-
1Dissertation/ Thesis
المؤلفون: Ignés i Mullol, Jordi
المساهمون: University/Department: Universitat de Barcelona. Departament d'Estructura i Constituents de la Matèria
Thesis Advisors: Maher, J. V., Ortín, Jordi, 1959-
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Dinàmica de fluids, Dinámica de fluidos, Fluid dynamics, Pertorbació (Dinàmica quàntica), Perturbación (Dinámica cuántica), Perturbation (Quantum dynamics), Ciències Experimentals i Matemàtiques
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/674811
-
2Academic Journal
المؤلفون: González, Gaspar, Kowalski, Andrés, Plastino, Angel
المصدر: Investigación Joven; Vol. 10 Núm. 3 (2023): Investigación Joven especial - EBEC 2022; 187-188 ; 2314-3991
مصطلحات موضوعية: dinámica cuántica, límite clásico, cuantificadores de información, teoría de la información cuántica
وصف الملف: application/pdf
-
3Academic Journal
مصطلحات موضوعية: Física, dinámica cuántica, límite clásico, cuantificadores de información, teoría de la información cuántica
وصف الملف: application/pdf; 187-188
-
4Academic Journal
المؤلفون: Llinersy Uranga Piña, Lidice Cruz Rodríguez, Aliezer Martínez Mesa, Christoph Meier, Annika Bande, Matthias Berg, Jean Christophe Tremblay, Juan Carlos Acosta Matos
المصدر: Anales de la Academia de Ciencias de Cuba, Vol 12, Iss 3 (2022)
مصطلحات موضوعية: dinámica cuántica, método de trayectorias cuánticas, fotoionización, predisociación vibracional, Science, Science (General), Q1-390
وصف الملف: electronic resource
-
5Conference
المؤلفون: González Acosta, Gaspar Aníbal
مصطلحات موضوعية: Física y Astronomía, Dinámica Cuántica, Límite Clásico, Cuantificadores De Información, Teoría De La Información Cuántica, Quantum Dynamics, Classical Limit, Information Quantizers, Quantum Information Theory
وصف الملف: application/pdf
-
6Academic Journal
المؤلفون: Sevilla Moreno, Jose Mauricio
المساهمون: Viviescas Ramírez, Carlos Leonardo, Caos y Complejidad
مصطلحات موضوعية: 530 - Física, Semiclásica, Cáusticas, Función de Wigner, Dinámica cuántica, Semiclassics, Caustics, Wigner Function, Quantum dynamics
وصف الملف: application/pdf
Relation: Andrea Bon glioli, R. F. a. (2012). Topics in Noncommutative Algebra: The Theorem of Campbell, Baker, Hausdor and Dynkin. Lecture Notes in Mathematics 2034. Springer-Verlag Berlin Heidelberg, 1 edition.; Arnold, V., Vogtmann, K., and Weinstein, A. (2013). Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. Springer New York.; Berry, M. V. and Mount, K. E. (1972). Semiclassical approximations in wave mechanics. Reports on Progress in Physics, 35(1):315-397.; Ballentine, L. (1998). Quantum Mechanics: A Modern Development. World Scientific.; Burden, R. and Faires, J. (2010). Numerical Analysis. Cengage Learning.; Cabrera, R., Bondar, D. I., Jacobs, K., and Rabitz, H. A. (2015). Efficient method to generate time evolution of the Wigner function for open quantum systems. Phys. Rev. A, 92:042122.; Dahl, J. P. and Springborg, M. (1988). The morse oscillator in position space, momentum space, and phase space. The Journal of Chemical Physics, 88(7):4535-4547.; Daniela, D. (2005). Applications of the wigner distribution function in signal processing. EURASIP Journal on Advances in Signal Processing, 10.; Dirac, P. A. M. and Fowler, R. H. (1927). The physical interpretation of the quantum dynamics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 113(765):621-641.; Dittrich, T., Gomez, E., and Pachon, L. (2010). Semiclassical propagation of wigner functions. The Journal of chemical physics, 132:214102; Dittrich, T., Viviescas, C., and Sandoval, L. (2006). Semiclassical propagator of the wigner function. Phys. Rev. Lett., 96:070403; Domitrz, W., Manoel, M., and de M. Rios, P. (2013). The wigner caustic on shell and singularities of odd functions. Journal of Geometry and Physics, 71:58 - 72.; Domitrz, W. and Zwierzynski, M. (2020). Singular points of the wigner caustic and affine equidistants of planar curves. Bulletin of the Brazilian Mathematical Society, New Series, 51:11 - 26.; Feynman, R. (1966). The Feynman Lectures on Physics: Quantum mechanics. Number v. 3.; Feynman, R. P. (1948). Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20:367-387; Forest, E. (2006). Geometric integration for particle accelerators. Journal of Physics A: Mathematical and General, 39(19):5321; Frank, A., Rivera, A. L., and Wolf, K. B. (2000). Wigner function of morse potential eigenstates. Phys. Rev. A, 61:054102; Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Phys. Rev., 131:2766-2788; Goldstein, H., Poole, C., and Safko, J. (2002). Classical Mechanics. Addison Wesley.; Gómez, E. A. (2010). Aplicaciones al propagador semiclásico de la función de wigner / applications to the semiclassical propagator of the wigner function. Tesis Doctorado en física.; Gray, S. K., Noid, D. W., and Sumpter, B. G. (1994). Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods. The Journal of Chemical Physics, 101(5):4062{4072.; Gutzwiller, M. C. (1967). Phase-integral approximation in momentum space and the bound states of an atom. Journal of Mathematical Physics, 8(10):1979-2000; Gutzwiller, M. C. (1969). Phase-integral approximation in momentum space and the bound states of an atom. ii. Journal of Mathematical Physics, 10(6):1004-1020.; Gutzwiller, M. C. (1970). Energy spectrum according to classical mechanics. Journal of Mathematical Physics, 11(6):1791-1806; Gutzwiller, M. C. (1971). Periodic orbits and classical quantization conditions. Journal of Mathematical Physics, 12(3):343-358; Gutzwiller, M. C. (1992). Chaos in Classical and Quantum Mechanics. Springer-Verlag New York.; Hairer, E., Norsett, S., and Wanner, G. (2008). Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer Berlin Heidelberg.; Heller, E. (1981). Frozen gaussians: A very simple semiclassical approximation. The Journal of Chemical Physics, 75(6):2923-2931.; Herman, M. F. and Kluk, E. (1984). A semiclassical justifi cation for the use of non-spreading wavepackets in dynamics calculations. Chemical Physics, 91(1):27 - 34.; Hillery, M., O'Connell, R. F., Scully, M. O., and Wigner, E. P. (1997). Distribution Functions in Physics: Fundamentals, pages 273{317. Springer Berlin Heidelberg, Berlin, Heidelberg.; Hudson, R. (1974). When is the wigner quasi-probability density non-negative? Reports on Mathematical Physics, 6(2):249 { 252; Husimi, K. (1940). Some formal properties of the density matrix. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 22(4):264-314; Jaubert, L. D. C. and de Aguiar, M. A. M. (2007). Semiclassical tunnelling of wavepackets with real trajectories. Physica Scripta, 75(3):363{373; Kay, K. G. (2013). Time-dependent semiclassical tunneling through barriers. Phys. Rev. A, 88:012122.; Keller, J. B. (1985). Semiclassical mechanics. SIAM Review, 27(4):485-504.; Koda, S.