يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"electron flux at geosynchronous orbit"', وقت الاستعلام: 0.37s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: Simms, L. E.; Engebretson, M. J.; Reeves, G. D. (2023). "Determining the Timing of Driver Influences on 1.8–3.5 MeV Electron Flux at Geosynchronous Orbit Using ARMAX Methodology and Stepwise Regression." Journal of Geophysical Research: Space Physics 128(1): n/a-n/a.; https://hdl.handle.net/2027.42/175744; Journal of Geophysical Research: Space Physics; Simms, L. E., Engebretson, M. J., Pilipenko, V., Reeves, G. D., & Clilverd, M. ( 2016 ). Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 3181 – 3197. https://doi.org/10.1002/2016JA022414; Osmane, A., Savola, M., Kilpua, E., Koskinen, H., Borovsky, J. E., & Kalliokoski, M. ( 2022 ). Quantifying the non-linear dependence of energetic electron fluxes in the Earth’s radiation belts with radial diffusion drivers. Annales Geophysicae, 40 ( 1 ), 37 – 53. https://doi.org/10.5194/angeo-40-37-2022; Pankratz, A. ( 1991 ). Forecasting with dynamic regression models (p. 386 ). John Wiley & Sons Inc.; Potapov, A. S. ( 2017 ). Relativistic electrons of the outer radiation belt and methods of their forecast (review). Solar-Terrestrial Physics, 3 ( 1 ), 57 – 72. https://doi.org/10.12737/article_58f9703837c248.84596315; Reeves, G. D., Baker, D. N., Belian, R. D., Blake, J. B., Cayton, T. E., Fennell, J. F., et al. ( 1998 ). The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud. Geophysical Research Letters, 25 ( 17 ), 3265 – 3268. https://doi.org/10.1029/98gl02509; Reeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., et al. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research, 116 ( A2 ), A02213. https://doi.org/10.1029/2010JA015735; Romanova, N., & Pilipenko, V. ( 2009 ). ULF wave indices to characterize the solar wind-magnetosphere interaction and relativistic electron dynamics. Acta Geophysica, 57 ( 1 ), 158 – 170. https://doi.org/10.2478/s11600-008-0064-4; Rostoker, G., Skone, S., & Baker, D. N. ( 1998 ). On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms. Geophysical Research Letters, 25 ( 19 ), 3701 – 3704. https://doi.org/10.1029/98gl02801; Sakaguchi, K., Nagatsuma, T., Reeves, G. D., & Spence, H. E. ( 2015 ). Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models. Space Weather, 13 ( 12 ), 853 – 867. https://doi.org/10.1002/2015SW001254; Shprits, Y. Y., Thorne, R. M., Friedel, R., Reeves, G. D., Fennell, J., Baker, D. N., & Kanekal, S. G. ( 2006 ). Outward radial diffusion driven by losses at magnetopause. Journal of Geophysical Research, 111 ( A11 ), A11214. https://doi.org/10.1029/2006JA011657; Simms, L., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J., & Reeves, G. ( 2018 ). A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs. Journal of Geophysical Research: Space Physics, 123 ( 5 ), 3646 – 3671. https://doi.org/10.1029/2017JA025002; Simms, L. E., Engebretson, M. J., Rodger, C. J., Gjerloev, J. W., & Reeves, G. D. ( 2019 ). Predicting lower band chorus with autoregressive-moving average transfer function (ARMAX) models. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 5692 – 5708. https://doi.org/10.1029/2019JA026726; Simms, L. E., Ganushkina, N. Y., van de Kamp, M., Liemohn, M. W., & Dubyagin, S. ( 2022 ). Using ARMAX models to determine the drivers of 40-150 keV GOES electron fluxes. Journal of Geophysical Research: Space Physics, 127 ( 9 ), e2022JA030538. https://doi.org/10.1029/2022JA030538; Simms, L. E., Pilipenko, V. A., Engebretson, M. J., Reeves, G. D., Smith, A. J., & Clilverd, M. ( 2014 ). Prediction of relativistic electron flux following storms at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7297 – 7318. https://doi.org/10.1002/2014JA019955; Simms, L. E., Engebretson, M. J., & Reeves, G. D. ( 2022 ). Removing diurnal signals and longer