يعرض 1 - 20 نتائج من 120 نتيجة بحث عن '"densidad electrónica"', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica

    Thesis Advisors: Benet Buchholz, Jordi, Ballester Balaguer, Pau

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المؤلفون: Mata Martínez, Ignasi

    المساهمون: University/Department: Universitat Autònoma de Barcelona. Departament de Física

    Thesis Advisors: Molins i Grau, Elies

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis
  4. 4
    Academic Journal

    المصدر: Geoacta; Vol. 43 Núm. 2 (2022): Volumen especial reunión AAGG2021; 46-65 ; Geoacta; Bd. 43 Nr. 2 (2022): Volumen especial reunión AAGG2021; 46-65 ; Geoacta; Vol. 43 No. 2 (2022): Volumen especial reunión AAGG2021; 46-65 ; Geoacta; V. 43 N. 2 (2022): Volumen especial reunión AAGG2021; 46-65 ; 0326-7237 ; 1852-7744

    وصف الملف: application/pdf

  5. 5
    Academic Journal
  6. 6
    Conference

    مصطلحات موضوعية: Acetato de etilo, Metanol, Densidad electrónica

    وصف الملف: application/pdf; p. 444-444

    Relation: Alegre, Clara Iris Aymará, Zalazar, María Fernanda y Peruchena, Nélida María, 2021.Análisis del laplaciano de la densidad electrónica [-∇2ρ(r)] para el estudio de la reacción de acetato de etilo y metanol sobre el catalizador [cta+]-si-mcm-41. En: XXII Congreso Argentino de Fisicoquímica y Química Inorgánica. La Plata: Universidad Nacional de La Plata. Facultad de Ingeniería. Asociación Argentina de Investigación Fisicoquímica, p. 444-444.; http://repositorio.unne.edu.ar/handle/123456789/52449

  7. 7
    Dissertation/ Thesis
  8. 8
    Dissertation/ Thesis
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal

    المصدر: Revista Tendencias en Docencia e Investigación en Química. Año 5, número 5 (enero-diciembre de 2019). ISSN: 2448-6663

    وصف الملف: pdf; Born digital; application/pdf

    Relation: https://revistatediq.azc.uam.mx/Docs/revista_tendencias_2019.pdf; Domínguez-Soria, V.D., González-Torres, J.C. (2019). Análisis de cargas atómicas parciales del TiO₂ con el método DDEC. Revista Tendencias en Docencia e Investigación en Química, 5(5), 603-607. http://hdl.handle.net/11191/7885; http://hdl.handle.net/11191/7885

  12. 12
    Conference

    وصف الملف: application/pdf; p. 1-9

    Relation: Romero Ojeda, Gonzalo, et al., 2017. Estudio comparativo de la distribución densidad electrónica en complejos adsorbidos sobre cavidades de zeolitas ácidas de diferente topología. Relación con el efecto de confinamiento. En: XXV Jornadas de Jóvenes Investigadores. Encarnación: Asociación de Universidades Grupo Montevideo, p. 1-9.; http://repositorio.unne.edu.ar/handle/123456789/27951

  13. 13
    Conference
  14. 14

    المؤلفون: Miranda, Matías Orlando

    المساهمون: Duarte, Darío Jorge Roberto

    مصطلحات موضوعية: Enlace de halógeno, Densidad electrónica, PAEM

    وصف الملف: application/pdf; p. 1-1

    Relation: UNNE/CONICET/18F009/AR. Corrientes/Influencia de interacciones moleculares en reacciones químicas de interés atmosférico.; Miranda, Matías Orlando, 2023. Estudio teórico del potencial PAEM en enlaces de halógeno presentes en intermediarios de interés atmosférico. En: XXVIII Comunicaciones Científicas y Tecnológicas. Resistencia: Universidad Nacional del Nordeste. Secretaría General de Ciencia y Técnica, p. 1-1.; http://repositorio.unne.edu.ar/handle/123456789/53392

