يعرض 1 - 20 نتائج من 47 نتيجة بحث عن '"end to end distance"', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Andrei Vovk, Anton Zilman

    المصدر: International Journal of Molecular Sciences; Volume 24; Issue 2; Pages: 1444

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Molecular Biology; https://dx.doi.org/10.3390/ijms24021444

  2. 2
    Academic Journal

    المصدر: Molecules; Volume 27; Issue 4; Pages: 1361

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Computational and Theoretical Chemistry; https://dx.doi.org/10.3390/molecules27041361

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: International Conference on Computational Science and Its Applications ; https://link.springer.com/chapter/10.1007/978-3-030-86653-2_14

    وصف الملف: application/pdf

    Relation: Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953); Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhauser, Basel (1953); Yamakawa, H.: Modern Theory of Polymer Solutions. Harper and Row, New York (1971); Wilson, K.G., Kogut, J.: The renormalization group and the expansion. Phys. Rep. 12(2), 75–199 (1974); Sokal, A.D.: Molecular Dynamics Simulations in Polymer Sciences. Oxford University Press, New York (1995); Guttmann, A.J., Conway, A.R.: Square lattice self-avoiding walks and polygons. Ann. Comb. 5(3), 319–345 (2001); Jensen, I.: Enumeration of self-avoiding walks on the square lattice. J. Phys. A Math. Gen. 37(21), 5503–5524 (2004); Li, B., Neal, M, Sokal, A.D.: Critical exponent hyper scaling, and universal amplitude ratios for two and three-dimensional self-avoiding walks. J. Stat. Phys. 80(3), 661–754 (1995); Hara, T., Slade, G., Sokal, A.D.: New lower bounds on the self-avoiding walk connective constant. J. Stat. Phys. 72(3), 479–517 (1993); Slade, G.: Self-avoiding walk, spin systems and renormalization. Proc. R. Soc. A 475(2221), 20180549 (2019); Amit, D.J., Parisi, G., Paliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27(3), 1635–1645 (1983); Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003); Teraoka, I.: Polymer Solutions: An Introduction to Physical Properties. Wiley Inter-science, New York (2002); Bhattarcharjee, S.M., Giacometti, A., Maritan, A.: Flory theory for polymers. J. Phys. Condens. Matter 25, 503101 (2013); Isaacson, J., Lubensky, T.C.: Flory exponent for generalized polymer problems. J. Phys. Lett. 41(19), 469–471 (1980); Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and company, New York (1982); Banerji, A., Ghosh, I.: Fractal symmetry of proteins interior: what have we learned. Cell. Mol. Life Sci. 68(16), 2711–2737 (2011); Dewey, T.G.: Fractals in Molecular Biophysics. Oxford University Press, New York (1997); Maritan, A.: Random walk and the ideal chain problem on self-similar structures. Phys. Rev. Lett. 62(24), 2845–2848 (1989); Kawakatsu, T.: Statistical Physics of Polymers: An Introduction. Springer-Verlag, Heidelberg (2004); Rammal, R., Toulouse, G., Vannimenus, J.: Self-avoiding walks on fractal spaces: exact results and Flory approximation. J. Phys. 45(3), 389–394 (1984); Takayasu, H.: Fractals in the Physical Sciences. Manchester University Press, New York (1990); Feder, J.: Fractals. Physics of Solids and Liquids. Springer-US, New York (1988); Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055–1073 (1990); Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley Series in Nonlinear Sciences, Germany (2008); Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983); Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlin. Phenom. 9(1), 189–208 (1983); Lhuillier, D.: A simple model for polymeric fractals in a good solvent and an improved version of the Flory approximation. J. Phys. Fr. 49(5), 705–710 (1988); Victor, J.M., Lhuillier, D.: The gyration radius distribution of two-dimensional polymers chains in a good solvent. J. Chem. Phys. 92(2), 1362–1364 (1990); McKenzie, D.S., Moore, M.A.: Shape of self-avoiding walk or polymer chain. J. Phys. A Gen. Phys. 4(5), L82–L85 (1971); des Cloizeaux, J.: Lagrangian theory for self-avoiding random chain. Phys. Rev. A. 10, 1665 (1974); des Cloizeaux, J., Jannink, G.: Polymers in solution: their modelling and structure. Oxford Science Publications. Clarendon Press, Oxford (1990); Caracciolo, S., Causo, M.S., Pelissetto, A.: End-to-end distribution function for dilute polymers. J. Chem. Phys. 112(17), 7693–7710 (2000); Vettorel, T., Besold, G., Kremer, K.: Fluctuating soft-sphere approach to coarse-graining of polymer models. Soft Matter 6, 2282–2292 (2010); Bernal, D.R.: PhD Thesis, http://www.ppgbea.ufrpe.br/sites/www.ppgbea.ufrpe.br/files/documentos/tese_david_roberto_bernal.pdf. Accessed 21 June 2021; https://hdl.handle.net/11323/8819; https://doi.org/10.1007/978-3-030-86653-2_14; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/

  5. 5
    Academic Journal

    المؤلفون: Natali L, Caprini L, Cecconi F

    المساهمون: Natali, L, Caprini, L, Cecconi, F

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000519648300013; volume:16; firstpage:2594; lastpage:2604; numberofpages:11; journal:SOFT MATTER; https://hdl.handle.net/11573/1706361; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85081787174

  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Report
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Dissertation/ Thesis
  18. 18
  19. 19
  20. 20
    Dissertation/ Thesis

    المؤلفون: Martin, Ayşe

    المساهمون: Tanrısever, Taner., Fen Bilimleri Enstitüsü

    وصف الملف: application/pdf

    Relation: Tez; Martin, Ayşe. Çözücüde tek polimer zincirinin rastgele yürüyüş simülasyonu. yayınlanmamış yüksek lisans tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, 2015.; https://hdl.handle.net/20.500.12462/3347