term trends from electron flux and ULF correlations: A comparison of spectral subtraction, simple differencing, and ARIMAX models. Journal of Geophysical Research: Space Physics, 127, 2. https://doi.org/10.1029/2021JA030021; SPSS. ( 2020 ). IBM SPSS Statistics for Windows (version 27.0). IBM Corp.; Staples, F. A., Kellerman, A., Murphy, K. R., Rae, I. J., Sandhu, J. K., & Forsyth, C. ( 2022 ). Resolving magnetopause shadowing using multimission measurements of phase space density. Journal of Geophysical Research: Space Physics, 127 ( 2 ), e2021JA029298. https://doi.org/10.1029/2021JA029298; Stepanov, N. A., Sergeev, V. A., Sormakov, D. A., Andreeva, V. A., Dubyagin, S. V., Ganushkina, N., et al. ( 2021 ). Superthermal proton and electron fluxes in the plasma sheet transition region and their dependence on solar wind parameters. Journal of Geophysical Research: Space Physics, 126 ( 4 ), e2020JA028580. https://doi.org/10.1029/2020JA028580; Su, Y.-J., Quinn, J. M., Johnston, W. R., McCollough, J. P., & Starks, M. J. ( 2014 ). Specification of>2MeV electron flux as a function of local time and geomagnetic activity at geosynchronous orbit. Space Weather, 12 ( 7 ), 470 – 486. https://doi.org/10.1002/2014SW001069; Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., Heynderickx, D., & Anderson, R. R. ( 2002 ). Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophysical Research Letters, 29 ( 24 ), 27-1 – 27-4. https://doi.org/10.1029/2002GL016039; Takahashi, K., & Ukhorskiy, A. Y. ( 2007 ). Solar wind control of Pc5 pulsation power at geosynchronous orbit. Journal of Geophysical Research, 112 ( A11 ), A11205. https://doi.org/10.1029/2007JA012483; Tu, W., Xiang, Z., & Morley, S. K. ( 2019 ). Modeling the magnetopause shadowing loss during the June 2015 dropout event. Geophysical Research Letters, 46 ( 16 ), 9388 – 9396. https://doi.org/10.1029/2019GL084419; Wing, S., Johnson, J. R., Camporeale, E., & Reeves, G. D. ( 2016 ). Information theoretical approach to discovering solar wind drivers of the outer radiation belt. Journal of Geophysical Research: Space Physics, 121 ( 10 ), 9378 – 9399. https://doi.org/10.1002/2016JA022711; Wing, S., Johnson, J. R., Turner, D. L., Ukhorskiy, A. Y., & Boyd, A. J. ( 2022 ). Untangling the solar wind and magnetospheric drivers of the radiation belt electrons. Journal of Geophysical Research: Space Physics, 127 ( 4 ), e2021JA030246. https://doi.org/10.1029/2021JA030246; Baker, D. N., Pulkkinen, T., Li, X., Kanekal, S., Ogilvie, K., Lepping, R., et al. ( 1998 ). A strong CME-related magnetic cloud interaction with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophysical Research Letters, 25 ( 15 ), 2975 – 2978. https://doi.org/10.1029/98GL01134; Balikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. ( 2011 ). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38 ( 18 ), L18105. https://doi.org/10.1029/2011GL048980; Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., & Belian, R. D. ( 1997 ). Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. Journal of Geophysical Research, 102 ( A2 ), 2309 – 2324. https://doi.org/10.1029/96JA02870; Borovsky, J. E. ( 2017 ). Time-integral correlations of multiple variables with the relativistic-electron flux at geosynchronous orbit: The strong roles of substorm-injected electrons and the ion plasma sheet. Journal of Geophysical Research: Space Physics, 122 ( 12 ), 11961 – 11990. https://doi.org/10.1002/2017JA024476; Borovsky, J. E., & Denton, M. H. ( 2014 ). Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind-driven magnetosphere. Journal of Geophysical Research: Space Physics, 119 ( 6 ), 4307 – 4334. https://doi.org/10.1002/2014JA019876; Boyd, A. J., Spence, H. E., Claudepierre, S. G., Fennell, J. F., Blake, J. B., Baker, D. N., et al. ( 2014 ). Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event. Geophysical Research Letters, 41 ( 7 ), 2275 – 2281. https://doi.org/10.1002/2014GL059626; Boynton, R. J., Amariutei, O. A., Shprits, Y. Y., & Balikhin, M. A. ( 2019 ). The system science development of local time-dependent 40-keV electron flux models for geostationary orbit. Space Weather, 17 ( 6 ), 894 – 906. https://doi.org/10.1029/2018SW002128; Boynton, R. J., Balikhin, M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., et al. ( 2013 ). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 118 ( 4 ), 1500 – 1513. https://doi.org/10.1002/jgra.50192; Burton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204 – 4214. https://doi.org/10.1029/JA080i031p04204; Elkington, S. R., Hudson, M. K., & Chan, A. A. ( 2003 ). Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. Journal of Geophysical Research, 108 ( A3 ), 1116. https://doi.org/10.1029/2001JA009202; Friedel, R. H. W., Reeves, G. D., & Obara, T. ( 2002 ). Relativistic electron dynamics in the inner magnetosphere — A review. Journal of Atmospheric and Solar-Terrestrial Physics, 64 ( 2 ), 265 – 282. https://doi.org/10.1016/S1364-6826(01)00088-8; Holm, S. ( 1979 ). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6 ( 2 ), 65 – 70. https://doi.org/10.2307/4615733; Hwang, J. A., Lee, D.-Y., Lyons, L. R., Smith, A. J., Zou, S., Min, K. W., et al. ( 2007 ). Statistical significance of association between whistler-mode chorus enhancements and enhanced convection periods during highspeed streams. Journal of Geophysical Research, 112 ( A9 ), A09213. https://doi.org/10.1029/2007JA012388; Hyndman, R. J., & Athanasopoulos, G. ( 2018 ). Forecasting: Principles and practice ( 2nd ed., p. 291 ). OTexts, Heathmont.; Jaynes, A. N., Ali, A. F., Elkington, S. R., Malaspina, D. M., Baker, D. N., Li, X., et al. ( 2018 ). Fast diffusion of ultrarelativistic electrons in the outer radiation belt: 17 March 2015 storm event. Geophysical Research Letters, 45 ( 20 ), 10874 – 10882. https://doi.org/10.1029/2018GL079786; Jaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’aniu, T. M., Ali, A. F., et al. ( 2015 ). Source and seed populations for relativistic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 7240 – 7254. https://doi.org/10.1002/2015JA021234; Kozyreva, O., Pilipenko, V., Engebretson, M. J., Yumoto, K., Watermann, J., & Romanova, N. ( 2007 ). In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planetary and Space Science, 55 ( 6 ), 755 – 769. https://doi.org/10.1016/j.pss.2006.03.013; Lam, H.-L. ( 2004 ). On the prediction of relativistic electron fluence based on its relationship with geomagnetic activity over a solar cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 66 ( 2004 ), 1703 – 1714. https://doi.org/10.1016/j.jastp.2004.08.002; Loto’aniu, T. M., Singer, H. J., Waters, C. L., Angelopoulos, V., Mann, I. R., Elkington, S. R., & Bonnell, J. W. ( 2010 ). Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. Journal of Geophysical Research, 115 ( A12 ), A12245. https://doi.org/10.1029/2010JA015755; Lyatsky, W., & Khazanov, G. V. ( 2008 ). Effect of geomagnetic disturbances and solar wind density on relativistic electrons at geostationary orbit. Journal of Geophysical Research, 113 ( A8 ), A08224. https://doi.org/10.1029/2008JA013048; Makridakis, S. G., Wheelwright, S. C., & Hyndman, R. J. ( 1998 ). Forecasting: Methods and applications ( 3rd ed., p. 652 ). John Wiley and Sons.; Mathie, R. A., & Mann, I. R. ( 2000 ). A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophysical Research Letters, 27 ( 20 ), 3261 – 3264. https://doi.org/10.1029/2000GL003822; MATLAB. ( 2021 ). MATLAB version: 9.11.0.1809720 (R2021b) Update 1. The MathWorks Inc.; Neter, J., Wasserman, W., & Kutner, M. ( 1985 ). Applied linear statistical models ( 2 nd ed., p. 112 ). Richard D. Irwin, Inc.; O’Brien, T. P., & McPherron, R. L. ( 2003 ). An empirical dynamic equation for energetic electrons at geosynchronous orbit. Journal of Geophysical Research, 108 ( A3 ), 1137. https://doi.org/10.1029/2002JA009324; O’Brien, T. P., McPherron, R. L., Sornette, D., Reeves, G. D., Friedel, R., & Singer, H. J. ( 2001 ). Which magnetic storms produce relativistic electrons at geosynchronous orbit? Journal of Geophysical Research, 106 ( A8 ), 15533 – 15544. https://doi.org/10.1029/2001JA000052