  15. 15
    Dissertation/ Thesis
  16. 16
    Dissertation/ Thesis

    المؤلفون: Montoya Moreno, Nicolas

    المساهمون: Alí Torres, Jorge Isaac, Química Cuántica y Computacional

    وصف الملف: 69 páginas; application/pdf

    Relation: LaReferencia; M. Lawson, K. Jomova, P. Poprac, K. Kuča, K. Musílek, and M. Valko, “Free Radicals and Antioxidants in Human Disease,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, Cham: Springer International Publishing, 2017, pp. 283–305. doi:10.1007/978-3-319-67625-8_12; O. M. Ighodaro and O. A. Akinloye, “First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid,” Alexandria Journal of Medicine, vol. 54, no. 4, pp. 287–293, Dec. 2018, doi:10.1016/j.ajme.2017.09.001; V. Rani and U. C. Singh Yadav, Free Radicals in Human Health and Disease. New Delhi: Springer India, 2015. doi:10.1007/978-81-322-2035-0; M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” Int J Biochem Cell Biol, vol. 39, no. 1, pp. 44–84, Jan. 2007, doi:10.1016/j.biocel.2006.07.001; A. Bafana, S. Dutt, A. Kumar, S. Kumar, and P. S. Ahuja, “The basic and applied aspects of superoxide dismutase,” J Mol Catal B Enzym, vol. 68, no. 2, pp. 129–138, Feb. 2011, doi:10.1016/j.molcatb.2010.11.007; R. W. Strange, C. W. Yong, W. Smith, and S. S. Hasnain, “Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu–Zn superoxide dismutase,” Proceedings of the National Academy of Sciences, vol. 104, no. 24, pp. 10040–10044, Jun. 2007, doi:10.1073/pnas.0703857104; I. A. Abreu and D. E. Cabelli, “Superoxide dismutases—a review of the metal-associated mechanistic variations,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1804, no. 2, pp. 263–274, Feb. 2010, doi:10.1016/j.bbapap.2009.11.005; A. S. Hearn et al., “Amino Acid Substitution at the Dimeric Interface of Human Manganese Superoxide Dismutase,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 5861–5866, Feb. 2004, doi:10.1074/jbc.M311310200; A. Merlino et al., “Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis,” J Struct Biol, vol. 172, no. 3, pp. 343–352, Dec. 2010, doi:10.1016/j.jsb.2010.08.008; R. W. Herbst et al., “Role of Conserved Tyrosine Residues in NiSOD Catalysis: A Case of Convergent Evolution,” Biochemistry, vol. 48, no. 15, pp. 3354–3369, Apr. 2009, doi:10.1021/bi802029t; L. Miao and D. K. St. Clair, “Regulation of superoxide dismutase genes: Implications in disease,” Free Radic Biol Med, vol. 47, no. 4, pp. 344–356, Aug. 2009, doi:10.1016/j.freeradbiomed.2009.05.018; C. L. Matthiesen et al., “Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization,” Free Radic Biol Med, vol. 164, pp. 399–409, Feb. 2021, doi:10.1016/j.freeradbiomed.2021.01.027; T. Siddique, H. X. Deng, and S. Ajroud-Driss, “Motor Neuron Disease,” in Emery and Rimoin’s Principles and Practice of Medical Genetics, Elsevier, 2013, pp. 1–22. doi:10.1016/B978-0-12-383834-6.00141-5; J. Choi, H. D. Rees, S. T. Weintraub, A. I. Levey, L.