يعرض 1 - 11 نتائج من 11 نتيجة بحث عن '"exact Riemann solver"', وقت الاستعلام: 0.50s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Cannata, Giovanni, Palleschi, Federica, Iele, Benedetta, Gallerano, Francesco

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000818203800001; volume:10; issue:6; numberofpages:35; journal:JOURNAL OF MARINE SCIENCE AND ENGINEERING; http://hdl.handle.net/11573/1651002; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85134905024

  3. 3
    Academic Journal

    المساهمون: Gallerano, Francesco, Palleschi, Federica, Iele, Benedetta, Cannata, Giovanni

    Relation: volume:17; firstpage:128; lastpage:139; numberofpages:12; journal:WSEAS TRANSACTIONS ON FLUID MECHANICS; http://hdl.handle.net/11573/1651738; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85135232721

  4. 4
  5. 5
    Academic Journal

    المساهمون: Cannata, Giovanni, Petrelli, Chiara, Barsi, Luca, Fratello, Federico, Gallerano, Francesco

    وصف الملف: ELETTRONICO

    Relation: volume:13; firstpage:60; lastpage:70; numberofpages:11; journal:WSEAS TRANSACTIONS ON FLUID MECHANICS; http://hdl.handle.net/11573/1118260; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85046480587

  6. 6
    Academic Journal

    المساهمون: Cannata, Giovanni, Petrelli, Chiara, Barsi, Luca, Fratello, Federico, Gallerano, Francesco

    وصف الملف: ELETTRONICO

    Relation: volume:3; firstpage:42; lastpage:48; numberofpages:7; journal:INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE; http://hdl.handle.net/11573/1118316