-i. (2015). Initial-value semiclassical propagators for the wigner phase space representation: Formulation based on the interpretation of the moyal equation as a schr odinger equation. The Journal of Chemical Physics, 143(24):244110.; Landau, L. and E.M., L. (1977). Quantum Mechanics: Non-relativistic Theory. Butterworth-Heinemann. Butterworth-Heinemann; Leonhardt, U., Knight, P., and Miller, A. (1997). Measuring the Quantum State of Light. Cambridge Studies in Modern Optics. Cambridge University Press.; Littlejohn, R. G. (1992). The van vleck formula, maslov theory, and phase space geometry. Journal of Statistical Physics, 68(1-2):7-50.; Maslov, V. and Fedoriuk, M. (1981). Semi-Classical Approximation in Quantum Mechanics. Mathematical Physics and Applied Mathematics. Dordrecht; McLachlan, R. I. and Atela, P. (1992). The accuracy of symplectic integrators. Nonlinearity, 5(2):541; Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys. Rev., 34:57{64; Moyal, J. E. (1949). Quantum mechanics as a statistical theory. Mathematical Proceedings of the Cambridge Philosophical Society, 45(1):99-124.; O'Connell, R. and Wigner, E. (1981a). Quantum-mechanical distribution functions: Conditions for uniqueness. Physics Letters A, 83(4):145 -148.; O'Connell, R. and Wigner, E. (1981b). Some properties of a non-negative quantum-mechanical distribution function. Physics Letters A, 85(3):121-126.; Ozorio de Almeida, A. (2009). Entanglement in Phase Space, pages 157-219. Springer Berlin Heidelberg, Berlin, Heidelberg; Ozorio de Almeida, A., Vallejos, R., and Zambrano, E. (2013). Initial or fi nal values for semiclassical evolutions in the weyl-wigner representation. Journal of Physics A: Mathematical and Theoretical, 46:135304; Ozorio de Almeida, A. M. (1989). Hamiltonian Systems: Chaos and Quantization. Cambridge Monographs on Mathematical Physics. Cambridge University Press.; Ozorio de Almeida, A. M. (1998). The weyl representation in classical and quantum mechanics. Physics Reports, 295(6):265 { 342.; Ozorio de Almeida, A. M. and Brodier, O. (2006). Phase space propagators for quantum operators. Annals of Physics, 321(8):1790-1813; Ozorio de Almeida, A. M., Lando, G. M., Vallejos, R. O., and Ingold, G.-L. (2019). Quantum revival patterns from classical phase-space trajectories. Phys. Rev. A, 99:042125.; P. Schleich, W. (2001). Quantum optics in phase space. Quantum Optics in Phase Space, by Wolfgang P. Schleich, pp. 716. ISBN 3-527-29435-X. Wiley-VCH , April 2001.; Pachón, L. A. (2010). Coherencia y decoherencia en la propagación semiclásica de la función de wigner / Coherence and decoherence in the semiclassical propagation of the wigner function. Tesis Doctor en ciencias-física.; Press, W. (2007). Numerical Recipes 3rd Edition: The Art of Scientifi c Computing.Cambridge University Press; Sakurai, J. and Napolitano, J. (2011). Modern Quantum Mechanics. Addison-Wesley.; Van Vleck, J. (1928). The correspondence principle in the statistical interpretation of quantum mechanics. Proceedings of the National Academy of Sciences of the United States of America, 14(2):178{188.; Villalba, O. E. R. (2017). Semiclassical approximation to the propagator of the wigner function for particles in con ned spaces. Magíster en Ciencias - Física; Weinbub, J. and Ferry, D. K. (2018). Recent advances in wigner function approaches. Applied Physics Reviews, 5(4):041104.; Weyl, H. (1927). Quantenmechanik und gruppentheorie. Zeitschrift f ur Physik, 46(1):1{46.; Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749{759; Yoshida, H. (1990). Construction of higher order symplectic integrators. Physics Letters A, 150(5):262 { 268; Zachos, C., Fairlie, D., and Curtright, T. (2005). Quantum Mechanics in Phase Space: An Overview with Selected Papers. World Scienti fic series in 20th century physics. World Scienti fic; Sevilla Moreno, J. M. (2020). Semiclassical propagators of wigner function: a comparative study [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional; https://repositorio.unal.edu.co/handle/unal/79213
-
7Academic Journal
المؤلفون: Kowalski, Andrés, Plastino, Ángel Luis, Rossignoli, Raúl
مصطلحات موضوعية: Ciencias Exactas, Dinámica Cuántica, Caos, Sistemas Semiclásicos, Teoría de la Información, Entropía, Complejidad
وصف الملف: application/pdf
-
8Academic Journal
المؤلفون: Sánchez Ron, José Manuel
المساهمون: UAM. Departamento de Física Teórica
مصطلحات موضوعية: Profesor Universidad Autónoma, Física Teórica, Cromo dinámica cuántica, Investigación, Premios y distinciones, Física
وصف الملف: application/pdf
Relation: Encuentros Multidisciplinares; Encuentros Multidisciplinares 60. 2º Número Extraordinario (2018): 1-6; http://hdl.handle.net/10486/685735; 60
الاتاحة: http://hdl.handle.net/10486/685735
-
9Dissertation/ Thesis
المؤلفون: Santa Vélez, Camilo
المساهمون: Enea Romano, Antonio
مصطلحات موضوعية: Perturbation (Quantum dynamics), Gravitational waves, Luminosity distance, Artificial Intelligence, Astrophysics, Cosmology, Deep learning, Aprendizaje profundo, Perturbación (Dinámica cuántica), Inteligencia artificial, Astrofísica, Cosmología, Cosmological perturbation theory, Turn around radius, http://id.loc.gov/authorities/subjects/sh85100182, http://id.loc.gov/authorities/subjects/sh85056562, http://id.loc.gov/authorities/subjects/sh2003003637, http://id.loc.gov/authorities/subjects/sh85008180, http://id.loc.gov/authorities/subjects/sh85009032, http://id.loc.gov/authorities/subjects/sh85033169, http://id.nlm.nih.gov/mesh/D000077321
وصف الملف: application/pdf
Relation: https://hdl.handle.net/10495/29735
الاتاحة: https://hdl.handle.net/10495/29735
-
10Dissertation/ ThesisRandom fluctuations in nuclear reactors : stochastic point kinetics equations with two-energy groups
المؤلفون: Cedeño Girón, Daniel Eduardo
المساهمون: Mazo Zuluaga, Johan, Henao Henao, Rodrigo
مصطلحات موضوعية: Nuclear reactors, Nuclear reactor kinetics, Stochastic models, Neutrons, Perturbation (Quantum dynamics), Reactores nucleares, Neutrones, Perturbación (Dinámica cuántica), Stochastic point kinetics equations, Temperature feedback, http://id.loc.gov/authorities/subjects/sh85093071, http://id.loc.gov/authorities/subjects/sh85093070, http://id.loc.gov/authorities/subjects/sh2005004376, http://id.loc.gov/authorities/subjects/sh85091222, http://id.loc.gov/authorities/subjects/sh85100182
وصف الملف: application/pdf
Relation: https://hdl.handle.net/10495/30713
الاتاحة: https://hdl.handle.net/10495/30713
-
11Academic Journal
المؤلفون: John Morales, Germán Sinuco
المصدر: Momento, Vol 0, Iss 24, Pp 25-42 (2002)
مصطلحات موضوعية: Cromo dinámica cuántica, teorías efectivas, sistemas hadrónicos, Lagrangiano Efectivo, QCD, teorías de calibración, Physics, QC1-999, Optics. Light, QC350-467
وصف الملف: electronic resource
-
12
المؤلفون: Cañas Marín, Wilson Antonio
المساهمون: Gonzalez, Doris, Hoyos Madrigal, Bibian Alonso, Termodinámica Aplicada y Energías Alternativas
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Thermodynamic perturbation theory, Soft repulsion, 660 - Ingeniería química, Teoría de perturbaciones termodinámicas, Potencial intermolecular, Asphaltene onset pressure, Diámetro efectivo, Perturbación (Dinámica cuántica), Teoría de ecuaciones integrales, Ecuaciones integrales, PC-SAFT, Integral equation theory, 333 - Economía de la tierra y de la energía [330 - Economía], Effective diameter, Presión de inicio de asfaltenos, Teoría molecular
