-
1Academic Journal
المؤلفون: Antonella Amoruso, Adriano Gualandi, Luca Crescentini
المصدر: Remote Sensing, Vol 16, Iss 10, p 1717 (2024)
مصطلحات موضوعية: variational Bayesian independent component analysis, DInSAR time series, Campi Flegrei, Vesuvio, deformation source, Science
Relation: https://www.mdpi.com/2072-4292/16/10/1717; https://doaj.org/toc/2072-4292; https://doaj.org/article/11b6acd18e8f4aa281ad61e95737e820
-
2Academic Journal
المساهمون: Department of Physics and Astronomy, Alma Mater Studiorum, Universita` di Bologna, Viale Berti Pichat 6/2, Bologna, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia
مصطلحات موضوعية: Campi Flegrei, Hydrothermal fluids, Caldera, Uplift, Induced seismicity, Deformation source
وصف الملف: application/pdf
Relation: Journal of Volcanology and Geothermal Research; /443 (2023); Afanasyev, A., Costa, A., Chiodini, G., 2015. Investigation of hydrothermal activity at Campi Flegrei caldera using 3D numerical simulations: extension to high temperature processes. J. Volcanol. Geotherm. Res. 299, 68–77. ISSN 0377–0273. https://doi.org/10.1016/j.jvolgeores.2015.04.004. AGIP, 1987. Geologia e Geofisica del Sistema Geotermico dei Campi Flegrei. Servizi Centrali per l’Esplorazione, SERGMMESG, San Donato, p. 19. Aki, K., 1965. Maximum likelihood estimate of b in the formula log N = a − bM and its confidence limits. Bull. Earthquake Res. Inst. Tokyo Univ. 43, 237–239. Aki, K., Richards, P.G., 2002. Quantitative seismology, 2nd edition, 1. University Science Books. Amoruso, A., Crescentini, L., Linde, A.T., Sacks, I.S., Scarpa, R., Romano, P., 2007. A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei. Geophys. Res. Lett. 34, L22313. https://doi.org/10.1029/ 2007GL031644. Amoruso, A., Crescentini, L., Sabbetta, I., 2014. Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent (1980–2010) deformation history. J. Geophys. Res. Solid Earth 119, 858–879. https://doi.org/10.1002/ 2013JB010392. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., Natale, G.D., 2006. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys. Res. Lett. 33 (1) https://doi.org/10.1029/2005GL024904. Bejan, A., 1984. Convection Heat Transfer. Wiley. Belardinelli, M., Bonafede, M., Nespoli, M., 2019. Stress heterogeneities and failure mechanisms induced by temperature and pore-pressure increase in volcanic regions. Earth Planet. Sci. Lett. 525, 115765. https://doi.org/10.1016/j.epsl.2019.115765. Belardinelli, M.E., Nespoli, M., Bonafede, M., 2022. Stress changes caused by exsolution of magmatic fluids within an axi-symmetric inclusion. Geophys. J. Int. Ggac093 https://doi.org/10.1093/gji/ggac093. URL. Benussi, C., Belardinelli, M.E., Nespoli, M., 2023. How to model thick thermo-poroelastic inclusions. Bull. Geophys. Oceanogr. https://doi.org/10.4430/bgo00429. Berrino, G., 1994. Gravity changes induced by height-mass variations at the Campi Flegrei caldera. J. Volcanol. Geotherm. Res. 61 (3), 293–309. https://doi.org/ 10.1016/0377-0273(94)90010-8. International Conference on Active Volcanoes and Risk Mitigation. URL. http://www.sciencedirect.com/science/article/pii/0377027 394900108. Bevilacqua, A., De Martino, P., Giudicepietro, F., et al., 2022. Data analysis of the unsteadily accelerating GPS and seismic records at Campi Flegrei caldera from 2000 to 2020. Sci. Rep. 12, 19175. https://doi.org/10.1038/s41598-022-23628-5. Bianco, F., Del Pezzo, E., Saccorotti, G., Ventura, G., 2004. The role of hydrothermal fluids in triggering the July August 2000 seismic swarm at Campi Flegrei, Italy: evidence from seismological and mesostructural data. J. Volcanol. Geotherm. Res. 133 (1–4), 229–246. https://doi.org/10.1016/S0377-0273(03)00400-1. Biot, M.A., 1941. General theory of three-dimensional consolidation. J. Appl. Phys. 12 (2), 155–164. Bonafede, M., Dragoni, M., Quareni, F., 1986. Displacement and stress fields produced by a Centre of dilation and by a pressure source in a viscoelastic half-space: Application to the study of ground deformation and seismic activity at campi flegrei, Italy. Geophys. J. R. Astron. Soc. 87 (2), 455–485. Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M., Fiebig, J., 2007. The origin of the fumaroles of la solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 71 (12), 3040–3055. https://doi.org/10.1016/j.gca.2007.04.007. Calo, ` M., Tramelli, A., 2018. Anatomy of the Campi Flegrei caldera using enhanced seismic tomography models. Sci. Rep. 8 (16254) https://doi.org/10.1038/s41598- 018-34456-x. Carlino, S., Somma, R., Troise, C., Natale, G.D., 2012. The geothermal exploration of campanian volca- noes: Historical review and future development. Renew. Sust. Energ. Rev. 16 (1), 1004–1030. https://doi.org/10.1016/j.rser.2011.09.023. Carlino, S., Piochi, Monica, Tramelli, Anna, Mormone, Angela, Montanaro, Cristian, Scheu, Bettina, Klaus, Mayer, 2018. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy. J. Volcanol. Geotherm. Res. 357, 276–286. ISSN 0377–0273. https://doi.org/10.1016/j.jvolgeo res.2018.05.003. Chiodini, G., Avino, R., Caliro, S., Minopoli, C., 2011. Temperature and pressure gas geoindicators at the solfatara fumaroles (campi flegrei)’. Ann. Geophys. 54, 2. https://doi.org/10.4401/ag-5002, URL: http://hdl.handle.net/2122/7211. Chiodini, G., Vandemeulebrouck, J., Caliro, S., D’Auria, L., De Martino, P., Mangiacapra, A., Petrillo, Z., 2015. Evidence of thermal-driven processes triggering the 20052014 unrest at campi flegrei caldera. Earth Planet. Sci. Lett. 414, 58–67. URL: https://www.sciencedirect.com/science/article/pii/S0012821X15000333. Chiodini, G., Caliro, S., Avino, R., Bini, G., Giudicepietro, F., De Cesare, W., Ricciolino, P., Aiuppa, A., Cardellini, C., Petrillo, Z., Selva, J., Siniscalchi, A., Tripaldi, S., 2021. Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 414, 107245. https://doi.org/10.1016/j.epsl.2015.01.012. D’Auria, L., Martini, M., Esposito, A., Ricciolino, P., Giudicepietro, F., 2008. A unified 3D velocity model for the Neapolitan volcanic areas. In: Marzocchi, W., Zollo, A. (Eds.), Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes. INGV-DPC, Naples, Italy, pp. 375–390. D’ Auria, L., Giudicepietro, F., Aquino, I., Borriello, G., Del Gaudio, C., Lo Bascio, D., Ricco, C., 2011. Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010). J. Geophys. Res. Solid Earth 116 (B4). https://doi.org/10.1029/2010JB007837. D’Auria, L., Pepe, S., Castaldo, R., et al., 2015. Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci Rep 5, 13100. https://doi.org/10.1038/srep13100. De Martino, P., Dolce, M., Brandi, G., Scarpato, G., Tammaro, U., 2021. The Ground Deformation History of the Neapolitan Volcanic Area (Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019). Remote Sens. 13 (14), 2725. https://doi.org/10.3390/ rs13142725. De Natale, G., Troise, C., Pingue, F., 2001. A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera. J. Geodyn. 32, 487–517. https://doi. org/10.1016/S0264-3707(01)00045-X. De Siena, L., Del Pezzo, E., Bianco, F., 2010. Seismic attenuation imaging of Campi Flegrei: evidence of gas reservoirs, hydrothermal basins, and feeding systems. J. Geophys. Res. 115, B09312. https://doi.org/10.1029/2009JB006938. De Vivo, B., 2006. Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites, Vol. 9. Elsevier. Di Vito, M.A., Isaia, R., Orsi, G., Southon, J.D., Vita, S.D., d’Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91 (2–4), 221–246. https://doi. org/10.1016/S0377-0273(99)00037-2. Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241 (1226), 376–396. Heap, M.J., Baud, P., Meredith, P.G., Vinciguerra, S., Reuschl´e, T., 2014. The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling. Solid Earth 5, 25–44. https://doi.org/10.5194/se-5- 25-2014. Heap, M.J., Wadsworth, F.B., Heng, Z., Xu, T., Griffiths, L., Aguilar Velasco, A., Vair, E., Vistour, M., Reuschl, T., Troll, V.R., Deegan, F.M., Tang, C., 2021. The tensile strength of volcanic rocks: experiments and models. J. Volcanol. Geotherm. Res. 418, 107348. https://doi.org/10.1016/j.jvolgeores.2022.107576. Judenherc, S., Zollo, A., 2004. The bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J. Geophys. Res. Solid Earth 109 (B10). https://doi.org/10.1029/2003JB002876. La Rocca, M., Galluzzo, D., 2019. Focal mechanisms of recent seismicity at Campi Flegrei, Italy. J. Volcanol. Geotherm. Res. 388, 106687. https://doi.org/10.1016/j. jvolgeores.2019.106687. Lima, A., PBodnar, R.J., De Vivo, B., Spera, F., Belkin, H., 2021. Interpretation of recent unrest events (bradyseism) at Campi Flegrei, Napoli (Italy): Comparison of models based on cyclical hydrothermal events versus shallow magmatic intrusive events. Geofluids 1–16. https://doi.org/10.1155/2021/2000255. D’Auria, L., Massa, B., Cristiano, E., Gaudio, C.D., Giudicepietro, F., Ricciardi, G., Ricco, C., 2014. Retrieving the stress field within the Campi Flegrei caldera (southern Italy) through an integrated geodetical and seismological approach. Pure Appl. Geophys. 172 (11), 3247–3263. https://doi.org/10.1007/s00024-014-1004-7. de Lorenzo, S., Gasparini, P., Mongelli, F., Zollo, A., 2001. Thermal state of the Campi Flegrei caldera inferred from seismic attenuation tomography. J. Geodyn. 32, 467–486. https://doi.org/10.1016/S0264-3707(01)00044-8. Mantiloni, L., Nespoli, M., Belardinelli, M.E., Bonafede, M., 2020. Deformation and stress in hydrothermal regions: the case of a disk-shaped inclusion in a half-space. J. Volcanol. Geotherm. Res. 403, 107011. https://doi.org/10.1016/j. jvolgeores.2020.107011. McTigue, D.F., 1986. Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. 91 (B9), 9533–9542. Murru, M., Montuori, C., Console, R., Lisi, A., 2005. Mapping of the b value anomalies beneath Mt. Etna, Italy, during July–August 2001 lateral eruption. Geophys. Res. Lett. 32 (5) https://doi.org/10.1029/2004GL021545. Nespoli, M., Belardinelli, M.E., Bonafede, M., 2021. Stress and deformation induced in layered media by cylindrical thermo-poro-elastic sources: an application to campi flegrei (Italy). J. Volcanol. Geotherm. Res. 415, 107269. https://doi.org/10.1016/j. jvolgeores.2021.107269. Nespoli, M., Belardinelli, M.E., Cal, M., Tramelli, A., Bonafede, M., 2022. Deformation induced by distributions of single forces in a layered half-space. EFGRN/EFCMP. Comput. Geosci. 164, 105136. https://doi.org/10.1016/j.cageo.2022.105136. Nespoli, M., Belardinelli, M.E., Bonafede, M., 2023. Thermo-poro-viscoelastic response of a disc-shaped inclusion. Geophys. J. Int. 235, 135–149. https://doi.org/10.1093/gji/ ggad212. Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M., Isaia, R., Petrazzuoli, S., Ricciardi, G., Ricco, C., 1999. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 91 (2), 415–451. https://doi. org/10.1016/S0377-0273(99)00050-5. Piochi, M., Kilburn, C.R.J., Di Vito, M.A., et al., 2014. The volcanic and geothermally active Campi Flegrei caldera (2014): an integrated multidisciplinary image of its M. Nespoli et al.Journal of Volcanology and Geothermal Research 443 (2023) 107930 10 buried structure. Int. J. Earth Sci. (Geol. Rundsch.) 103, 401–421. https://doi.org/ 10.1007/s00531-013-0972-7. Piochi, M., Cantucci, B., Montegrossi, G., Currenti, G., 2021. Hydrothermal alteration at the san vito area of the campi flegrei geothermal system in Italy: mineral review and geochemical modeling. Minerals 2021 (11), 810. https://doi.org/10.3390/ min11080810. Rinaldi, A.P., Nespoli, M., 2017. TOUGH2-SEED: A coupled fluid flow and mechanicalstochastic approach to model injection-induced seismicity. Comput. Geosci. 