يعرض 1 - 20 نتائج من 3,562 نتيجة بحث عن '"dose profile"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Laboratoire National Henri Becquerel (CEA, LIST) (LNHB (CEA, LIST)), Département Métrologie Instrumentation & Information (CEA, LIST) (DM2I (CEA, LIST)), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Modélisation et Simulation de Systèmes (CEA, LIST) (LM2S (CEA, LIST)), Institut Gustave Roussy (IGR), Institut de Cancérologie de l'Ouest Angers/Nantes (UNICANCER/ICO), UNICANCER, French metrology institute (Laboratoire National de métrologie et d’Essais, LNE), CEA (Commissariat à l’Energie Atomique et aux énergies alternatives)

    المصدر: ISSN: 1120-1797 ; Physica Medica European Journal of Medical Physics ; https://cea.hal.science/cea-04563755 ; Physica Medica European Journal of Medical Physics, 2023, 113, 102656 (12 p.). ⟨10.1016/j.ejmp.2023.102656⟩ ; https://www.sciencedirect.com/science/article/pii/S1120179723001333?via%3Dihub.

  3. 3
    Academic Journal

    المساهمون: Josua Timotius Manik, Matana University, Anisza Okselia, Dr. Hasan Sadikin Central General Hospital, Daniel Gibbor Gaspersz, Matana University, Freddy Haryanto, Bandung Institute of Technology

    المصدر: Jurnal Ilmiah Teknik Elektro Komputer dan Informatika; Vol 9, No 4 (2023): December; 951-958 ; 2338-3062 ; 2338-3070

    مصطلحات موضوعية: Monte Carlo, PDD, Dose profile, DPM, PENELOPE

    وصف الملف: application/pdf

  4. 4
    Academic Journal

    المصدر: Revista Cubana de Investigaciones Biomédicas; Vol. 42 (2023) ; 1561-3011 ; 0864-0300