وصف الملف: 227 páginas; application/pdf
-
13
المؤلفون: Maglione, César Germán
المساهمون: Majtey, Ana Paula
المصدر: Repositorio Digital Universitario (UNC)
Universidad Nacional de Córdoba
instacron:UNCمصطلحات موضوعية: Distinguibilidad de estados cuánticos, Dinámica cuántica, Classical differential geometry, Quantum information, Evolución cuántica, Entropía, Entrelazamiento cuántico, Quantum mechanics, Evolución sin evolución
وصف الملف: application/pdf
-
14Dissertation/ Thesis
المؤلفون: Cañas Marín, Wilson Antonio
المساهمون: Gonzalez, Doris, Hoyos Madrigal, Bibian Alonso, Termodinámica Aplicada y Energías Alternativas
مصطلحات موضوعية: 660 - Ingeniería química, 330 - Economía::333 - Economía de la tierra y de la energía, Teoría molecular, Ecuaciones integrales, Perturbación (Dinámica cuántica), PC-SAFT, Thermodynamic perturbation theory, Integral equation theory, Effective diameter, Asphaltene onset pressure, Soft repulsion, Teoría de perturbaciones termodinámicas, Teoría de ecuaciones integrales, Potencial intermolecular, Diámetro efectivo, Presión de inicio de asfaltenos
وصف الملف: 227 páginas; application/pdf
Relation: [1] J. D. van der Waals, Thermodynamic theory of capillarity in the assumption of continuous density change. Verh K Akad Wet Amsterdam. 1-8, 1893.; [2] J. C. Dyre, Simple liquids quasiuniversality and the hard-sphere paradigm, J. Phys.: Condens. Matter, 28, 323001, 2016.; [3] D. Henderson, M. Holovko, I. Nezbeda, A. Trokhymchuk, What is Liquid?, Condens Matter Phys. 18(1), 10101: 1-4, 2015.; [4] T. S. Ingebrigtsen, T. B. Schrøder, J. C. Dyre, What Is a Simple Liquid?, Phys. Review X, 2, 011011, 2012.; [5] G. A. Baker, P. Graves-Morris, P. A. Carruthers, Padé Approximants, Vols. I and II, Addison-Wesley, Reading (1981).; [6] M. Baus, J. L. Colot, Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions, Phys. A, 36, 3912, 1987.; [7] J. L. Largo, Teoría y simulación de las propiedades de Equilibrio de Fluidos de Pozo Cuadrado. Tesis Doctoral. Departamento de física aplicada, Universidad de Cantabria, 2003.; [8] T. Young, III. An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95, 65, 1805.; [9] P. S. Laplace, Traité de Mécanique Céleste; Supplément au Dixième Livre, sur LAction Capillaire, Courcier, Paris, 1806.; [10] O. F. Mosotti, On the Forces that Govern the Internal Constitution of the Body, Insight to Serve to Determine the Cause of the Laws of the Body Action Moléculaire (Turin, 1836) [English translation in Taylors Scientific Memoirs, Vol. 1, 448-469, 1836].; [11] H. Yukawa, On the Interaction of Elementary Particles. I, Phys. Math. Soc. Jpn., 17, 48, 1935.; [12] R. Clausius, XI. On the nature of the motion which we call heat, Ann. Phys. (Berlin), 176, 353, 1857.; [13] J. C. Maxwell, Iv. on the dynamical theory of gases, Philos. Trans. R. Soc. London, 157, 49, 1867.; [14] L. Boltzmann, Sitz. Akad. Naturwiss. Kaiser Akad Class. Wissen Wien 66, 275, 1872.; [15] W. Sutherland, XI. The law of attraction amongst the molecules of a gas, Philos. Mag., 22, 81, 1886.; [16] W. Sutherland, XXXVI. On the law of molecular force, Philos. Mag., 27, 305, 1889.; [17] W. Sutherland, LII. The viscosity of gases and molecular force, Philos. Mag., 36, 507, 1893.; [18] G. Mie, Ann. Phys. (Berlin), 316, 657, 1903.; [19] W. H. Keesom, Commun. Phys. Lab. Leiden University 32(Suppl. 24B), 6, 1912.; [20] J. E. Jones, On the determination of molecular fields. —I. From the variation of the viscosity of a gas with temperature, Proc. R. Soc. London, Ser. A, 106, 441, 1924.; [21] J. E. Jones, On the determination of molecular fields. —II. From the equation of state of a gas, Proc. R. Soc. London, Ser. A, 106, 463, 1924.; [22] J. E. Lennard-Jones, Cohesion, Proc. R. Soc. London, 43, 461, 1931.; [23] J. C. Slater, The Normal State of Helium, Phys. Rev., 32, 349, 1928.; [24] J. C. Slater, J. G. Kirkwood, The Van Der Waals Forces in Gases, Phys. 37, 682, 1931.; [25] S. C. Wang, The mutual energy of two hydrogen atoms, Phys. Z., 28, 663, 1927.; [26] R. Eisenschitz and F. London, On the ratio of the van der Waals forces and the homo-polar binding forces, Z. Phys., 60, 491, 1930.; [27] T. Kihara, Nippon Sugaku-Buturegakukaisi, 17, 11, 1943.; [28] T. Kihara, Virial Coefficients and Models of Molecules in Gases, Rev. Mod. Phys. 25, 831, 1953.; [29] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.; [30] G. C. Maitland, M. Rigby, E. B. Smith, W. A. Wakeham, Intermolecular Forces: Their Origin and Determination, International Series of Monographs on Chemistry No. 3, Clarendon Press, Oxford, 1981.; [31] D. Chandler, Liquids: Condensed, disordered, and sometimes complex, PNAS, 106, 15111-15112, 2009.; [32] R. W. Zwanzig, High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases, J. Chem. Phys., 22, 1420, 1954.; [33] J.A. Barker, D. Henderson, Perturbation Theory and Equation of State for Fluids: The Square-Well Potential, J. Chem. Phys. 47 (1967) 2856-2861.; [34] J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids. II. A successful theory of liquids, J. Chem. Phys. 47 (1967) 4714-4721.; [35] J. A. Barker, D. Henderson, Theories of Liquids, Ann. Rev. Phys. Chem. 23, 439, 1972.; [36] J. D. Weeks, D. Chandler, H. C. Andersen, Perturbation Theory of the Thermodynamic Properties of Simple Liquids, J. Chem. Phys., 55, 5422, 1971.; [37] J. S. Rowlinson, The statistical mechanics of systems with steep intermolecular potentials Mol. Phys. 8, 107, 1964.; [38] J. S. Rowlinson, An equation of state of gases at high temperatures and densities, Mol. Phys. 7, 349, 1964.; [39] J. S. Rowlinson, Molecular theory of liquids and liquid mixtures, Ber. Bunsenges Phys. Chem. 85, 970, 1981.; [40] L. S. Ornstein, F. Zernike, Accidental deviations of density and opalescence at the critical point of a single substance, Proc. Acad. Sci., Amsterdam, 17 (1914) 793-806.; [41] J. K. Percus, G. J. Yevick, J. K. Percus, G. J. Yevick, Analysis of classical statistical mechanics by means of collective coordinates, Phys. Rev., 110 (1) (1958) 1-13.; [42] J.A. Barker, D. Henderson, what is "liquid"? Understanding the states of matter, Rev. mod. Phys., 48, 587, 1976.; [43] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700.; [44] L. Benavides, A. Gil-Villegas, The thermodynamics of molecules with discrete potentials, Molecular Physics, 97, 12, 1225, 1999.; [45] A. Lang, G. Kahl, C. N. Likos, H. Lowen, M. Watzlawek, Structure and thermodynamics of square-well and square-shoulder fluids, J. Phys.: Condens. Matter, 11, 10143, 1999.; [46] C. Rascón, E. Velasco, L. Mederos, G. Nevascués, Phase diagrams of systems of particles interacting via repulsive potentials, J. Chem. Phys. 106,16, 6689, 1997.; [47] A. Vidales, L. Benavides, A. Gil-Villegas, Perturbation theory for mixtures of discrete potential fluids, Molecular Physics, 99, 9, 703, 2001; [48] L. A. Cervantes, G. Jaime-Muñoz, A. L. Benavides, J. Torres-Arenas, F. Sartre, Discrete perturbation theory for continuous soft-core potential fluids, J. Chem. Phys., 142, 114501, 2015.; [49] J. Gross, G. Sadowski, Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, Fluid. Phase. Equilib. 