-S. Chin, and L. Li, “Oxidative Modifications and Aggregation of Cu,Zn-Superoxide Dismutase Associated with Alzheimer and Parkinson Diseases,” Journal of Biological Chemistry, vol. 280, no. 12, pp. 11648–11655, Mar. 2005, doi:10.1074/jbc.M414327200; B. G. Trist, J. B. Hilton, D. J. Hare, P. J. Crouch, and K. L. Double, “Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic,” Angewandte Chemie International Edition, vol. 60, no. 17, pp. 9215–9246, Apr. 2021, doi:10.1002/anie.202000451; T. Fukai, “Extracellular superoxide dismutase and cardiovascular disease,” Cardiovasc Res, vol. 55, no. 2, pp. 239–249, Aug. 2002, doi:10.1016/S0008-6363(02)00328-0; L. A. Macmillan-Crow and D. L. Cruthirds, “Manganese superoxide dismutase in disease,” Free Radic Res, vol. 34, no. 4, pp. 325–336, Jan. 2001, doi:10.1080/10715760100300281; H. Younus, “Therapeutic potentials of superoxide dismutase.,” Int J Health Sci (Qassim), vol. 12, no. 3, pp. 88–93, 2018; T. Ogiso, T. Fukami, C. Zhongzhe, K. Konishi, M. Nakano, and M. Nakajima, “Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid,” Toxicology, vol. 448, p. 152648, Jan. 2021, doi:10.1016/j.tox.2020.152648; M. N. Islam et al., “Superoxide dismutase: an updated review on its health benefits and industrial applications,” Crit Rev Food Sci Nutr, vol. 62, no. 26, pp. 7282–7300, Sep. 2022, doi:10.1080/10408398.2021.1913400; D. Salvemini, C. Muscoli, D. P. Riley, and S. Cuzzocrea, “Superoxide Dismutase Mimetics,” Pulm Pharmacol Ther, vol. 15, no. 5, pp. 439–447, Oct. 2002, doi:10.1006/pupt.2002.0374; A. Galano, “Free Radicals Induced Oxidative Stress at a Molecular Level: The Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols,” J Mex Chem Soc, vol. 59, no. 4, pp. 231–262, 2015, [Online]. Available: http://www.redalyc.org/articulo.oa?id=47545630002; A. Galano and J. Raúl Alvarez‐Idaboy, “Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow?,” Int J Quantum Chem, vol. 119, no. 2, p. e25665, Jan. 2019, doi:10.1002/qua.25665; A. Mirats, J. Alí-Torres, L. Rodríguez-Santiago, M. Sodupe, and G. La Penna, “Dioxygen activation in the Cu–amyloid β complex,” Physical Chemistry Chemical Physics, vol. 17, no. 41, pp. 27270–27274, 2015, doi:10.1039/C5CP04025F; K. Reybier et al., “Free Superoxide is an Intermediate in the Production of H 2 O 2 by Copper(I)-Aβ Peptide and O 2,” Angewandte Chemie International Edition, vol. 55, no. 3, pp. 1085–1089, Jan. 2016, doi:10.1002/anie.201508597; A. Carlioz and D. Touati, “Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?,” EMBO J, vol. 5, no. 3, pp. 623–630, Mar. 1986, doi:10.1002/j.1460-2075.1986.tb04256.x; O. Iranzo, “Manganese complexes displaying superoxide dismutase activity: A balance between different factors,” Bioorg Chem, vol. 39, no. 2, pp. 73–87, Apr. 2011, doi:10.1016/j.bioorg.2011.02.001; D. P. Riley et al., “Synthesis, Characterization, and Stability of Manganese(II) C-Substituted 1,4,7,10,13-Pentaazacyclopentadecane Complexes Exhibiting Superoxide Dismutase Activity,” Inorg Chem, vol. 35, no. 18, pp. 5213–5231, Jan. 1996, doi:10.1021/ic960262v; M. Baudry, S. Etienne, A. Bruce, M. Palucki, E. Jacobsen, and B. Malfroy, “Salen-Manganese Complexes Are Superoxide Dismutase-Mimics,” Biochem Biophys Res Commun, vol. 192, no. 2, pp. 964–968, Apr. 1993, doi:10.1006/bbrc.1993.1509; I. Batinić-Haberle, J. S. Rebouças, and