    وصف الملف: application/pdf

    Relation: https://revibiomedica.sld.cu/index.php/ibi/article/view/1492/1327; Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050-74. DOI: https://doi.org/10.3762/bjnano.9.98 2. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011 3. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedic. 2016;11(6):673-92. DOI: https://doi.org/10.2217/nnm.16.5 4. Ealia AN, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;263(3):032019. DOI: https://doi.org/10.1088/1757-899X/263/3/032019 5. Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM. Melanin nanoparticles as a promising tool for biomedical applications - a review. Acta Biomater. 2020;105:26-43. DOI: https://doi.org/10.1016/j.actbio.2020.01.044 6. Čubová K, Čuba V. Synthesis of inorganic nanoparticles by ionizing radiation - a review. Radiat Phys Chem. 2019;158:153-64. DOI: https://doi.org/10.1016/j.radphyschem.2019.02.022 7. Rezaei R, Safaei M, Mozaffari HR, Moradpoor H, Karami S, Golshah A, et al. The role of nanomaterials in the treatment of diseases and their effects on the immune system. Open Access Maced J Med Sci. 2019;7(11):1884-90. DOI: https://doi.org/10.3889%2Foamjms.2019.486 8. Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv Colloid Interface Sci. 2019;271:101989. DOI: https://doi.org/10.1016/j.cis.2019.101989 9. Mu Q, Yan B. Nanoparticles in cancer therapy-novel concepts, mechanisms, and applications. Pharmacol. 2019;9(1). DOI: https://doi.org/10.3389/fphar.2018.01552 10. Aghebati A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol. 2020;235(3):1962-72. DOI: https://doi.org/10.1002/jcp.29126 11. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;54(5):631-51. DOI: https://doi.org/10.1016/S0169-409X(02)00044-3 12. Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets. 2018;19(14):1696-709. DOI: http://dx.doi.org/10.2174/1389450119666180326122831 13. Kalimuthu K, Cha BS, Kim S, Park KS. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem J. 2020;152:104296. DOI: https://doi.org/10.1016/j.microc.2019.104296 14. Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Bioeng Biotechnol. 2020;8(990):1-17. DOI: https://doi.org/10.3389/fbioe.2020.00990 15. Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719. DOI: https://doi.org/10.1667/RR1984.1 16. Hoseinnezhad M, Mahdavi M, Mahdavi S, Mahdavizade M. An investigation of the effect of gold nanoparticles with different concentrations on increasing absorbed dose: an empirical and simulation study. J Radiother Pract. 2019;18(02):191-7. DOI: http://dx.doi.org/10.1017/S1460396918000638 17. Choi J, Kim G, Cho S Bin, Im H-J. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J Nanobiotechnol. 2020;18(1):122. DOI: https://doi.org/10.1186/s12951-020-00684-5 18. Gholami YH, Maschmeyer R, Kuncic Z. Radio-enhancement effects by radiolabeled nanoparticles. Sci Rep. 2019;9(1):14346. DOI: https://doi.org/10.1038/s41598-019-50861-2 19. Jones BL, Krishnan S, Cho SH. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys. 2010;37(7Part1):3809-16. DOI: https://doi.org/10.1118/1.3455703 20. Da Silva L, Nicolucci P. Local dose enhancement in radiation therapy: Monte Carlo simulation study. Rev Bras Fís Méd. 2014 [acceso 13/02/2020];8(1):14-8. Disponible en: www.rbfm.org.br/index.php/rbfm/article/download/282/268 21. Douglass M, Bezak E, Penfold S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med Phys. 2013;40(7):071710. DOI: https://doi.org/10.1118/1.4808150 22. Santos V, Nicolucci P. Fator de aumento de dose em radioterapia com nanopartículas: Estudo por simulação de Monte Carlo. Rev Bras Fís Méd. 2018;11(3):2. DOI: https://doi.org/10.29384/rbfm.2017.v11.n3.p2 23. Al-Yasiri AY, White NE, Katti KV, Loyalka SK. Estimation of tumor and local tissue dose in gold nanoparticles radiotherapy for prostate cancer. Reports Pract Oncol Radiother. 2019;24(3):288-93. DOI: https://doi.org/10.1016/j.rpor.2019.02.006 24. Kannan R, Zambre A, Chanda N, Kulkarni R, Shukla R, Katti K, et al. Functionalized radioactive gold nanoparticles in tumor therapy. W Nanomed Nanobiotechnol. 2012;4(1):42-51. DOI: https://doi.org/10.1002/wnan.161 25. Yeh Y-C, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanosc. 2012;4(6):1871-80. DOI: https://doi.org/10.1039/C1NR11188D 26. Sonzogni A. Interactive Chart of Nuclides: Half Life. Brookhaven Natl Lab. 2020 [accesso 20/10/2020]. Disponible en: https://www.nndc.bnl.gov/nudat2/ 27. Nuttens VE, Wéra AC, Bouchat V, Lucas S. Determination of biological vector characteristics and nanoparticle dimensions for radioimmunotherapy with radioactive nanoparticles. Appl Radiat Isot. 2008;66(2):168-72. DOI: https://doi.org/10.1016/j.apradiso.2007.08.017 28. Salvat F. The penelope code system. Specific features and recent improvements. Ann Nucl Energy. 2015;82:98-109. DOI: https://doi.org/10.1016/j.anucene.2014.08.007 29. Salvat F. PENELOPE 2014: A Code system for Monte Carlo simulation of electron and photon transport. Barcelona, Spain: 2015.; https://revibiomedica.sld.cu/index.php/ibi/article/view/1492

  5. 5
    Academic Journal

    المؤلفون: Wilches Visbal, Jorge Homero

    المصدر: Ingeniería Investigación y Desarrollo; Vol. 23 No. 1 (2023): January - June; 14 - 18 ; Ingeniería Investigación y Desarrollo; Vol. 23 Núm. 1 (2023): Enero - Junio; 14 - 18 ; 2422-4324 ; 1900-771X

    مصطلحات موضوعية: inverse reconstruction, electrons, air, gamma index, dose profile

    وصف الملف: application/pdf

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المساهمون: Laboratoire Capteurs Diamant (CEA, LIST) (LCD (CEA, LIST)), Département Métrologie Instrumentation & Information (CEA, LIST) (DM2I (CEA, LIST)), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Curie Paris, Laboratoire Capteurs et Architectures Electroniques (CEA, LIST) (LCAE (CEA, LIST)), This research has been performed within the framework of DIAmiDOS (Diamond membrane microdosimeter) project funded by the French Alternative Energies and Atomic Energy Commission (CEA) and DIADEM (Diamond membrane based microdosimetric system for radiation quality assurance in hadron) project funded by INSERM., ANR-13-TDMO-0004,DIADEM,DIAgnostic Dynamique et maintenance prévisionnelle des systèmes en station et EMmbarqués sur train(2013), European Project: 730983,H2020,H2020-INFRAIA-2017-1-two-stage,Inspire(2018)

    المصدر: ISSN: 1424-8220 ; Sensors ; https://cea.hal.science/cea-04551117 ; Sensors, 2021, 21 (4), pp.1314. ⟨10.3390/s21041314⟩ ; https://pubmed.ncbi.nlm.nih.gov/33673115/.

    Relation: info:eu-repo/grantAgreement//730983/EU/INfraStructure in Proton International REsearch/Inspire

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
  20. 20