168, 183, 2000.; [50] J. Gross, G. Sadowski, Ind. Eng. Chem. Res., Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains, 40, 1244, 2001.; [51] J. A. Barker, D. Henderson, in proceeding of the fourth symposium on thermophycical properties, edited by J.R. Moszynski (ASTM, New York), page 30.; [52] J. P. Hansen, I. R. McDonald, Theory of simple liquids, Ed. Academic Press, London, 1976.; [53] L. Berthier, G. Tarjus, Nonperturbative Effect of Attractive Forces in Viscous Liquids, Phys. Lett. 103, 170601, 2009.; [54] L. Berthier, G. Tarjus, The role of attractive forces in viscous liquids, J. Chem. Phys., 134, 214503, 2011.; [55] S. Toxvaerd, J. C. Dyre, Communication: Shifted forces in molecular dynamics, J. Chem. Phys., 134, 081102, 2011.; [56] S. Toxvaerd and J. C. Dyre, Role of the first coordination shell in determining the equilibrium structure and dynamics of simple liquids, J. Chem. Phys., 135, 134501, 2011.; [57] H. Touba, G. A. Mansoori, Subcritical and Supercritical Water Radial Distribution Function, Inter. J. Journal of Thermophys., 18, 5, 1217, 1997.; [58] Y.S. Wei, R. J. Sadus, Equations of state for the calculation of fluid‐phase equilibria, AIChE Journal, 46, 1, 2000.; [59] J. Reščič, Y. V. Kalyuzhnyi, P. T. Cummings, Shielded attractive shell model again: resummed thermodynamic perturbation theory for central force potential, J. Phys. Condens. Matter, 28 (41), 414011, 2016.; [60] R. Elliot, Lessons learned from theory and simulation of step potentials, Fluid Phase Equilib. 416, 27-41, 2016; [61] K. E. Gubbins, Perturbation theories of the thermodynamics of polar and associating liquids: A historical perspective, Fluid Phase Equilib., 416, 3-17, 2016; [62] W. Zmpitas, J. Gross, A new equation of state for linear hard chains: Analysis of a third-order expansion of Wertheims Thermodynamic Perturbation Theory, Fluid Phase Equilib. 416, 18-26, 2016.; [63] T. H. Westen, An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility, J. Chem. Phys., 142, 244903, 2015.; [64] A. S. V. Ramana, Generalized coupling parameter expansion: Application to square well and Lennard-Jones fluids, J. Chem. Phys., 139, 044106, 2013.; [65] D. Pini, A. Parola, J. Colombo, L. Reatto, An investigation of the SCOZA for narrow square-well potentials and in the sticky limit, Mol. Phys. 109, 1343, 2011.; [66] Y. Duda, C. Lira-Galena, Thermodynamics of asphaltene structure and aggregation, Fluid Phase Equilib. 241, 257-267, 2006.; [67] O. Redlich, J. N. S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev., 44, 233, 1949.; [68] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 27, 1197, 1972.; [69] D. Y. Peng, D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59, 1976.; [70] N. F. Carnahan, K. E. Starling, Equation of State for Nonattracting Rigid Spheres, J. Chem. Phys., 51, 635, 1969.; [71] M. Khanpour, G. A. Parsafar, A simple method of generating equations of state for hard sphere fluid, Chem. Phys., 333, 208, 2007.; [72] A. C. Mulero, C. Galán, F. Cuadros, Equations of state for hard spheres. A review of accuracy and applications, Phys.Chem. Phys., 3, 4991-4999, 2001.; [73] M. du Rand, I. Nieuwoudt, C. E. Schwarz, j. h. Knoetze, A practical equation of state for non‐spherical and asymmetric systems for application at high pressures. Part 1: Development of the pure component model, The Canadian Journal of Chemical Engineering, 90, 584-596, 2012.; [74] J. Wu, J.M. Prausnitz, Phase equilibria for systems containing hydrocarbons, water, and salt: An extended Peng− Robinson equation of state, Ind. Eng. Chem. Res., 37, 1634, 1998.; [75] S.B. Kiselev, Cubic crossover equation of state, Fluid Phase Equilib., 147, 7, 1998.; [76] A. Bakhshandeh, H. Behnejad, Crossover parametric equation of state for asymmetric fluids, Chem. Phys., 409, 32, 2012.; [77] L. Yelash, M. Müller, W. Paul, K. Binder, A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach, J. Chem. Phys., 123, 014908, 2005.; [78] U. K. Deiters, Private Communication, 2009.; [79] M. A. Van Schilt, R. M. Wering, W. J. van Meerendonk, M. F. Kemmere, J. T. F. Keurentjes, High-Pressure Phase Behavior of the System PCHC−CHO−CO2 for the Development of a Solvent-Free Alternative toward Polycarbonate Production, Ind. Eng. Chem. Res., 44, 3363, 2005.; [80] S. Mohebbinia, K. Sepehrnoori, R. T. Johns, A. Kazemi-Nia-Korrani, Simulation of Asphaltene Precipitation During Gas Injection Using PC-SAFT EOS, SPE Annual Technical Conference and Exhibition, Amsterdam, Netherlands, 2014.; [81] T. Laffite, A. Apostolakau, C. Avendaño, A. Galindo, C. S. Adjiman, E. Muller, G. Jackson, Accurate statistical associating fluid theory for chain molecules formed from Mie segments, J. Chem. Phys., 139, 154504, 2013.; [82] S. Dufal, T. Lafitte, A. Galingo, G. Jackson, A. J. Haslam, Developing intermolecular‐potential models for use with the SAFT‐VR Mie equation of state, AIChE J., 61(9), 2891-2912, 2015.; [83] V. Szewczyk, E. Béhar, Compositional model for predicting asphaltenes flocculation, Fluid Phase Equilib. 158-160, 459, 1999.; [84] S. Ashoori, M. Sharifi, M. Masoumi, The relationship between SARA fractions and crude oil stability, Egyptian J. Petrol. 26, 209, 2017.; [85] K. J. Leontaritis, G. A. Mansoori, Asphaltene flocculation during oil production and processing: A thermodynamic collodial model, SPE International Symposium on Oilfield Chemistry, 4-6 february, 1987.; [86] A. I. Victorov, A. Firoozabadi, Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids, AIChE J., 42 (6), 1753, 1996.; [87] H. Pan, A. Firoozabadi, H. Pan, A. Firoozabadi, AIChE J., 46 (2), 416, 2000, AIChE J., 46 (2), 416, 2000.; [88] A. K. Gupta, A model for asphaltene flocculation using an equation of state. MSc. thesis, University of Calgary, 1986. [89] L. X. Nghiem, M. S. Hassam, R. Nutakki, A. E. D. George, Efficient Modelling of Asphaltene Precipitation, 3-6 October; Houston, TX: Society of Petroleum Engineers, 1993.; [90] L. X. Nghiem, D. A. Coombe, Modelling asphaltene precipitation during primary depletion, SPE J., 2 (2), 170, 1997.; [91] B. F. Kohse, L. X. Nghiem, H. Maeda, K. Ohno, Modelling Phase Behavior Includingthe Effect of Pressure and Temperature on Asphaltene Precipitation, SPE Asia Pacific Oil and Gas Conference and Exhibition, 16-18 October; Brisbane, Australia: Society of Petroleum Engineers, 2000.; [92] N. Lindeloff, R. H. Heidemann, S. I. Andersen, E. H. Stenby, A thermodynamic mixedsolid asphaltene precipitation model, Pet. Sci. Technol. 16 (3-4), 307, 1998.; [93] J. L. Du, D. Zhang, A Thermodynamic Model for the Prediction of Asphaltene Precipitation, Pet. Sci. Technol. 