108, 86–97. https://doi.org/10.1016/j.cageo.2016.12.003. TOUGH Symposium 2015: Recent Enhancements to the TOUGH Family of Codes and Coupled Flow and Geomechanics Processes Modeling. Sambridge, M., 1999. Geophysical inversion with a neighbourhood algorithm-II. Apprais-ing the ensemble. Geophys. J. Int. 138 (3), 727–746. https://doi.org/ 10.1046/j.1365-246X.1999.00876.x. Schorlemmer, D., Wiemer, S., Wyss, M., 2005. Variations in earthquake-size distribution across different stress regimes. Nature 437, 539–542. https://doi.org/10.1038/ nature04094. Selva, J., Orsi, G., Di Vito, M.A., Marzocchi, W., Sandri, L., 2012. Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Bull. Volcanol. 74, 497–510. https://doi.org/10.1007/s00445-011-0528-2. Shi, Y., Bolt, B.A., 1982. The standard error of the magnitude-frequency b value. Bull. Seismol. Soc. Am. 72 (5), 1677–1687. https://doi.org/10.1785/BSSA0720051677. Stissi, S.C., Currenti, G.M., Cannavo, F., Napoli, R., 2023. Evidence of poro-elastic inflation at the onset of the 2021 Vulcano Island unrest. Front. Earth Sci. Sec. Volcanol. 11 https://doi.org/10.3389/feart.2023.1179095. Todesco, M., 2009. Signals from the Campi Flegrei hydrothermal system: Role of a “magmatic” source of fluids. J. Geophys. Res. 114, B05201. https://doi.org/ 10.1029/2008JB006134. Todesco, M., 2021. Calderas breathing: Poroelastic ground deformation at campi flegrei (Italy). Front. Earth Sci. 9, 691. URL: https://doi.org/10.3389/feart.2021.702665. Tramelli, A., Godano, C., Ricciolino, P., Giudicepietro, F., Caliro, S., Orazi, M., De Martino, P., Chiodini, G., 2021. Statistics of seismicity to investigate the campi flegrei caldera unrest. Sci. Rep. 11 (1), 7211. https://doi.org/10.1038/s41598-021- 86506-6. Tramelli, A., Giudicepietro, F., Ricciolino, P., Chiodini, G., 2022. The seismicity of campi flegrei in the contest of an evolving long term unrest. Sci. Rep. 12 (1), 2900. https:// doi.org/10.1038/s41598-022-06928-8. Trasatti, E., Bonafede, M., Ferrari, C., Giunchi, C., Berrino, G., 2011. On deformation sources in volcanic areas: modeling the Campi Flegrei (Italy) 1982–84 unrest. Earth Planet. Sci. Lett. 306 (3–4),, 175–185. https://doi.org/10.1016/j.epsl.2011.03.033. Trasatti, E., Polcari, M., Bonafede, M., Stramondo, S., 2015. Geodetic constraints to the source mechanism of the 2011–2013 unrest at Campi Flegrei (Italy) caldera. Geophys. Res. Lett. 42 (10), 3847–3854. https://doi.org/10.1002/2015GL063621. Troiano, A., Di Giuseppe, M.G., Isaia, R., 2022. 3D structure of the Campi Flegrei caldera central sector reconstructed through short-period magnetotelluric imaging. Sci. Rep. 12, 20802. https://doi.org/10.1038/s41598-022-24998-6. Turcotte, D.L., 1989. Fractals in geology and geophysics. PAGEOPH 131, 171–196. https://doi.org/10.1007/BF00874486. Vilardo, G., Alessio, G., Luongo, G., 1991. Analysis of the magnitude-frequency distribution for the 19831984 earthquake activity of Campi Flegrei, Italy. J. Volcanol. Geotherm. Res. 48 (1), 115–125. https://doi.org/10.1016/0377-0273 (91)90037-Z. Vitale, S., Natale, J., 2023. Combined volcano-tectonic processes for the drowning of the Roman western coastal settlements at Campi Flegrei (southern Italy). Earth Planets Space 75, 38. https://doi.org/10.1186/s40623-023-01795-7. Wang, H.F., 2017. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press. Wiemer, S., Wyss, M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. In: Advances in Geophysics, 45. Elsevier, p. 259V. https://doi.org/10.1016/S0065-2687(02)80007-3. Wyss, M., Klein, F., Nagamine, K., Wiemer, S., 2001. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: evidence for the distribution of magma below Kilauea’s East rift zone. Journal of Volcanology and Geothermal Research 106 (1–2), 23–37.https. https://doi.org/10.1016/S0377-0273(00)00263-8. Wyss, M., Shimazaki, K., Wiemer, S., 1997. Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. J. Geophys. Res. Solid Earth 102 (B9), 20413–20422. https://doi.org/10.1029/97JB01074. Zencher, F., Bonafede, M., Stefansson, R., 2006. Near-lithostatic pore pressure at seismogenic depths: a thermoporoelastic model. Geophys. J. Int. 166 (3), 1318–1334. https://doi.org/10.1111/j.1365-246X.2006.03069.x.
