 27: 2775-2789. http://dx.doi.org/10.1093/molbev/msq167 PMid:20591843; Sotka E.E. 2012. Natural selection, larval dispersal, and the geography of phenotypes in the sea. Integr. Comp. Biol. 52: 538-545. http://dx.doi.org/10.1093/icb/ics084 PMid:22634357; Streelman J., Kocher T. 2002. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol. Genomics 9: 1-4. PMid:11948285; Tine M., De Lorgeril J., D'Cotta H., et al. 2008. Transcriptional responses of the black-chinned tilapia Sarotherodon melanotheron to salinity extremes. Mar. Genomics 1: 37-46. http://dx.doi.org/10.1016/j.margen.2008.06.001 PMid:21798152; Terova G., Rimoldi S., Chini V., et al. 2007. Cloning and expression analysis of insulin-like growth factor I and II in liver and muscle of sea bass (Dicentrarchus labrax, L.) during long-term fasting and refeeding. J. Fish Biol. 70: 219-233. http://dx.doi.org/10.1111/j.1095-8649.2007.01402.x; Venturini G., Cataldi E., Marino G., et al. 1992. Serum ions concentration and ATPase activity in gills, kidney and oesophagus of European sea bass (Dicentrarchus labrax, Pisces, Perciformes) during acclimation trials to fresh water. Comp. Biochem. Physiol. A103: 451-454. http://dx.doi.org/10.1016/0300-9629(92)90271-Q; Van Valen L. 1965. Morphological variation and width of ecological niche. Am. Nat. 99: 377-390. http://dx.doi.org/10.1086/282379; Varsamos S., Diaz J.P., Charmantier G., et al. 2002. Branchial chlo ride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J. Exp. Zool. 293: 12-26. http://dx.doi.org/10.1002/jez.10099 PMid:12115915; Varsamos S., Xuereb B., Commes T., et al. 2006. Pituitary hormone mRNA expression in European sea bass Dicentrarchus labrax in seawater and following acclimation to fresh water. J. Endocrinol. 191: 473-480. http://dx.doi.org/10.1677/joe.1.06847 PMid:17088417; Vasconcelos R.P., Reis-Santos P., Maia A., et al. 2010. Nursery use patterns of commercially important marine fish species in estuarine systems along the Portuguese coast. Estuar. Coast. Shelf Sci. 86: 613-624. http://dx.doi.org/10.1016/j.ecss.2009.11.029; Wang Z., Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10: 57-63 http://dx.doi.org/10.1038/nrg2484 PMid:19015660 PMCid:PMC2949280; Weir B.S., Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370. http://dx.doi.org/10.2307/2408641; Wood A.W., Duan C., Bern H.A. 2005. Insulin-like growth factor signaling in fish. Internat. Rev. Cytol. 243: 215-285. http://dx.doi.org/10.1016/S0074-7696(05)43004-1; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1552

  17. 17
  18. 18

    المؤلفون: Khoshal, Abdullah

    المساهمون: ToxAlim (ToxAlim), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paul Sabatier - Toulouse III, Isabelle Oswald, STAR, ABES

    المصدر: Toxicology and food chain. Université Paul Sabatier-Toulouse III, 2020. English. ⟨NNT : 2020TOU30017⟩

    وصف الملف: application/pdf

  19. 19

    المؤلفون: Khoshal, Abdullah

    المساهمون: ToxAlim (ToxAlim), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paul Sabatier - Toulouse III, Isabelle Oswald

    المصدر: Toxicology and food chain. Université Paul Sabatier-Toulouse III, 2020. English. ⟨NNT : 2020TOU30017⟩

  20. 20
    Academic Journal

    المساهمون: Laboratoire de catalyse en chimie organique UMR 6503 (LACCO Poitiers ), Université de Poitiers = University of Poitiers (UP)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS), Equipe Physiologie Moléculaire du Transport de Sucres (PhyMoTS), Université de Poitiers = University of Poitiers (UP)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers = University of Poitiers (UP)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: ISSN: 1471-2229 ; BMC Plant Biology ; https://hal.science/hal-00608622 ; BMC Plant Biology, 2010, 10 (article N° 245), pp.245. ⟨10.1186/1471-2229-10-245⟩.

    Relation: info:eu-repo/semantics/altIdentifier/pmid/21073695; PRODINRA: 50235; PUBMED: 21073695; WOS: 000284769400001