22 (7-8), 1023, 2004.; [94] O. Sabbagh, K. Akbarzadeh, A. Badamchi-Zadeh, W. Y. Svrcek, H. Y. Yarranton, Applying the PR-EoS to Asphaltene Precipitation from n-Alkane Diluted Heavy Oils and Bitumens, Energy & Fuels, 20 (2): 625, 2006.; [95] G.M. Kontogeorgis, E. C. Voutsas, I. V. Yakoumis, D. P. Tassios, Ind. Eng. Chem. Res., An equation of state for associating fluids, 35 (11), 4310, 1996.; [96] Z. Li, A. Firoozabadi, Modeling Asphaltene Precipitation by n-Alkanes from Heavy Oils and Bitumens Using Cubic-Plus-Association Equation of State, Energy & Fuels, 24 (2): 1106, 2010.; [97] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548, 2012.; [98] X. Zhang, N. Pedrosa, T. Moorwood, Modeling asphaltene phase behavior: comparison of methods for flow assurance studies, Energy & Fuels, 26(5), 2611-2620, 2012.; [99] M. S. Wertheim, Fluids with highly directional attractive forces. IV. Equilibrium polymerization, J. Stat. Phys. 42 (3-4), 477, 1986.; [100] M.S. Wertheim, Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations, J. Stat. Phys. 35 (1-2), 35, 1984.; [101] M. S. Wertheim, Fluids with highly directional attractive forces. I. Statistical thermodynamics, J. Stat. Phys. 35 (1-2), 19, 1984.; [102] M. S. Wertheim, Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres, J. Chem. Phys., 85 (5), 2929, 1986.; [103] M. S. Wertheim, Thermodynamic perturbation theory of polymerization, J. Chem. Phys. 87 (12), 7323, 1987.; [104] M. S. Wertheim, Fluids with highly directional attractive forces. III. Multiple attraction sites, J. Stat. Phys. 42 (3-4), 459, 1986.; [105] W.G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, SAFT: Equation-of-state solution model for associating fluids, Fluid Phase Equilib., 52, 31, 1989.; [106] W. G. Chapman, G. Jackson, K. E. Gubbins, Phase equilibria of associating fluids: chain molecules with multiple bonding sites, Mol. Phys. 65 (5), 1079, 1988.; [107] S. H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules, Ind. Eng. Chem. Res., 29 (11), 2294, 1990.; [108] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 1. Pure Alkanes, Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4737, 1996.; [109] T. Kraska, K. E. Gubbins, Phase Equilibria Calculations with a Modified SAFT Equation of State. 2. Binary Mixtures of n-Alkanes, 1-Alkanols, and Water, Ind. Eng. Chem. Res., 35 (12), 4746, 1996.; [110] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, Statistical associating fluid theory for chain molecules with attractive potentials of variable range, J. Chem. Phys., 106 (10), 4168, 1997.; [111] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular‐thermodynamic framework for asphaltene‐oil equilibria, AIChE J., 44 (5), 1188, 1998.; [112] J. Wu, J. M. Prausnitz, A. Firoozabadi, Molecular thermodynamics of asphaltene precipitation in reservoir fluids, AIChE J., 46 (1), 197, 2000.; [113] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gil-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J., 50 (10), 2552, 2004.; [114] A. A. Alhammadi, F. M. Vargas, W. G. Chapman, Comparison of Cubic-Plus-Association and Perturbed-Chain Statistical Associating Fluid Theory Methods for Modeling Asphaltene Phase Behavior and Pressure–Volume–Temperature Properties, Energy & Fuels, 29, 2864, 2015.; [115] A. Arya, X. Liang, N. von Solms, G. M. Kontogeorgis, Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State, Energy & Fuels, 30(8), 6835, 2016.; [116] D. P. Ting, G. J. Hirasaki, W. G. Chapman, Modeling of asphaltene phase behavior with the SAFT equation of state, Pet. Sci. Technol. 21 (3-4), 647, 2003.; [117] D. L. Gonzalez, D. P. Ting, G. J. Hirasaki, W. G. Chapman, Prediction of asphaltene instability under gas injection with the PC-SAFT equation of state, Energy & Fuels, 19 (4), 1230, 2005.; [118] D. L. Gonzalez, G. J. Hirasaki, J. Creek, W. G. Chapman, Modeling of Asphaltene Precipitation Due to Changes in Composition Using the Perturbed Chain Statistical Associating Fluid Theory Equation of State, Energy & Fuels, 21 (3), 1231, 2007.; [119] S. R. Panuganti, F. M. Vargas, D. L. Gonzalez, A. S. Kurup, W. G. Chapman, PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior, Fuel, 93, 658, 2012.; [120] S. Punnapala, F. M. Vargas, Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation prediction, Fuel, 108, 417, 2013.; [121] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib., 12, 235-251, 1983.; [122] S. S. Chen, A. Kreglewski, Ver. Bunsen-Ges., A. Kreglewski, Applications of the augmented van der Waals theory of fluids. I. pure fluids, 81 (10), 1048, 1977.; [123] D. Gonzalez, M. García, O. Diaz, Unusual asphaltene phase behavior of fluids from lake of Maracaibo, Venezuela, SPE 153602-PP, 2012.; [124] O. L. Boshkova, U. K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int J Thermophys, 31, 227-252, 2010.; [125] L. Verlet, J. Weis, Perturbation theory for the thermodynamic properties of simple liquids, Phys. A, 5, 939, 1972.; [126] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988; [127] J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).; [128] Y. Tang, J. Chem. Phys., Direct correlation function for the square-well potential, 127, 164504, 2007.; [129] Y. Tang, Erratum: “Direct correlation function for the square-well potential” [J. Chem. Phys. 127, 164504 (2007)], J. Chem. Phys., 133, 119903, 2010.; [130] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A parametrisation of the direct correlation function for the square-shoulder fluid, Physica A, 108 (2), 141-150, 2010.; [131] I. Guillén-Escamilla, E. Scholl-Paschinger, R. Castañeda-Prieto, A modified soft-core fluid model for the direct correlation function of the square-shoulder and square-well fluidsPhysica A, 390, 3637-3644, 2011.; [132] S. P. Hlushak, P.A. Hlushak, A. Trokhymchuk, An improved first-order mean spherical approximation theory for the square-shoulder fluid, J. Chem. Phys., 138, 164107, 2013.; [133] M. Khnpour, R. Hashim, Phys. Chem. of Liquids, Pair correlation function from the Barker–Henderson perturbation theory of fluids: the structure of square-well and square-shoulder potentials, 51 (2), 203-217, 2013.; [134] S. B. Yuste, A. Santos, M. López de Haro, Structure of the square-shoulder fluid, Mol. Phys. 109 (6), 987-995, 2011.; [135] W.A. Cañas-Marín, D.L. Gonzalez, B.A. Hoyos, Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5743, 2019.; [136] J. Gross, G. Sadowski, Reply to Comment on “Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules”, Ind. Eng. Chem. Res. 58(14), 5744, 2019.; [137] M. Sabeti, A. Rahimbakhsh, M. Nikookar, A.H. Mohammadi, Estimation of asphaltene precipitation and equilibrium properties of hydrocarbon fluid phases using the PC-SAFT equation of state, Journal of Molecular Liquids. 209 (2015) 447-460. DOI:10.1016/j.fluid.2019.04.037.; [138] W. A. Cañas-Marín, D. L. Gonzalez, B. A. Hoyos, A theoretically modified PC- SAFT equation of state for predicting asphaltene onset pressures at low temperatures, Fluid Phase Equilib. 495 (2019) 1-11. DOI:10.1016/j.fluid.2019.04.037.; [139] B-J. Zhang, Calculating thermodynamic properties from perturbation theory: I. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilib. 1, 154, 1999.; [140] X. Zhou, F.B. Thomas, R.G. Moore, Modelling of Solid Precipitation from Reservoir Fluid, J. Can. Petrol. Tech. 35 (1996) 37-45. DOI:10.2118/96-10-03.; [141] C. Browarzik, D. Browarzik, Modeling the Onset of Asphaltene Flocculation at High Pressure by an Association Model, Petrol. Sci. Tech. 27 (2005) 795-810. DOI:10.1081/LFT-200033121.; [142] P.D. Ting, Thermodynamic Stability and Phase Behavior of Asphaltenes in Oil and of other Highly Asymmetric Mixtures, PhD Thesis, Rice University, 2003.; [143] D.L. Gonzalez, F. M. Vargas, G. J Hirasaki, W. G. Chapman, Modeling Study of CO2-Induced Asphaltene Precipitation. Energy Fuels 22 (2) (2008) 757–762. DOI:10.1021/ef700369u.; [144] A. H. Saeedi-Dehaghani, M. Vafaie-Sefti, A. Amerighasrodashti, The Application of a New Association Equation of State (AEOS) for Prediction of Asphaltenes and Resins Deposition During CO2 Gas Injection, Pet. Sci. Tech., 30, 1548-1561, 2012. DOI:10.1080/10916466.2010.506465.; [145] M. I. L. Abutaqiya, C. J. Sisco, F. M. Vargas, A Linear Extrapolation of Normalized Cohesive Energy (LENCE) for Fast and Accurate Prediction of the Asphaltene Onset Pressure, Fluid Phase Equilibria 483 (2019) 52–69. DOI:10.1016/j.fluid.2018.10.025.; [146] X. Liang, G. M. Kontogeorgis, New Variant of the Universal Constants in the Perturbed Chain-Statistical Associating Fluid Theory Equation of State. Ind. Eng. Chem. Res. 54 (4) (2015) 1373–1384. DOI:10.1021/ie503925h.; [147] Y. Tang, Role of the Barker–Henderson diameter in thermodynamics, J. Chem. Phys. 116 (2002) 6694-6700. DOI:10.1063/1.1461360.; [148] B. Saager, R. Hennenberg, J. Fischer, Construction and application of physically based equations of state: Part I. Modification of the BACK equation, Fluid Phase Equilibria 72 (1992) 41-66. DOI:10.1016/0378-3812(92)85018-4.; [149] B-J, Zhang, S. Liang, Y. Lu, Calculating thermodynamic properties from perturbation theory II. An analytic representation for the square-well chain fluid, Fluid Phase Equilibria 180 (2001) 183–194. DOI:10.1016/S0378-3812(01)00346-6.; [150] S. Lian, B-J, Zhang, S. Han, W. Hu, Z. Jin, Calculating thermodynamic properties from perturbation theory III. An analytic representation of square-well potential hard-sphere perturbation theory, Fluid Phase Equilibria 200 (2002) 337–348, DOI:10.1016/S0378-3812(02)00044-4.; [151] G.P. Oskui, M.A. Jumaa, W.A. Abuhaimed, Laboratory Investigation of Asphaltene Precipitation Problems During CO2/Hydrocarbon Injection Project for EOR Application in Kwaiti Reservoirs, SPE 126267 (2009) 1-11. DOI:10.2118/126267-MS.; [152] M. Hassanvand, B. Shahsavani, A. Anooshe, Study of temperature effect on asphaltene precipitation by visual and quantitative methods, JPTAF, 3 (2012) 8-18. DOI:10.5897/JPTAF11.035.; [153] A.K.M. Jamaluddin, N. Joshi, F. Iwere, O. Gurpinar, An Investigation of Asphaltene Instability Under Nitrogen Injection, SPE 74393 (2002) 1-10. DOI:10.2118/74393-MS.; [154] E. Buenrostro-Gonzalez, C. Lira-Galeana, A. Gill-Villegas, J. Wu, Asphaltene precipitation in crude oils: Theory and experiments, AIChE J 50 (2004) 2552-2570. DOI:10.1002/aic.10243.; [155] D.L. Gonzalez, E. Mahmoodaghdam, F.H. Lim, N.B. Joshi, Effects of Gas Additions to Deepwater Gulf of Mexico Reservoir Oil: Experimental Investigation of Asphaltene Precipitation and Deposition. Presented at SPE Annual Technical Conference and Exhibition, 8-10 October, San Antonio, Texas, USA, 2012. DOI:10.2118/159098-MS.; [156] O.C. Mullins, E.Y. Sheu, A. Hammami, A.G. Marshall, Asphaltene, Heavy Oils, and Petroleomics, Springer, 2007.; [157] M. Tavakkoli, A. Chen, F. M. Vargas, Rethinking the modeling approach for asphaltene precipitation using the PC-SAFT Equation of State, Fluid Phase Equilibria 416 (2016) 120–129, DOI:10.1016/j.fluid.2015.11.003.; [158] D.L. Gonzalez, Modeling of Asphaltene Precipitation and Deposition Tendency using the PC-SAFT Equation of State, PhD Thesis, Rice University, 2008.; [159] W.A. Burgess, B.A. Bangbade, I.K. Gamwo, Experimental and predictive PC-SAFT modeling results for density and isothermal compressibility for two oil samples at elevated temperatures and pressures, Fuel (2018) 385-395, DOI:10.1016/j.fuel.2017.12.101.; [160] L.C.C. Marques, J.O. Pereira, A. D. Bueno, V.S. Marques, E.F. Lucas, C.R.E. Mansur, A.L.C. Machado, G. González, A Study of Asphaltene-Resin Interactions, J. Braz.Chem. Soc,. 23 (2012) 1880-1888. DOI:10.1590/S0103-50532012005000060.; [161] K. Aim, I. Nezbeda, Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib. 12 (1983) 235-251. DOI:10.1016/0378-3812(83)80064-8.; [162] I. Nezbeda, K. Aim, Perturbed hard sphere equations of state of real liquids. II. Effective hard-sphere diameters and residual properties, Fluid Phase Equilib. 17 (1984) 1-18. DOI:10.1016/0378-3812(84)80010-2.; [163] W. A. Cañas-Marín, B. A. Hoyos, D. L. Gonzalez, Role of the soft- core repulsion upon the prediction of characteristic curves with PC- SAFT, Fluid Phase Equilib. 499 (2019) 112247. DOI:10.1016/j.fluid.2019.112247.; [164] P. Bahrami, R. Karrat, S. Mahdavi, H. Firoozinia, Prediction of the gas injection effect on the asphaltene phase envelope, Oil & Gas Science and Technology-Rev. IFP Energies Nouvelles 70 (2015) 1075-1086. DOI:10.2516/ogst/2014037.; [165] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, A temperature-and density-dependent effective diameter for PC- SAFT, Journal of Molecular Liquids, 300 (2020) 112277.; [166] F. del Rio, D.A. Lonngi, The mean distance of closet approach in the theory of liquids, Phys. Letters. 56A (6) (1976) 463-464. DOI:10.1016/0375-9601(76)90729-5.; [167] S. Gormsen, J.M. Mollerup, Calculation of effective hard sphere diameters from perturbation theory, Fluid Phase Equilib. 65 (1992) 127–135, DOI:10.1016/0378-3812(92)87012-C.; [168] L. Verlet, J-J. Weis, Equilibrium theory of simple liquids, Phys. Rev. A, 5 (2) (1972) 939-952. DOI:10.1103/PhysRevA.5.939.; [169] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butterworths, Toronto, 1988.; [170] D. Henderson, E. W. Grundke, Direct correlation function: Hard sphere fluid, J. Chem. Phys. 63 (1975) 601-607. DOI:10.1063/1.431378.; [171] T. Wang, T. Davis, Molecular theory of simple dense fluid structure and thermodynamics, Chem. Eng. Commun. 4 (1980) 343-352. DOI:10.1080/00986448008935914.; [172] H. Nikoofard, T. Rezaye, A. H. Amin, The static structure factor of monatomic liquids using an analytical expression for the hard-sphere correlation function, PCAIJ. 8(4) (2013) 126-131. ISSN: 0974 – 7524.; [173] A. M. Bratkovsky, V. G. Vaks, A. V. Trefilov, On the accuracy of the liquid theory approximate methods for calculating the structure factors in liquid metals, J. Phys. F: Met. Phys. 12 (1982) 611-632. DOI:10.1088/0305-4608/12/4/004; [174] M. Giordano, D. de Angelis, A. Forlani, The one-component plasma liquid: and equation for the strongly coupled limit. J. Phys. C: Solid State phys. 17 (1984) 4089-4100. DOI:10.1088/0022-3719/17/23/010.; [175] A. D. Law, D. M. A. Buzza, Determination of interaction potentials of colloidal monolayers from the inversion of pair correlation functions: A two-dimensional predictor-corrector method, J. Chem. Phys. 131 (2009) 094704. DOI:10.1063/1.3216568.; [176] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44. DOI:10.1016/S0378-3812(00)00346-0.; [177] R. P. Brent, Chapter 4: An Algorithm with Guaranteed Convergence for Finding a Zero of a Function, Algorithms for Minimization without Derivatives, Englewood Cliffs, NJ: Prentice-Hall, ISBN 0-13-0223, 1973.; [178] P. Ungerer, B. Faissat, C. Leibovici, H. Zhou, E. Behar, G. Morachini, J. P. Courcy, High pressure-high temperature reservoir fluids: investigation of synthetic condensate gases containing a solid hydrocarbon, Fluid Phase Equilib. 