يعرض 1 - 19 نتائج من 19 نتيجة بحث عن '"elliptic vortex"', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Conference

    المساهمون: Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: Forum Acusticum 2023 ; https://hal.science/hal-04402212 ; Forum Acusticum 2023, 2023, Torino, Italy. ⟨10.61782/fa.2023.0136⟩

    جغرافية الموضوع: Torino, Italy

  3. 3
    Academic Journal

    المصدر: Chebyshevskii Sbornik; Том 24, № 3 (2023); 289-303 ; Чебышевский сборник; Том 24, № 3 (2023); 289-303 ; 2226-8383 ; 10.22405/2226-8383-2023-24-3

    Relation: The Nature of Matter (Wolfson College Lectures 1980) by Mulvey J. H., Clarendon Press Oxford (1981); Oersted J.Ch. (1821, July 21) Experiments in the Effect of a Current of Electricity on the Magnetic Needle, translation of the original latin account appearing in Annals of Philosophy, (1821) p. 71-76; Milyute E., Milyuvene V., Milyus A.J.V., Some Questions of Dynamics of Substance in the Spherical Vortex // Book of Abstracts, IUTAM Symposium on “Hamiltonian Dynamics, Vortex Structures, Turbulence” , August 25-30, 2006, Steklov Mathematical Institute of RAS, Moscow, Russia, (2006) p. 116-117; Milyute E., Milyuvene V., Milyus A.J.V., The Dynamics of a Substance in an Isolated Spherical Vortex and its Relationship with Radiation , Proceedings of an IUTAM Symposium “150 Years of Vortex Dynamics”, held at the Technical University of Denmark, October 12-16, 2008, Springer, (2010) p. 1-7; Milyute E., Milyuvene V., Milyus A.J.V., Some New Physical Characteristics of Atoms of the Chemical Elements of the Periodic Table of D.I.Mendeleev // XIX Mendeleev Congress on General and Applied Chemistry, 25-30 September, 2011, Volgograd, Russia, Abstract book, V.1, Fundamental Problems of Chemical Science, (2011) pp. 288; Milyute E., Milyuvene V.A., Milyus A.J.V., New on the Structure of an Atom in the Periodic System of Chemical Elements of D.I.Mendeleev // XXI Mendeleev Congress on General and Applied Chemistry, 9-13 September, 2019, Saint-Petersburg, Russia, Book 1: Abstracts, (2019) pp. 199; Milyute E., Milyus A., The Relationship of Vorticity and Viscousity Processes of Three Dimensional Swirling Flows // International Scientific Conference “Fundamental and Applied Problems of Mechanics (FAPM-2021)” , Moscow, 2-10 December, 2021, Book: The Materials of Conference, Part 1. (2022) pp. 51-52; Milyute E., Milyus A., Radius-Vector of the Vector Potential and its Essence // LMD LXII Conference in celebration of the 100th birthday of Jonas Kubilius, 16-17 June, 2021, Vilnius Gediminas Technical University, Vilnius, Lithuania (2021); Milyute E., Milyus A., Modeling of Internal Dynamics of Rotating Matter Flows in a Spherical Vortex (our model) // LMD LXII Conference in celebration of the 100th birthday of Jonas Kubilius, 16-17 June, 2021, Vilnius Gediminas Technical University, Vilnius, Lithuania (2021); Дж. К. Максвелл, Статьи и речи, Москва, Наука, 1968; Reynolds O., On the Resistance Encountered by Vortex Rings and Relation between Vortex Rings and Stream Lines of Disk // Nature. 14, N. 361, (1876) pp. 477 - 479; https://www.chebsbornik.ru/jour/article/view/1566

  4. 4
    Academic Journal

    المصدر: Fluids; Volume 4; Issue 1; Pages: 14

    وصف الملف: application/pdf

    Relation: Geophysical and Environmental Fluid Mechanics; https://dx.doi.org/10.3390/fluids4010014

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المؤلفون: Takeshi MIYAZAKI, 宮嵜 武

    المصدر: 日本流体力学会誌「ながれ」 / Journal of Japan Society of Fluid Mechanics. 1995, 14(2):105

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal

    المؤلفون: Xiao, Z., Wan, M., Chen, S., Eyink, G. L.