  7. 7
    Academic Journal

    المؤلفون: Liu, Li, Cheng, Jun‐bo, Shen, Yongxing

    وصف الملف: application/pdf

    Relation: Liu, Li; Cheng, Jun‐bo; Shen, Yongxing (2021). "An exact Riemann solver for one- dimensional multimaterial elastic- plastic flows with Mie- Grüneisen equation of state without vacuum." International Journal for Numerical Methods in Fluids 93(4): 1001-1030.; https://hdl.handle.net/2027.42/167106; International Journal for Numerical Methods in Fluids; Favrie N, Gavrilyuk S. Dynamics of shock waves in elastic- plastic solids. Paper presented at: Proceedings of the ESAIM; Vol. 33, 2011:50- 67; EDP Sciences.; Cheng J- B, Toro EF, Jiang S, Yu M, Tang W. A high- order cell- centered Lagrangian scheme for one- dimensional elastic- plastic problems. Comput Fluids. 2015; 122: 136 - 152.; Cheng J. Harten- Lax- van Leer- contact (HLLC) approximation Riemann solver with elastic waves for one- dimensional elastic- plastic problems. Appl Math Mech. 2016; 37 ( 11 ): 1517 - 1538.; Liu L, Cheng J- B, Liu Z. A multi- material HLLC Riemann solver with both elastic and plastic waves for 1D elastic- plastic flows. Comput Fluids. 2019; 192: 104265.; Kerger F, Archambeau P, Erpicum S, Dewals BJ, Pirotton M. An exact Riemann solver and a Godunov scheme for simulating highly transient mixed flows. J Comput Appl Math. 2011; 235 ( 8 ): 2030 - 2040.; Deledicque V, Papalexandris MV. An exact Riemann solver for compressible two- phase flow models containing non- conservative products. J Comput Phys. 2007; 222 ( 1 ): 217 - 245.; Bernetti R, Titarev VA, Toro EF. Exact solution of the riemann problem for the shallow water equations with discontinuous bottom geometry. J Comput Phys. 2008; 227 ( 6 ): 3212 - 3243.; Barton PT, Drikakis D, Romenski E, Titarev VA. Exact and approximate solutions of Riemann problems in non- linear elasticity. J Comput Phys. 2009; 228 ( 18 ): 7046 - 7068.; Miller GH. An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics. J Comput Phys. 2004; 193 ( 1 ): 198 - 225.; Zhan Q, Ren Q, Zhuang M, Sun Q, Liu QH. An exact Riemann solver for wave propagation in arbitrary anisotropic elastic media with fluid coupling. Comput Methods Appl Mech Eng. 2018; 329: 24 - 39.; Garaizar X. Solution of a Riemann problem for elasticity. J Elast. 1991; 26 ( 1 ): 43 - 63.; Gao S, Liu T. 1d exact elastic- perfectly plastic solid Riemann solver and its multi- material application. Adv Appl Math Mech. 2017; 9 ( 3 ): 621 - 650.; Gao S, Liu T, Yao C. A complete list of exact solutions for one- dimensional elastic- perfectly plastic solid Riemann problem without vacuum. Commun Nonlinear Sci Numer Simul. 2018; 63: 205 - 227.; Tyndall MB. Numerical modelling of shocks in solids with elastic- plastic conditions. Shock Waves. 1993; 3 ( 1 ): 55 - 66.; Wang J, Liu K, Zhang D. An improved CE/SE scheme for multi- material elastic plastic flows and its application. Comput Fluids. 2009; 38 ( 3 ): 544 - 551.; Ortega AL, Lombardini M, Pullin D, Meiron DI. Numerical simulation of elastic- plastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver. J Comput Phys. 2014; 257: 414 - 441.; Shyue KM. A fluid- mixture type algorithm for compressible multicomponent flow with Mie- Gruneisen equation of state. J Comput Phys. 2001; 171 ( 2 ): 678 - 707.; Segletes SB. Thermodynamic stability of the Mie- Grüneisen equation of state, and its relevance to hydrocode computations. J Appl Phys. 1991; 70 ( 5 ): 2489 - 2499.; Wilkins ML. Calculation of Elastic- Plastic Flow Technical Report. Livermore, CA.: California University Livermore Radiation Lab; 1963.; Maire P- H, Abgrall R, Breil J, LoubèRe R, Rebourcet B. A nominally second- order cell- centered Lagrangian scheme for simulating elastic- plastic flows on two- dimensional unstructured grids. J Comput Phys. 2013; 235: 626 - 665.; Atluri SN. On constitutive relations at finite strain: hypo- elasticity and elasto- plasticity with isotropic or kinematic hardening. Comput Methods Appl Mech Eng. 1984; 43 ( 2 ): 137 - 171.; Steinberg D, Lund C. A constitutive model for strain rates from 10 - 4 to 10 6 s - 1. J Appl Phys. 1989; 65 ( 4 ): 1528 - 1533.; Lieberman EJ, Morgan NR, Luscher DJ, Burton DE. A higher- order Lagrangian discontinuous Galerkin hydrodynamic method for elastic- plastic flows. Comput Math Appl. 2019; 78 ( 2 ): 318 - 334.; Cheng J- B, Huang W, Jiang S, Tian B. A third- order moving mesh cell- centered scheme for one- dimensional elastic- plastic flows. J Comput Phys. 2017; 349: 137 - 153.; Thomson S. Mathematical modelling of elastoplasticity at high stress [Ph.D. thesis]. University of Oxford; 2017.; Godunov SK. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik. 1959; 89 ( 3 ): 271 - 306.; Leer B. Toward the ultimate ultimate conservative difference scheme. V. A second- order sequel to Godunov’s method. J Comput Phys. 1979; 32 ( 1 ): 101 - 136.; Roe PL. Discrete models for the numerical analysis of time- dependent multidimensional gas dynamics. J Comput Phys. 1986; 63 ( 2 ): 458 - 476.; Harten A, Lax PD, Van Leer B. On upstream differencing and Godunov- type schemes for hyperbolic conservation laws. SIAM Rev. 1983; 25 ( 1 ): 53 - 79.; Toro EF, Spruce M, Speares W. Restoration of the contact surface in the HLL- Riemann solver. Shock Waves. 1994; 4 ( 1 ): 25 - 34.; Einfeld B. On Godunov- type methods for gas dynamics. SIAM J Numer Anal. 1988; 25 ( 2 ): 294 - 318.; Deng X, Boivin P, Xiao F. A new formulation for two- wave Riemann solver accurate at contact interfaces. Phys Fluids. 2019; 31 ( 4 ): 046102.; Simon S, Mandal JC. A simple cure for numerical shock instability in the HLLC Riemann solver. J Comput Phys. 2019; 378: 477 - 496.; Balsara DS. A two- dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J Comput Phys. 2012; 231 ( 22 ): 7476 - 7503.; Vides J, Nkonga B, Audit E. A simple two- dimensional extension of the HLL Riemann solver for hyperbolic systems of conservation laws. J Comput Phys. 2015; 280: 643 - 675.; Cheng J- B, Liu L, Jiang S, Yu M, Liu Z. A second- order cell- centered Lagrangian scheme with a HLLC Riemann solver of elastic and plastic waves for two- dimensional elastic- plastic flows. J Comput Phys. 2020; 109452.; Bouchut F, Klingenberg C, Waagan K. A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves. Numer Math. 2010; 115 ( 4 ): 647 - 679.; Gavrilyuk SL, Favrie N, Saurel R. Modelling wave dynamics of compressible elastic materials. J Comput Phys. 2008; 227 ( 5 ): 2941 - 2969.; Khan AS, Huang S. Continuum Theory of Plasticity. Hoboken, NJ: John Wiley & Sons; 1995.; Batra R. Linear constitutive relations in isotropic finite elasticity. J Elast. 1998; 51 ( 3 ): 243 - 245.; Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Berlin, Germany: Springer Science & Business Media; 2013.; Kulikovskii AG, Pogorelov NV, Semenov AY. Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Boca Raton, FL: CRC Press; 2000.; Saurel R, Abgrall R. A multiphase Godunov method for compressible multifluid and multiphase flows. J Comput Phys. 1999; 150 ( 2 ): 425 - 467.; Deng X, Inaba S, Xie B, Shyue K- M, Xiao F. High fidelity discontinuity- resolving reconstruction for compressible multiphase flows with moving interfaces. J Comput Phys. 2018; 371: 945 - 966.

  8. 8
    Report
  9. 9
    Academic Journal

    المساهمون: Föll, F., Hitz, T., Müller, C., Munz, C. -D., Dumbser, M.

    Relation: volume:2019, 29; issue:5; firstpage:769; lastpage:793; numberofpages:25; journal:SHOCK WAVES; info:eu-repo/grantAgreement/EC/H2020/671698; https://hdl.handle.net/11572/360644; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85064183902

  10. 10
  11. 11