111 (1995) 287- 311. DOI:10.1016/S0301-9322(97)88277-8.; [179] S. Jiu-Xun, simple analytic expression with high precision for Barker-Henderson diameter, Chin. Phys. Lett. 20 (2003) 180-182. DOI:10.1088/0256-307X/20/2/302.; [180] S. Zarei, F. Feyzi, Boyle temperature from SAFT, PC-SAFT and SAFT-VR equations of state, Journal of Molecular Liquids. 187 (2013) 144-128. DOI:10.1016/j.molliq.2013.06.010.; [181] X. Liang, B. Maribo-Mogensen, K. Thomsen, W. Yan, G. M. Kontogeorgis, Approach to improve speed of sound calculation within PC-SAFT framework. Ind. Eng. Chem. Res. 51 (2012) 14903-14914. DOI:10.1021/ie3018127I.; [182] I. Polishuk, P. Privat, J.N., Jaubert, Novel methodology for analysis and evaluation of SAFT-type equation of state, Ind. Eng. Chem. Res. 2013, S2, 13875. DOI:10.1021/ie4020155.; [183] P. Paricaud, Extension of the BMCSL equation of state for hard spheres to the metastable disordered region: Application to the SAFT approach, J. Chem. Phys. 143 (2015) 044507. DOI:10.1063/1.4927148.; [184] J. Gross, G. Sadowski, Reply to comment on “Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules”, Ind. Eng. Chem. Res. 58 (2019) 5744-5745. DOI:10.1021/acs.iecr.9b01515.; [185] C.P. Hicks, C.L. Young, Gas-liquid critical properties of binary mixtures, Chem. Rev. 75(2) (1975) 119-175. DOI:10.1021/cr60294a001.; [186] E. F. Gholoum, G. P. Oskui, M. Salman, Investigation of Asphaltenes Precipitation Onset Conditions for Kuwaiti Reservoirs, SPE Paper 81571, SPE 13th Middle East Oil Show & Conference, Bahrain, 2003. DOI:10.2118/81571-MS.; [187] F. Nascimento, G.M.N. Costa, S.A.B. Vieira de Melo, A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope, Fluid Phase Equilibria 494 (2019) 74–92. DOI:10.1016/j.fluid.2015.11.003. 10.1016/j.fluid.2019.04.027.; [188] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Comparison of four different PC- SAFT versions to predict liquid- liquid equilibria of polymer and asphaltene systems at low temperatures, Fluid Phase Equilib. 521 (2020) 112646.; [189] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178.; [190] O.L. Boshkova, U.K. Deiters, Soft repulsion and the behavior of equations of state at high pressures, Int. J Thermophys. 31 (2010) 227-252. DOI:10.1007/s10765-010-0727-7. DOI:10.1007/s10765-010-0727-7.; [191] A.K.M. Jamaluddin, J. Creek, C.S. Kabir, J.D. McFeeden, D. D´Cruz, M.T. Joseph, N. Joshi, B. Ross, A comparison of various laboratory techniques to measure thermodynamic asphaltene instability, SPE 72154 (2001) 1-17. DOI:10.2118/72154-MS.; [192] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Prediction of extreme asphaltene onset pressures with PC- SAFT for petroleum reservoir fluids, Fluid Phase Equilib. 522 (2020) 112769.; [193] C.H. Whitson, M.R. Brule, Phase Behavior. SPE monograph series vol. 20 (2000).; [194] K.S. Pedersen, P.L. Christensen, Phase behavior of petroleum reservoir fluids. CRC press. Taylor & Francis Group (2007).; [195] C. S. Agger, H. Sorensen, Algorithm for constructing complete asphaltene PT and Px phase diagrams, Ind. Eng. Chem. Res. 57 (1) (2017) 392-400. DOI:10.1021/acs.iecr.7b04246.; [196] R. R. Boesen, H. Sorensen, K. S. Pedersen, Asphaltene predictions using screening methods and equations of state, SPE 190401-MS (2018) 1-19. DOI:10.2118/190401-MS.; [197] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197-1203.; [198] M. Robles, M. López de Haro, A. Santos, Note: Equation of state and the freezing point in the hard-sphere model. J. Chem. Phys. 140 (2014) 136101.; [199] H.S. Kang, C.S. Lee, T. Ree, A perturbation theory of classical equilibrium fluids. J. Chem. Phys. 82(1) (1985) 414-423.; [200] C.F. Leibovici, J. Neoschil, A solution of Rachford-Rice equations for multiphase systems, Fluid Phase Equilib. 112 (1995) 217–221. DOI:10.1016/0378-3812(95)02797-I.; [201] M.L. Michelsen, Calculation of multiphase equilibrium. Comput. Chem. Eng. 18 (7) (1994) 545-550. DOI:10.1016/0098-1354(93)E0017-4.; [202] M.L. Michelsen, The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9 (1) (1982) 1-19. DOI:10.1016/0378-3812(82)85001-2.; [203] W.A. Cañas-Marín, J.D. Ortiz-Arango, U.E. Guerrero-Aconcha, Improved two-sided tangent plane initialization and two-phase-split calculations. Ind. Eng. Chem. Res. 46 (2007) 5429-5436. DOI:10.1021/ie061361b.; [204] M.A. Trebble, A preliminary evaluation of two and three phase flash initialization procedures. Fluid Phase Equilib. 53 (1989) 113–122. DOI:10.1016/0378-3812(89)80078-0.; [205] M.L. Michelsen, J.M. Mollerup, Thermodynamic models: Fundamentals & computational aspects. Tie-Line Publications (2004).; [206] W.A. Cañas-Marín, B.A. Hoyos, D.L. Gonzalez, Role of the soft-core repulsion upon density-and temperature-dependent effective diameters from two thermodynamic perturbation theories, Fluid Phase Equilib. 528 (2021) 112849. DOI:10.1016/j.fluid.2020.112849.; [207] D. Henderson, Rowlinson´s concept of an effective hard sphere diameter, J. Chem. Eng. Data. 55(10) (2010) 4507-4508.; [208] B. J. Alder, C.E. Hecht, Studies in Molecular Dynamics. VII. Hard‐Sphere Distribution Functions and an Augmented van der Waals Theory. J. Chem. Phys. 50 (1969) 2032-2037.; [209] D.M. Heyes, Thermodynamics and elastic moduli of fluids with steeply repulsive potentials. J. Chem. Phys. 107(6) (1997) 1963-1969.; [210] E.H. Brown, On the thermodynamic properties of fluids. Bull. Int. Inst. Refrig., Paris, Annexe 1960−1961 (1960) 167-178.; [211] G.A. Parsafar, C. Izanloo, Deriving analytical expressions for the ideal curves and using the curves to obtain the temperature dependence of equation-of-state parameters. Int. J Thermophys. 27 (5) (2006) 1564-1589.; [212] U.K. Deiters, A. Neumaier, Computer simulation of the characteristic curves of pure fluids. J. Chem. Eng. Data. 61 (8) (2016) 2720-2728.; [213] U.K. Deiters, K.M. De Reuck, Guidelines for publication of equations of state-I. Pure fluids. Pure & Appl. Chem., 68 (6) (1997) 1237-1249.; [214] L. Boltzmann, Lectures on gas theory, University of California Press, Berkeley, CA, 1964.; [215] M. Shokouhi, G.A. Parsafar, A new equation of state derived by the statistical mechanical perturbation theory, Fluid Phase Equilib. 264 (2008) 1-11.; [216] C.M. Silva, H. Liu, E.A. Macedo, Comparison between different explicit expressions of the effective hard sphere diameter of Lennard-Jones fluids: Application to self-diffusion coefficients, Ind. Eng. Chem. Res. 37 (1998) 221-227.; [217] U.K. Deiters, The equation of state of soft repulsive spherical molecules, Molecular Physics. 74 (1) (1991) 153-160.; [218] U.K. Deiters, S.L. Randzio, The equation of state for molecules with shifted Lennard-Jones pair potentials, Fluid Phase Equilib. 