  2. 2
    Academic Journal

    وصف الملف: application/pdf

    Relation: Simms, L. E.; Ganushkina, N. Yu.; Kamp, M.; Liemohn, M. W.; Dubyagin, S. (2022). "Using ARMAX Models to Determine the Drivers of 40–150 keV GOES Electron Fluxes." Journal of Geophysical Research: Space Physics 127(9): n/a-n/a.; https://hdl.handle.net/2027.42/174933; Journal of Geophysical Research: Space Physics; Roeder, J. L., Chen, M. W., Fennell, J. F., & Friedel, R. ( 2005 ). Empirical models of the low-energy plasma in the inner magnetosphere. Space Weather, 3 ( 12 ). https://doi.org/10.1029/2005SW000161; Pulkkinen, T. I., Dimmock, A. P., Lakka, A., Osmane, A., Kilpua, E., Myllys, M., et al. ( 2016 ). Magnetosheath control of solar wind–magnetosphere coupling efficiency. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 8728 – 8739. https://doi.org/10.1002/2016JA023011; Reeves, G. D., Morley, S. K., Friedel, R. H. W., Henderson, M. G., Cayton, T. E., Cunningham, G., et al. ( 2011 ). On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. Journal of Geophysical Research, 116 ( A2 ). https://doi.org/10.1029/2010JA015735; Rigler, E. J., Baker, D. N., Weigel, R. S., Vassiliadis, D., & Klimas, A. J. ( 2004 ). Adaptive linear prediction of radiation belt electrons using the Kalman filter. Space Weather, 2 ( 3 ). https://doi.org/10.1029/2003SW000036; Rowland, W., & Weigel, R. S. ( 2012 ). Intracalibration of particle detectors on a three-axis stabilized geostationary platform. Space Weather, 10 ( 11 ). https://doi.org/10.1029/2012SW000816; Sakaguchi, K., Miyoshi, Y., Saito, S., Nagatsuma, T., Seki, K., & Murata, K. T. ( 2013 ). Relativistic electron flux forecast at geostationary orbit using Kalman filter based on multivariate autoregressive model. Space Weather, 11 ( 2 ), 79 – 89. https://doi.org/10.1002/swe.20020; Shi, Y., Zesta, E., & Lyons, L. R. ( 2009 ). Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements. Annales Geophysicae, 27 ( 2 ), 851 – 859. https://doi.org/10.5194/angeo-27-851-2009; Sicard-Piet, A., Bourdarie, S., Boscher, D., Friedel, R. H. W., Thomsen, M., Goka, T., et al. ( 2008 ). A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 meV. Space Weather, 6 ( 7 ). https://doi.org/10.1029/2007SW000368; Sillanpää, I., Ganushkina, N. Y., Dubyagin, S., & Rodriguez, J. V. ( 2017 ). Electron fluxes at geostationary orbit from GOES MAGED data. Space Weather, 15 ( 12 ), 1602 – 1614. https://doi.org/10.1002/2017SW001698; Simms, L. E., & Engebretson, M. ( 2020 ). Classifier neural network models predict relativistic electron events at geosynchronous orbit better than multiple regression or ARMAX models. Journal of Geophysical Research: Space Physics, 125 ( 5 ), e2019JA027357. https://doi.org/10.1029/2019JA027357; Simms, L. E., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J., & Reeves, G. ( 2018 ). A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs. Journal of Geophysical Research: Space Physics, 123 ( 5 ), 3646 – 3671. https://doi.org/10.1029/2017JA025002; Simms, L. E., Engebretson, M., & Reeves, G. ( 2022 ). Removing diurnal signals and longer term trends from electron flux and ULF correlations: A comparison of spectral subtraction, simple differencing, and ARIMAX models. Journal of Geophysical Research.; Simms, L. E., Engebretson, M. J., Clilverd, M. A., Rodger, C. J., & Reeves, G. D. ( 2018 ). Nonlinear and synergistic effects of ULF Pc5, VLF chorus, and EMIC waves on relativistic electron flux at geosynchronous orbit. Journal of Geophysical Research: Space Physics, 123 ( 6 ), 4755 – 4766. https://doi.org/10.1029/2017JA025003; Simms, L. E., Engebretson, M. J., Pilipenko, V., Reeves, G. D., & Clilverd, M. ( 2016 ). Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 3181 – 3197. https://doi.org/10.1002/2016JA022414; Simms, L. E., Engebretson, M. J., Rodger, C. J., Dimitrakoudis, S., Mann, I. R., & Chi, P. J. ( 2021 ). The combined influence of lower band chorus and ULF waves on radiation belt electron fluxes at individual l-shells. Journal of Geophysical Research: Space Physics, 126, e2020JA028755. https://doi.org/10.1029/2020JA028755; Simms, L. E., Pilipenko, V., Engebretson, M. J., Reeves, G. D., Smith, A. J., & Clilverd, M. ( 2014 ). Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7297 – 7318. https://doi.org/10.1002/2014JA019955; Smith, G. ( 2018 ). Step away from stepwise. Journal of Big Data, 5 ( 32 ). https://doi.org/10.1186/s40537-018-0143-6; Stepanov, N. A., Sergeev, V. A., Sormakov, D. A., Andreeva, V. A., Dubyagin, S. V., Ganushkina, N., et al. ( 2021 ). Superthermal proton and electron fluxes in the plasma sheet transition region and their dependence on solar wind parameters. Journal of Geophysical Research: Space Physics, 126 ( 4 ), e2020JA028580. https://doi.org/10.1029/2020JA028580; Thomsen, M. ( 2004 ). Why K p is such a good measure of magnetospheric convection. Space Weather, 2 ( 11 ), S11004. https://doi.org/10.1029/2004SW000089; Thomsen, M., Birn, J., Borovsky, J. E., Morzinski, K., McComas, D. J., & Reeves, G. D. ( 2001 ). Two-satellite observations of substorm injections at geosynchronous orbit. Journal of Geophysical Research, 106 ( A5 ), 8405 – 8416. https://doi.org/10.1029/2000JA000080; Thomsen, M., Henderson, M. G., & Jordanova, V. K. ( 2013 ). Statistical properties of the surface-charging environment at geosynchronous orbit. Space Weather, 11 ( 5 ), 237 – 244. https://doi.org/10.1002/swe.20049; Vette, J. ( 1991 ). The AE-8 trapped electron model environment (Technical Report). In National Aeronautics and space administration, Goddard Space Flight Center. National Space Science Data Center, World Data Center A for Rockets and Satellites.; Whittingham, M., Stephens, P., Bradbury, R., & Freckleton, R. ( 2006 ). Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75 ( 5 ), 1182 – 9. https://doi.org/10.1111/j.1365-2656.2006.01141.x; Wing, S., Johnson, J. R., Turner, D. L., Ukhorskiy, A. Y., & Boyd, A. J. ( 2022 ). Untangling the solar wind and magnetospheric drivers of the radiation belt electrons. Journal of Geophysical Research: Space Physics, 127 ( 4 ). https://doi.org/10.1029/2021JA030246; Wright, S. ( 1934 ). The method of path coefficients. The Annals of Mathematical Statistics, 5 ( 3 ), 161 – 215. https://doi.org/10.1214/aoms/1177732676; Akasofu, S.-I. ( 1964 ). A source of the energy for geomagnetic storms and auroras. Planetary and Space Science, 12 ( 9 ), 801 – 808. https://doi.org/10.1016/0032-0633(64)90043-1; Baker, D. N., Hoxie, V., Zhao, H., Jaynes, A. N., Kanekal, S., Li, X., & Elkington, S. ( 2019 ). Multiyear measurements of radiation belt electrons: Acceleration, transport, and loss. Journal of Geophysical Research: Space Physics, 124 ( 4 ), 2588 – 2602. https://doi.org/10.1029/2018JA026259; Baker, D. N., McPherron, R. L., Cayton, T. E., & Klebesadel, R. W. ( 1990 ). Linear prediction filter analysis of relativistic electron properties at 6.6 R E. Journal of Geophysical Research, 95 ( A9 ), 15133 – 15140. https://doi.org/10.1029/JA095iA09p15133; Balikhin, M. A., Boynton, R. J., Billings, S. A., Gedalin, M., Ganushkina, N., Coca, D., & Wei, H. ( 2010 ). Data based quest for solar wind-magnetosphere coupling function. Geophysical Research Letters, 37 ( 24 ). https://doi.org/10.1029/2010GL045733; Balikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H. L. ( 2011 ). Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38 ( 18 ). https://doi.org/10.1029/2011GL048980; Balikhin, M. A., Rodriguez, J. V., Boynton, R. J., Walker, S., Aryan, H., Sibeck, D., & Billings, S. ( 2016 ). Comparative analysis of NOAA REFM and SNB 3 GEO tools for the forecast of the fluxes of high-energy electrons at GEO. Space Weather, 14 ( 1 ), 22 – 31. https://doi.org/10.1002/2015SW001303; Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., & Belian, R. D. ( 1997 ). Characteristic plasma properties of dispersionless substorm injections at geosynchronous orbit. Journal of Geophysical Research, 102 ( A2 ), 2309 – 2324. https://doi.org/10.1029/96JA02870; Blake, J. B., Baker, D. N., Turner, N., Ogilvie, K. W., & Lepping, R. P. ( 1997 ). Correlation of changes in the outer-zone relativistic-electron population with upstream solar wind and magnetic field measurements. Geophysical Research Letters, 24 ( 8 ), 927 – 929. https://doi.org/10.1029/97GL00859; Boscher, D., Bourdarie, S., Friedel, R., & Belian, R. ( 2003 ). Model for the geostationary electron environment: Pole. IEEE Transactions on Nuclear Science, 50 ( 6 ), 2278 – 2283. https://doi.org/10.1109/TNS.2003.821609; Boynton, R. J., Amariutei, O. A., Shprits, Y. Y., & Balikhin, M. A. ( 2019 ). The system science development of local time-dependent 40-keV electron flux models for geostationary orbit. Space Weather, 17 ( 6 ), 894 – 906. https://doi.org/10.1029/2018SW002128; Boynton, R. J., Balikhin, M. A., & Billings, S. A. ( 2015 ). Online NARMAX model for electron fluxes at GEO. Annales Geophysicae, 33 ( 3 ), 405 – 411. https://doi.org/10.5194/angeo-33-405-2015; Boynton, R. J., Balikhin, M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., et al. ( 2013 ). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 118 ( 4 ), 1500 – 1513. https://doi.org/10.1002/jgra.50192; Boynton, R. J., Balikhin, M. A., Billings, S. A., Wei, H. L., & Ganushkina, N. ( 2011 ). Using the NARMAX OLS-ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere. Journal of Geophysical Research, 116 ( A5 ). https://doi.org/10.1029/2010JA015505; Boynton, R. J., Balikhin, M. A., Sibeck, D. G., Walker, S. N., Billings, S. A., & Ganushkina, N. ( 2016 ). Electron flux models for different energies at geostationary orbit. Space Weather, 14 ( 10 ), 846 – 860. https://doi.org/10.1002/2016SW001506; Burton, R. K., McPherron, R. L., & Russell, C. T. ( 1975 ). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 ( 31 ), 4204 – 4214. https://doi.org/10.1029/JA080i031p04204; Castillo Tibocha, A. M., de Wiljes, J., Shprits, Y. Y., & Aseev, N. A. ( 2021 ). Reconstructing the dynamics of the outer electron radiation belt by means of the standard and ensemble Kalman filter with the verb-3D code. Space Weather, 19 ( 10 ), e2020SW002672. https://doi.org/10.1029/2020SW002672; Chen, M. W., Lemon, C. L., Orlova, K., Shprits, Y., Hecht, J., & Walterscheid, R. L. ( 2015 ). Comparison of simulated and observed trapped and precipitating electron fluxes during a magnetic storm. Geophysical Research Letters, 42 ( 20 ), 8302 – 8311. https://doi.org/10.1002/2015GL065737; Choi, H. S., Lee, J., Cho, K. S., Kwak, Y. S., Cho, I. H., Park, Y. D., et al. ( 2011 ). Analysis of GEO spacecraft anomalies: Space weather relationships. Space Weather, 9 ( 5 ), 1 – 12. https://doi.org/10.1029/2010SW000597; Claudepierre, S. G., Mann, I. R., Takahashi, K., Fennell, J. F., Hudson, M. K., Blake, J. B., et al. ( 2013 ). Van Allen probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons. Geophysical Research Letters, 40 ( 17 ), 4491 – 4497. https://doi.org/10.1002/grl.50901; Denton, M. H., Henderson, M. G., Jordanova, V. K., Thomsen, M., Borovsky, J. E., Woodroffe, J., et al. ( 2016 ). An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions. Space Weather, 14 ( 7 ), 511 – 523. https://doi.org/10.1002/2016SW001409; Denton, M. H., Thomsen, M., Jordanova, V. K., Henderson, M. G., Borovsky, J. E., Denton, J. S., et al. ( 2015 ). An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit. Space Weather, 13 ( 4 ), 233 – 249. https://doi.org/10.1002/2015SW001168; Dubyagin, S., Ganushkina, N. Y., Sillanpää, I., & Runov, A. ( 2016 ). Solar wind-driven variations of electron plasma sheet densities and temperatures beyond geostationary orbit during storm times. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 8343 – 8360. https://doi.org/10.1002/2016JA022947; Fok, M.-C., Buzulukova, N. Y., Chen, S.-H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphere-ionosphere model. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7522 – 7540. https://doi.org/10.1002/2014JA020239; Freeman, J. W. ( 1974 ). K p dependence of plasma sheet boundary. Journal of Geophysical Research, 79 ( 28 ), 4315 – 4317. https://doi.org/10.1029/ja079i028p04315; Freeman, J. W., O’Brien, T. P., Chan, A. A., & Wolf, R. A. ( 1998 ). Energetic electrons at geostationary orbit during the November 3–4, 1993 storm: Spatial/temporal morphology, characterization by a power law spectrum and, representation by an artificial neural network. Journal of Geophysical Research, 103 ( A11 ), 26251 – 26260. https://doi.org/10.1029/97JA03268; Ganushkina, N. Y., Liemohn, M. W., Amariutei, O. A., & Pitchford, D. ( 2014 ). Low-energy electrons (5–50 keV) in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 119 ( 1 ), 246 – 259. https://doi.org/10.1002/2013JA019304; Ganushkina, N. Y., Sillanpãã, I., Welling, D., Haiducek, J., Liemohn, M., Dubyagin, S., & Rodriguez, J. V. ( 2019 ). Validation of inner magnetosphere particle transport and acceleration model (IMPTAM) with long-term GOES MAGED measurements of keV electron fluxes at geostationary orbit. Space Weather, 17 ( 5 ), 687 – 708. https://doi.org/10.1029/2018SW002028; Ganushkina, N. Y., Swiger, B., Dubyagin, S., Matéo-Vélez, J.-C., Liemohn, M. W., Sicard, A., & Payan, D. ( 2021 ). Worst-case severe environments for surface charging observed at LANL satellites as dependent on solar wind and geomagnetic conditions. Space Weather, 19 ( 9 ), e2021SW002732. https://doi.org/10.1029/2021SW002732; Ginet, G. P., O’Brien, T. P., Huston, S. L., Johnston, W. R., Guild, T. B., Friedel, R., et al. ( 2013 ). AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Science Reviews, 179 ( 1–4 ), 579 – 615. https://doi.org/10.1007/s11214-013-9964-y; Granger, C., & Newbold, P. ( 1974 ). Spurious regressions in econometrics. Journal of Econometrics, 2 ( 2 ), 111 – 120. https://doi.org/10.1016/0304-4076(74)90034-7; Harel, M., Wolf, R., Spiro, R., Reiff, P., Chen, C.-K., Burke, W., et al. ( 1981 ). Quantitative simulation of a magnetospheric substorm 2, comparison with observations. Journal of Geophysical Research, 86 ( A4 ), 2242 – 2260. https://doi.org/10.1029/ja086ia04p02242; Hartley, D. P., Denton, M. H., & Rodriguez, J. V. ( 2014 ). Electron number density, temperature, and energy density at GEO and links to the solar wind: A simple predictive capability. Journal of Geophysical Research: Space Physics, 119 ( 6 ), 4556 – 4571. https://doi.org/10.1002/2014JA019779; Hyndman, R., & Athanasopoulos, G. ( 2018 ). Forecasting: Principles and practice.; Jordanova, V. K., Tu, W., Chen, Y., Morley, S. K., Panaitescu, A.-D., Reeves, G. D., & Kletzing, C. A. ( 2016 ). RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 “double-dip” storm. Journal of Geophysical Research: Space Physics, 121 ( 9 ), 8712 – 8727. https://doi.org/10.1002/2016JA022470; Kellerman, A. C., & Shprits, Y. Y. ( 2012 ). On the influence of solar wind conditions on the outer-electron radiation belt. Journal of Geophysical Research, 117 ( A5 ). https://doi.org/10.1029/2011JA017253; Koons, H. C., & Gorney, D. J. ( 1991 ). A neural network model of the relativistic electron flux at geosynchronous orbit. Journal of Geophysical Research, 96 ( A4 ), 5549 – 5556. https://doi.org/10.1029/90JA02380; Koons, H. C., Mazur, J. E., Selesnick, R. S., Blake, J. B., Fennell, J. F., Roeder, J. L., & Anderson, P. C. ( 2000 ). The impact of the space environment on space systems. AEROSPACE CORP EL SEGUNDO CA EL SEGUNDO TECHNICAL OPERATIONS.; Korth, H., Thomsen, M., Borovsky, J. E., & McComas, D. J. ( 1999 ). Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 104 ( A11 ), 25047 – 25061. https://doi.org/10.1029/1999JA900292; Kozyreva, O., Pilipenko, V., Engebretson, M., Yumoto, K., Watermann, J., & Romanova, N. ( 2007 ). In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planetary and Space Science, 55 ( 6 ), 755 – 769. https://doi.org/10.1016/j.pss.2006.03.013; Kumar, S., Miyoshi, Y., Jordanova, V. K., Engel, M., Asamura, K., Yokota, S., et al. ( 2021 ). Contribution of electron pressure to ring current and ground magnetic depression using RAM-SCB simulations and arase observations during 7–8 November 2017 magnetic storm. Journal of Geophysical Research: Space Physics, 126 ( 6 ), e2021JA029109. https://doi.org/10.1029/2021JA029109; Lam, H.-L., Boteler, D. H., Burlton, B., & Evans, J. ( 2012 ). Anik-E1 and E2 satellite failures of January 1994 revisited. Space Weather, 10 ( 10 ). https://doi.org/10.1029/2012SW000811; Li, X., Baker, D. N., Temerin, M., Reeves, G., Friedel, R., & Shen, C. ( 2005 ). Energetic electrons, 50 keV to 6 meV, at geosynchronous orbit: Their responses to solar wind variations. Space Weather, 3 ( 4 ). https://doi.org/10.1029/2004SW000105; Li, X., Temerin, M., Baker, D. N., Reeves, G. D., & Larson, D. ( 2001 ). Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophysical Research Letters, 28 ( 9 ), 1887 – 1890. https://doi.org/10.1029/2000GL012681; Ling, A. G., Ginet, G. P., Hilmer, R. V., & Perry, K. L. ( 2010 ). A neural network-based geosynchronous relativistic electron flux forecasting model. Space Weather, 8 ( 9 ). https://doi.org/10.1029/2010SW000576; Loto’aniu, T. M., Singer, H. J., Rodriguez, J. V., Green, J., Denig, W., Biesecker, D., & Angelopoulos, V. ( 2015 ). Space weather conditions during the galaxy 15 spacecraft anomaly. Space Weather, 13 ( 8 ), 484 – 502. https://doi.org/10.1002/2015SW001239; Lyatsky, W., & Khazanov, G. V. ( 2008 ). Effect of solar wind density on relativistic electrons at geosynchronous orbit. Geophysical Research Letters, 35 ( 3 ), L03109. https://doi.org/10.1029/2007GL032524; Matéo-Vélez, J.-C., Sicard, A., Payan, D., Ganushkina, N., Meredith, N. P., & Sillanpäa, I. ( 2018 ). Spacecraft surface charging induced by severe environments at geosynchronous orbit. Space Weather, 16 ( 1 ), 89 – 106. https://doi.org/10.1002/2017SW001689; Neter, J., Kutner, M. H., & Wassermann, W. ( 1990 ). Applied linear statistical models ( 3rd edn ). Irwin.; O’Brien, T. P., & McPherron, R. L. ( 2003 ). An empirical dynamic equation for energetic electrons at geosynchronous orbit. Journal of Geophysical Research, 108 ( A3 ), 1137. https://doi.org/10.1029/2002JA009324; Osthus, D., Caragea, P. C., Higdon, D., Morley, S. K., Reeves, G. D., & Weaver, B. P. ( 2014 ). Dynamic linear models for forecasting of radiation belt electrons and limitations on physical interpretation of predictive models. Space Weather, 12 ( 6 ), 426 – 446. https://doi.org/10.1002/2014SW001057; Pankratz, A. ( 1991 ). Forecasting with dynamic regression models. John Wiley and Sons, Inc.; Paulikas, G., & Blake, J. ( 1979 ). Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit. In Quantitative modeling of magnetospheric processes (pp. 180 – 202 ). American Geophysical Union (AGU). https://doi.org/10.1029/GM021p0180; Pilipenko, V. A., Kozyreva, O., Engebretson, M., & Soloviev, A. ( 2017 ). ULF wave power index for space weather and geophysical applications: A review. Russian Journal of Earth Sciences, 17 ( 2 ), 1 – 13. https://doi.org/10.2205/2017ES000597