يعرض 1 - 14 نتائج من 14 نتيجة بحث عن '"discounted markov decision processes"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المؤلفون: Feinberg, Eugene A., Shwartz, Adam

    المصدر: Mathematics of Operations Research, 1996 Nov 01. 21(4), 922-945.

  4. 4
    Academic Journal
  5. 5
  6. 6
  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3482611; zbl:Zbl 1374.90407; reference:[1] Bertsekas, D. P.: Dynamic Programming: Deterministic and Stochastic Models.Prentice-Hall, NJ 1987. Zbl 0649.93001, MR 0896902; reference:[2] Bishop, E., Phelps, R. R.: The support functionals of a convex set.In: Proc. Sympos. Pure Math. Vol. VII, 1963 (V. L. Klee, ed.), Amer. Math. Soc., pp. 27-35. Zbl 0149.08601, MR 0154092, 10.1090/pspum/007/0154092; reference:[3] Borwein, J. M., Zhu, Q. J.: Techniques of Variational Analysis.Springer, New York 2005. Zbl 1076.49001, MR 2144010; reference:[4] Cruz-Suárez, D., Montes-de-Oca, R., Salem-Silva, F.: Conditions for the uniqueness of optimal policies of discounted Markov decision processes.Math. Methods Oper. Res. 60 (2004), 415-436. Zbl 1104.90053, MR 2106092, 10.1007/s001860400372; reference:[5] Cruz-Suárez, D., Montes-de-Oca, R.: Uniform convergence of the value iteration policies for discounted Markov decision processes.Bol. Soc. Mat. Mexicana 12 (2006), 133-152. MR 2301750; reference:[6] Ekeland, I.: On the variational principle.J. Math. Anal. Appl. 67 (1974), 324-353. Zbl 0286.49015, MR 0346619, 10.1016/0022-247x(74)90025-0; reference:[7] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria.Springer-Verlag, New York 1996. Zbl 0840.93001, MR 1363487, 10.1007/978-1-4612-0729-0; reference:[8] Lucchetti, R.: Convexity and Well-Posed Problems.CMS Books in Mathematics, Springer, New York 2006. Zbl 1106.49001, MR 2179578, 10.1007/0-387-31082-7; reference:[9] Montes-de-Oca, R., Lemus-Rodríguez, E.: An unbounded Berge's minimum theorem with applications to discounted Markov decision processes.Kybernetika 48 (2012), 268-286. Zbl 1275.90124, MR 2954325; reference:[10] Montes-de-Oca, R., Lemus-Rodríguez, E., Salem-Silva, F.: Nonuniqueness versus uniqueness of optimal policies in convex discounted Markov decision processes.J. Appl. Math. 2013 (2013), 1-5. Zbl 1266.90113, MR 3039713, 10.1155/2013/271279; reference:[11] Rockafellar, R. T., Wets, R. J. B.: Variational Analysis.Springer, New York 2004. Zbl 0888.49001, MR 1491362; reference:[12] Tanaka, K., Hosino, M., Kuroiwa, D.: On an $\varepsilon $-optimal policy of discrete time stochastic control processes.Bull. Inform. Cybernet. 27 (1995), 107-119. MR 1335274

  8. 8
    Academic Journal
  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR2907851; zbl:Zbl 1241.93053; reference:[1] Aliprantis, C. D., Burkinshaw, O.: Principles of Real Analysis. Academic Press, San Diego 1998. Zbl 1006.28001, MR 1669668; reference:[2] Angelatos, G. M.: Uninsured idiosyncratic investment risk and aggregate saving. Rev. Econom. Dynam. 10 (2007), 1–30. 10.1016/j.red.2006.11.001; reference:[3] Arrow, K. J.: A note on uncertainty and discounting in models of economic growth. J. Risk Unc. 38 (2009), 87–94. Zbl 1166.91321, 10.1007/s11166-009-9065-1; reference:[4] Bertsekas, D. P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Belmont 1987. Zbl 0649.93001, MR 0896902; reference:[5] Brock, W., Mirman, L.: Optimal economic growth and uncertainty: the discounted case. J. Econom. Theory 4 (1972), 479–513. MR 0449517, 10.1016/0022-0531(72)90135-4; reference:[6] Cruz-Suárez, D., Montes-de-Oca, R., Salem-Silva, F.: Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Meth. Oper. Res. 60 (2004), 415–436. Zbl 1104.90053, MR 2106092, 10.1007/s001860400372; reference:[7] Cruz-Suárez, H., Montes-de-Oca, R.: Discounted Markov control processes induced by deterministic systems. Kybernetika 42 (2006), 647–664. Zbl 1249.90312, MR 2296506; reference:[8] Cruz-Suárez, H., Montes-de-Oca, R.: An envelope theorem and some applications to discounted Markov decision processes. Math. Meth. Oper. Res. 67 (2008), 299–321. Zbl 1149.90171, MR 2390061, 10.1007/s00186-007-0155-z; reference:[9] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes. Springer-Verlag, New York 1980. MR 0554083; reference:[10] Epstein, L., Zin, S.: Substitution, risk aversion, and the temporal behaviour of consumption and asset returns I: Theoretical framework. Econometrica 57 (1989), 937–969. MR 1006550, 10.2307/1913778; reference:[11] Fuente, A. De la: Mathematical Methods and Models for Economists. Cambridge University Press, Cambridge 2000. Zbl 0943.91001, MR 1735968; reference:[12] Gurkaynak, R. S.: Econometric tests of asset price bubbles: taking stock. J. Econom. Surveys 22 (2008), 166–186. 10.1111/j.1467-6419.2007.00530.x; reference:[13] Heer, B., Maussner, A.: Dynamic General Equilibrium Modelling: Computational Method and Application. Second edition, Springer-Verlag, Berlin 2005. MR 2378171; reference:[14] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. MR 1363487; reference:[15] Hernández-Lerma, O., Lasserre, J. B.: Value iteration and rolling plans for Markov control processes with unbounded rewards. J. Math. Anal. Appl. 177 (1993), 38–55. MR 1224804, 10.1006/jmaa.1993.1242; reference:[16] Jaskiewics, A., Nowak, A. S.: Discounted dynamic programming with unbounded returns: application to economic models. J. Math. Anal. Appl. 378 (2011), 450–462. MR 2773257, 10.1016/j.jmaa.2010.08.073; reference:[17] Korn, R., Kraft, H.: A stochastic control approach to portfolio problems with stochastic interest rates. SIAM J. Control Optim. 40 (2001), 1250–1269. Zbl 1020.93029, MR 1882732, 10.1137/S0363012900377791; reference:[18] Kamihigashi, T.: Stochastic optimal growth with bounded or unbounded utility and bounded or unbounded shocks. J. Math. Econom. 43 (2007), 477–500. MR 2317118, 10.1016/j.jmateco.2006.05.007; reference:[19] Levhari, D., Srinivasan, T. N.: Optimal savings under uncertainty. Rev. Econom. Stud. 36 (1969), 153–163. 10.2307/2296834; reference:[20] Mirman, L., Zilcha, I.: On optimal growth under uncertainty. J. Econom. Theory 2 (1975), 329–339. Zbl 0362.90024, MR 0414045, 10.1016/0022-0531(75)90022-8; reference:[21] Ramsey, F. P.: A Mathematical theory of saving. Econom. J. 38 (1928), 543–559.; reference:[22] Stokey, N., Lucas, R., Prescott, E.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge 1989. MR 1105087

  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
  14. 14