103 (1995) 199-212.; [219] R.L. Cotterman, B.J., Schwardz, J.M. Prausnitz, Molecular thermodynamics for fluids al low and high densities. Part I. Pure fluids containing small or large molecules, AIChE J. 32 (11) (1986) 1787-1798.; [220] Y. Tang, B.C.-Y. Liu, A study of associating Lennard-Jones chains by a new reference radial distribution function, Fluid Phase Equilib. 171 (2000) 27-44.; [221] Y. Tang, B.C.-Y. Liu, On the mean spherical approximation for the Lennard-Jones fluid, Fluid Phase Equilib. 190 (2001) 149-158.; [222] I. Polishuk, Standardized critical point-based numerical solution of statistical association fluid theory parameters: The perturbed chain-statistical association fluid theory equation of state revisited, Ind. Eng. Chem. Res. 53 (2014) 14127-14141.; [223] Ch. Tegeler, R. Span, W. Wagner, A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures up to 1000 MPa. Journal of Physical and chemical Reference Data, 28 (3) (1999) 779-850.; [224] R. Span, E. Lemmon, R. Jacobsen, W. Wagner, A, Yokozeki, A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. Journal of Physical and chemical Reference Data, 29 (6) (2000) 1361-1433.; [225] R. Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and chemical Reference Data, 25 (6) (1996) 1509-1596.; [226] M. Shokouhi, G.A. Parsafar, The effect of steepness of soft-core square-well potential model on some fluid properties. Molecular Physics, 106 (1) (2008) 103-112.; [227] D. Ghie Chae, F.H. Ree, T. Ree, Radial distribution functions and equation of state of the hard-disk fluid, J. Chem. Phys, 50 (4) (1969) 1581-1589.; [228] D. Henderson, A simple equation of state for hard discs, Molecular Physics, 30 (3) (1975) 971-972.; [229] A. Santos, M. López de Haro, S. Bravo Yuste, An accurate and simple equation of state for hard disks, J. Chem. Phys, 103 (11) (1995) 4622-4625.; [230] D.P. Fraser, M.J. Zuckerman, O.G. Mouritsen, Theory and simulations for hard-disk models of binary mixtures of molecules with internal degrees of freedom, Phys. Rev. A, 43 (12) (1991) 6642-6656.; [231] S. Luding, A. Santos. Molecular dynamics and theory for the contact values of the radial distribution functions of hard-disk fluid mixtures, J. Chem. Phys, 121 (17) (1995) 8458-8465.; [232] A. Santos, S.B. Yuste, M. López de Aro, V. Ogarko. Equation of state of polydisperse hard-disk mixtures in the high-density regime, Phys. Rew. E, 96 (2017) 0626031- 06260311.; [233] P.M. Ndiaye, C. Dariva, J.V. Oliveira, F.W. Tavares, Improving the SAFT-EoS by using an effective WCA segmaent diameter, Fluid Phase Equilib., 194-197 (2002) 531-539. [234] S. Beret, J.M. Prausnitz, Perturbed Hard-Chain Theory: An Equation of State for Fluids Containig Small or Large Molecules, AIChE J., 21 (1975) 1123-1132.; [235] C-H. Kim, P. Vimalchand, M.D. Donohue, S.I. Sandler, Local composition model for chainlike molecules: A new simplified version of the perturbed hard chain theory, AIChE J., 32 (10) (1986) 1726-1734.; [236] A. Galindo, P.J. Whitehead, G. Jackson, A.N. Burgess, Predicting the high-pressure phase equilibria of water + n-alkanes using a simplified SAFT theory with transferable intermolecular interaction parameters, J. chem. Phys., 100 (1996) 6781-6792.; [237] C.J. Sisco, M.I.L. Abutaqiya, F.M. Vargas, Cubi-Plus-Chain (CPC). I: A Statistical Association Fluid Theory-Based Chain Modification to the Cubic Equation of State for Large Nonpolar Molecules, Ind. Eng. Chem. Res., 58 (2019) 7341-7351.; [238] M.I.L. Abutaqiya, C.J. Sisco, Y. Khemka, M.A. Safa, E.F. Gholum, A.M. Rashed, R. Gharbi, S. Santhanagopalan, M. AL-Qahtani, E. AL-Kandari, Accurate Modeling of Asphatene Onset Pressure in Crude Oils Under Gas Injection Using Peng-Robinson Equation of State, Energy Fuels, 34 (2020) 4055-4070.; [239] D. Gonzalez, P. Gramin, P. Haldipur, M. Pietrobon, H. Zeng, Experimental study to understand formation damage due to asphaltene deposition in a deepwater field, SPWLA Formation Testing SIG, 2020 Weminar series.; [240] K.J. Leontaritis, G.A. Mansoori, T-S, Jiang, Asphaltene Deposition in Oil Recovery: A Survey of Field Experiences and Field Approaches, Proceeding of International Conference on Advanced Technologies (ICAT), IL, USA, 1986.; [241] H. Belhaj, H.A. Khalifeh, N. Al-Huraibi, Asphaltene Stability in Crude Oil during Production Process, J. Pet. Environ. Biotechnol., 4(3) (2013) 1-5.; [242] F. Gonzalez, Private Communication, 2021.; https://repositorio.unal.edu.co/handle/unal/79496; Universidad Nacional de Colombia; Repositorio Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
15Academic Journal
مصطلحات موضوعية: Matemática física y química, Efecto de Stark, Perturbación (Matemáticas), Perturbación (Dinámica cuántica)
Time: 510
وصف الملف: 15 páginas; application/pdf
-
16Academic Journal
المؤلفون: Alonso Izquierdo, Alberto, García Fuertes, Wifredo, Torre Mayado, Marina de la, Mateos Guilarte, Juan María
مصطلحات موضوعية: High Energy Physics - Theory, Física Altas Energías, Quantum Dynamics, Dinámica Cuántica, 2290.01 Física teórica altas energías
وصف الملف: application/pdf
Relation: http://xxx.unizar.es/abs/hep-th/0406129; Alonso Izquierdo A., Garcia Fuertes W., Torre Mayado M.,and Mateos Guilarte J. (2004). Quantum corrections to the mass of self-dual vortices. Physical Review D 70.; http://hdl.handle.net/10366/121287
الاتاحة: http://hdl.handle.net/10366/121287
-
17Academic Journal
المؤلفون: Alonso Izquierdo, Alberto, González León, Miguel Ángel, García Fuertes, Wifredo, Torre Mayado, Marina de la, Mateos Guilarte, Juan María
مصطلحات موضوعية: High Energy Physics - Theory, Física Altas Energías, Quantum Dynamics, Dinámica Cuántica, 2290.01 Física teórica altas energías
وصف الملف: application/pdf
Relation: http://xxx.unizar.es/abs/hep-th/0311057; Alonso Izquierdo A., Gonzalez Leon M. A.,Garcia Fuertes W., Torre Mayado M.,and Mateos Guilarte J. (2004). Degenerate BPS domain walls: Classical and quantum dynamics. En Víctor Aldaya, José Mª Cerveró, y Pilar García (Eds.), Symmetries in Gravity and Field Theory (369-384). Salamanca: Ediciones Universidad de Salamanca.; http://hdl.handle.net/10366/121276
الاتاحة: http://hdl.handle.net/10366/121276
-
18
المصدر: CIC Digital (CICBA)
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBAمصطلحات موضوعية: Sistemas Semiclásicos, Ciencias Naturales y Exactas, Teoría de la Información, Complejidad, Dinámica Cuántica, Entropía, Caos
وصف الملف: application/pdf
-
19Dissertation/ Thesis
المؤلفون: Zapata Romero, Gilberto Alexander
المساهمون: Arce Clavijo, Julio César
مصطلحات موضوعية: Dinámica cuántica, Energía vibracional, Dinámica molecular, Sulfuro de carbonilo, Transferencia de energía
وصف الملف: application/pdf
Relation: https://hdl.handle.net/10893/13135
الاتاحة: https://hdl.handle.net/10893/13135
-
20
المؤلفون: González Melan, Alejandro
المساهمون: Madroñero Pabón, Javier
المصدر: Repositorio Digital Univalle
Universidad del Valle
instacron:Universidad del Valleمصطلحات موضوعية: Astronomía, Dinámica cuántica, Helio, Physics::Atomic Physics, Propagación de ondas
وصف الملف: application/pdf