I. Spasojević, “Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential,” Antioxid Redox Signal, vol. 13, no. 6, pp. 877–918, Sep. 2010, doi:10.1089/ars.2009.2876; A. Shariev et al., “Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic,” Redox Biol, vol. 38, p. 101790, Jan. 2021, doi:10.1016/j.redox.2020.101790; A. Vincent et al., “Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models,” J Inorg Biochem, vol. 219, p. 111431, Jun. 2021, doi:10.1016/j.jinorgbio.2021.111431; R. F. W. Bader, Atoms in Molecules: A Quantum Theory. in International series of monographs on chemistry. Clarendon Press, 1990. [Online]. Available: https://books.google.com.co/books?id=up1pQgAACAAJ; C. F. Matta and R. J. Boyd, The quantum theory of atoms in molecules : from solid state to DNA and drug design. Wiley-VCH, 2007; M. Jabłoński and M. Palusiak, “Nature of a Hydride–Halogen Bond. A SAPT-, QTAIM-, and NBO-Based Study,” J Phys Chem A, vol. 116, no. 9, pp. 2322–2332, Mar. 2012, doi:10.1021/jp211606t; O. A. Syzgantseva, V. Tognetti, and L. Joubert, “On the Physical Nature of Halogen Bonds: A QTAIM Study,” J Phys Chem A, vol. 117, no. 36, pp. 8969–8980, Sep. 2013, doi:10.1021/jp4059774; S. J. Grabowski, “Non-covalent interactions – QTAIM and NBO analysis,” J Mol Model, vol. 19, no. 11, pp. 4713–4721, Nov. 2013, doi:10.1007/s00894-012-1463-7; A. R. M, A. Singh, M. S. S. Sundaram, Y. Wagh, A. Jegorov, and A. K. Jain, “In-Silico aided screening and characterization results in stability enhanced Novel Roxadustat co-crystal,” J Pharm Sci, Oct. 2023, doi:10.1016/j.xphs.2023.10.024; M. Doust Mohammadi, F. Abbas, H. Louis, Z. Zeb, M. U. Akem, and I. Benjamin, “Computational Investigation of the Intermolecular Interactions between Decatungstate Acid and CX 2 O (X=H, F, Cl, and Br),” ChemistrySelect, vol. 8, no. 39, Oct. 2023, doi:10.1002/slct.202300504; M. Moradkhani, A. Naghipour, and Y. A. Tyula, “Investigation of structural, spectral, and electronic properties of complexes resulting from the interaction of acetonitrile and hypohalous acids,” Struct Chem, Oct. 2023, doi:10.1007/s11224-023-02243-8; J. Alí-Torres, A. Mirats, J.-D. Maréchal, L. Rodríguez-Santiago, and M. Sodupe, “Modeling Cu 2+ -Aβ complexes from computational approaches,” AIP Adv, vol. 5, no. 9, p. 092402, Sep. 2015, doi:10.1063/1.4921072; A. L. Orjuela, F. Núñez-Zarur, and J. Alí-Torres, “A computational protocol for the calculation of the standard reduction potential of iron complexes: application to Fe 2+/3+ -Aβ model systems relevant to Alzheimer’s disease,” RSC Adv, vol. 12, no. 37, pp. 24077–24087, 2022, doi:10.1039/D2RA03907A; M. J. Frisch et al., “Gaussian 16.” Gaussian, Inc., Wallingford CT, 2016; N. Puentes-Díaz, D. Chaparro, V. Reyes-Marquez, D. Morales-Morales, A. Flores-Gaspar, and J. Alí-Torres, “Computational Evaluation of the Potential Pharmacological Activity of Salen-Type Ligands in Alzheimer’s Disease,” Journal of Alzheimer’s Disease, pp. 1–14, Jul. 2023, doi:10.3233/JAD-230542; D. Chaparro and J. Alí-Torres, “Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes,” J Mol Model, vol. 23, no. 10, p. 283, Oct. 2017, doi:10.1007/s00894-017-3469-7; A.