    المساهمون: Xiao, Z (reprint author), Peking Univ, Coll Engn, Beijing 100871, Peoples R China., Peking Univ, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China., Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA., Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA., Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA., Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA., Peking Univ, Coll Engn, Beijing 100871, Peoples R China.

    المصدر: EI ; SCI

    Relation: JOURNAL OF FLUID MECHANICS.2009,619,1-44.; 941221; http://hdl.handle.net/20.500.11897/316114; WOS:000263528900001

  14. 14
    Academic Journal

    المصدر: Craik , A D D & Forster , GK 1999 , ' The stability of non-axisymmetric time-periodic vortical flows. ' , Fluid Dynamics Research , vol. 25 , pp. 19-36 .

  15. 15
    Academic Journal

    المؤلفون: Zhao, Y, Shi, XG

    المساهمون: Zhao, Y (reprint author), BEIJING UNIV,DEPT MECH & ENGN SCI,STATE KEY LAB TURBULENCE RES,BEIJING 100871,PEOPLES R CHINA., BEIJING UNIV,DEPT MECH & ENGN SCI,STATE KEY LAB TURBULENCE RES,BEIJING 100871,PEOPLES R CHINA.

    المصدر: SCI

    Relation: ACTA MECHANICA SINICA.1997,13,(1),17-25.; 1023722; http://hdl.handle.net/20.500.11897/258152; WOS:A1997WT85600003

  16. 16
    Academic Journal
  17. 17
    Dissertation/ Thesis

    المؤلفون: DEEPAK ADHIKARI

    المساهمون: MECHANICAL ENGINEERING, LIM TEE TAI

    Relation: DEEPAK ADHIKARI (2009-08-11). Some Experimental Studies on Vortex Ring Formation and Interaction. ScholarBank@NUS Repository.; https://scholarbank.nus.edu.sg/handle/10635/16569; NOT_IN_WOS