-F. Miller, K. Padmakumar, D. L. Sorkin, A. Karapetian, and C. K. Vance, “Proton-coupled electron transfer in Fe-superoxide dismutase and Mn-superoxide dismutase,” J Inorg Biochem, vol. 93, no. 1–2, pp. 71–83, Jan. 2003, doi:10.1016/S0162-0134(02)00621-9; J. A. Fee and C. Bull, “Steady-state kinetic studies of superoxide dismutases. Saturative behavior of the copper- and zinc-containing protein.,” Journal of Biological Chemistry, vol. 261, no. 28, pp. 13000–13005, Oct. 1986, doi:10.1016/S0021-9258(18)69261-0; D. E. Heck, M. Shakarjian, H. D. Kim, J. D. Laskin, and A. M. Vetrano, “Mechanisms of oxidant generation by catalase,” Ann N Y Acad Sci, vol. 1203, no. 1, pp. 120–125, Aug. 2010, doi:10.1111/j.1749-6632.2010.05603.x; M. Lundberg and T. Borowski, “Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective,” Coord Chem Rev, vol. 257, no. 1, pp. 277–289, Jan. 2013, doi:10.1016/j.ccr.2012.03.047; R. A. Himes and K. D. Karlin, “Copper–dioxygen complex mediated C–H bond oxygenation: relevance for particulate methane monooxygenase (pMMO),” Curr Opin Chem Biol, vol. 13, no. 1, pp. 119–131, Feb. 2009, doi:10.1016/j.cbpa.2009.02.025; Y. Feng, P.-H. Lee, D. Wu, Z. Zhou, H. Li, and K. Shih, “Degradation of contaminants by Cu + -activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu 3+ ),” J Hazard Mater, vol. 331, pp. 81–87, Jun. 2017, doi:10.1016/j.jhazmat.2017.02.029; T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J Comput Chem, vol. 33, no. 5, pp. 580–592, Feb. 2012, doi:10.1002/jcc.22885; P. S. V. KUMAR, V. RAGHAVENDRA, and V. SUBRAMANIAN, “Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding,” Journal of Chemical Sciences, vol. 128, no. 10, pp. 1527–1536, Oct. 2016, doi:10.1007/s12039-016-1172-3; C. Silva Lopez and A. R. de Lera, “Bond Ellipticity as a Measure of Electron Delocalization in Structure and Reactivity,” Curr Org Chem, vol. 15, no. 20, pp. 3576–3593, Oct. 2011, doi:10.2174/138527211797636228; A. H. Pakiari and K. Eskandari, “The chemical nature of very strong hydrogen bonds in some categories of compounds,” Journal of Molecular Structure: THEOCHEM, vol. 759, no. 1–3, pp. 51–60, Feb. 2006, doi:10.1016/j.theochem.2005.10.040; S. J. Grabowski, W. A. Sokalski, E. Dyguda, and J. Leszczyński, “Quantitative Classification of Covalent and Noncovalent H-Bonds,” J Phys Chem B, vol. 110, no. 13, pp. 6444–6446, Apr. 2006, doi:10.1021/jp0600817; S. Emamian, T. Lu, H. Kruse, and H. Emamian, “Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms‐in‐Molecules Descriptors, Binding Energies, and Energy Components of Symmetry‐Adapted Perturbation Theory,” J Comput Chem, vol. 40, no. 32, pp. 2868–2881, Dec. 2019, doi:10.1002/jcc.26068; https://repositorio.unal.edu.co/handle/unal/86253; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20

    المؤلفون: Esquenazi, Eduardo Nicolás

    المساهمون: Zalazar, María Fernanda

    وصف الملف: application/pdf; p. 1-1

    Relation: UNNE/PI/18V002/AR. Corrientes/Modelado de reacciones catalíticas sobre materiales micro-mesoporosos en procesos químicos relevantes de interés industrial.; http://repositorio.unne.edu.ar/handle/123456789/55439