  18. 18
    Dissertation/ Thesis

    المؤلفون: 吳柏翰, WU, BO-HAN

    المساهمون: 黃美嬌, 臺灣大學:機械工程學研究所

    وصف الملف: 2583907 bytes; application/pdf

    Relation: [1] McWilliams, J. C. (1984). “The emergence of isolated vortices in turbulent flow.” J. Fluid Mech. 146:21-43. [2] Freymuth, P. (1966). “On transition in a separated boundary layer.” J. Fluid Mech. 25:683. [3] Winant, C. D., F. K. Browand (1974). “Vortex pairing: the mechanism of turbulent mixing layer growth at moderate Reynolds number.” J. Fluid Mech. 63:237. [4] Brown, G. L., A. Roshko (1974). “On density effects and large structure in turbulent mixing layers.” J. Fluid Mech. 64:775-816. [5] Zabusky, N. J., G. S. Deem (1971). “Dynamical evolution of two-dimensional unstable shear flows.” J. Fluid Mech. 47:353-379. [6] Roberts, K. V., J. P. Christiansen (1972). “Topics in computational fluid mechanics.” Comput. Phys. Comm. 3:14. [7] Christiansen, J. P., N. J. Zabusky (1973). “Instability, coalescence and fission of finite-area vortex structures.” J. Comput. Phys. 13:363-379. [8] Rossow, V. J. (1977). ”Convective merging of vortex cores in lift generated wakes.” J. Aircraft 14:283-290. [9] Meunier, P. and T. Leweke (2001). "Three-dimensional instability during vortex merging." Physics of Fluids 13(10): 2747-2750. [10] Cerretelli, C. and C. H. K. Williamson (2003). "The physical mechanism for vortex merging." Journal of Fluid Mechanics 475(475): 41-77. [11] Saffman, P. G., R. Szeto (1980). “Equilibrium shapes of a pair of equal uniform vortices.” Physics of Fluids 23:2339-2342. [12] Overman, E. A., N. J. Zabusky (1982). “Evolution and merger of isolated vortex structures.” Physics of Fluids 25:1297-1305. [13] Dritschel, D. G. (1986). "The nonlinear evolution of rotating configurations of uniform vorticity." Journal of Fluid Mechanics 172: 157-182. [14] Melander, M. V., N. J. Zabusky and J. C. McWilliams (1988). "Symmetric vortex merger in two dimensions: causes and conditions." Journal of Fluid Mechanics 195: 303-340. [15] Meunier, P., S. Le Dizes, et al. (2005). "Physics of vortex merging." Comptes Rendus Physique 6(4-5): 431-450. [16] Velasco Fuentes, O. G. (2005). “Vortex filamentation: its onset and its role on axisymmetrization and merger.” Dyn. Atmos. Oceans 40:23. [17] Huang, M.-J. (2005). "The physical mechanism of symmetric vortex merger: A new viewpoint." Physics of Fluids 17(7): 074105. [18] Brandt, L. K. and K. K. Nomura (2006). "The physics of vortex merger: Further insight." Physics of Fluids 18(5): 051701. [19] Rosenhead, L. (1931). “The formation of Vortices from a Surface of Discontinuity.” Proc. Roy. Soc. London A 134:170-192. [20] 陳立杰, 黃美嬌 2006, 群對點快速面積擴散渦漩法之研發(Box-to-Point-based Fast Core-Spreading Vortex Method), 第13屆全國計算流體力學學術研討會 [21] Chorin, A. J. (1973). “Numerical study of slightly viscous flow.” J. Fluid Mech. 57:785-796. [22] Goodman, J. (1987). “Convergence of the random vortex method.” Commun. Pure Appl. Math. 40:189-220. [23] Long, D. G. (1988). “Convergence of the random vortex method in two dimensions.” J. Amer. Math. Soc. 1:779 [24] Degond, P., S. Mas-Gallic (1989). “The weighted particle method for convection-diffusion equations. Part I: the case of an isotropic viscosity.” Mathematics of Computation 53(188):485-507. [25] Fishelov, D. (1990). “A new vortex scheme for viscous flow.” Journal of Computational Physics 86:211-224. [26] Ogami, Y., T. Akamatsu (1991). “Viscous flow simulation using the discrete vortex model – the diffusion velocity method.” Computers & Fluid 19:433-441. [27] Leonard, A. (1980). “Vortex methods for flow simulations.” J. Comput. Phys. 37:289-335. [28] Greengard, C. (1985). “The core-spreading vortex method approximations the wrong equation.” J. Comput. Phys. 61:345-348. [29] Rossi, L. (1996). “Resurrecting core-spreading vortex methods: a new scheme that is both deterministic and convergent.” SIAM Journal on Scientific Computing 17:370-397. [30] Huang, M.-J. (2005). “Diffusion via splitting and remeshing via merging in vortex methods.” International Journal for Numerical Methods in Fluids 48(5): 521-539. [31] Shiels, D. (1998). “Simulation of controlled bluff body flow with a viscous vortex method” Ph.D. Thesis, California Institute of Technology, Pasadena, CA. [32] Rossi, L. (1997). “Merging computational elements in vortex simulations.” SIAM Journal on Scientific Computing 18:1014-1027. [33] Yasuda, I., G. R. Flierl (1997). "Two-dimensional asymmetric vortex merger: merger dynamics and critical merger distance." Dynamics of Atmospheres and Oceans 26(3): 159-181. [34] Yasuda, I. (1991). “Studies on the evolution of Kuroshio warm-core rings.” Ph.D Thesis, Uviversity of Tokyo, 219pp. [35] Kida, S. (1981). " Motion of an Elliptic vortex in a uniform shear flow." 50(10): 3517-3520.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/61515; http://ntur.lib.ntu.edu.tw/bitstream/246246/61515/1/ntu-96-R94522118-1.pdf

  19. 19
    Electronic Resource