-
3Academic Journal
المؤلفون: Antonella Amoruso, Luca Crescentini
المصدر: Remote Sensing; Volume 15; Issue 12; Pages: 3038
مصطلحات موضوعية: EOF analysis, DInSAR time series, Vesuvio, deformation source
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Earth Observation for Emergency Management; https://dx.doi.org/10.3390/rs15123038
الاتاحة: https://doi.org/10.3390/rs15123038
-
4Academic Journal
المؤلفون: Antonella Amoruso, Luca Crescentini
المصدر: Remote Sensing; Volume 14; Issue 22; Pages: 5698
مصطلحات موضوعية: Campi Flegrei caldera, SAR imagery, displacement time series, ground deformation, EOF analysis, deformation source
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Remote Sensing in Geology, Geomorphology and Hydrology; https://dx.doi.org/10.3390/rs14225698
الاتاحة: https://doi.org/10.3390/rs14225698
-
5Academic Journal
المؤلفون: Panagiotis Elias, Ioannis Spingos, George Kaviris, Andreas Karavias, Theodoros Gatsios, Vassilis Sakkas, Issaak Parcharidis
المصدر: Applied Sciences; Volume 11; Issue 13; Pages: 5947
مصطلحات موضوعية: seismic sequence, InSAR, seismic deformation source modelling, shallow earthquake
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Earth Sciences and Geography; https://dx.doi.org/10.3390/app11135947
الاتاحة: https://doi.org/10.3390/app11135947
-
6Academic Journal
المؤلفون: Raffaele Castaldo, Pietro Tizzani, Giuseppe Solaro
المصدر: Remote Sensing; Volume 13; Issue 12; Pages: 2298
مصطلحات موضوعية: Campi Flegrei caldera, ground deformation, finite element modeling, deformation source, time-dependent study, stress and strain field analysis
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Remote Sensing in Geology, Geomorphology and Hydrology; https://dx.doi.org/10.3390/rs13122298
الاتاحة: https://doi.org/10.3390/rs13122298
-
7Academic Journal
المؤلفون: Benussi, C, Belardinelli, ME, Nespoli, M
المساهمون: Benussi, C, Belardinelli, ME, Nespoli, M
مصطلحات موضوعية: deformation source, thickne, TPE inclusion, thermo-poro-elasticity, discretisation
وصف الملف: ELETTRONICO
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001079786500001; volume:2024; firstpage:1; lastpage:16; numberofpages:16; journal:BULLETIN OF GEOPHYSICS AND OCEANOGRAPHY; https://hdl.handle.net/11585/954742
-
8
المؤلفون: Barone A., Fedi M., Pepe S., Solaro G., Tizzani P., Castaldo R.
المساهمون: Barone, A., Fedi, M., Pepe, S., Solaro, G., Tizzani, P., Castaldo, R.
المصدر: Frontiers in Earth Science. 10
مصطلحات موضوعية: General Earth and Planetary Sciences, multi-scale methods, volcano deformation, source modeling, DInSAR measurements, signal analysis, Uturuncu volcano, Okmok volcano, Fernandina volcano
-
9Academic Journal
المؤلفون: Bonafede, M., Trasatti, E., Giunchi, C., Berrino, G.
المساهمون: Bonafede, M., Department of Physics, Section of Geophysics, University of Bologna, Italy, Trasatti, E., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia, Giunchi, C., Berrino, G., Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
مصطلحات موضوعية: deformation source, Campi Flegrei, 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation, 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models, 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
Relation: EGU General Assembly 2010; http://hdl.handle.net/2122/6728
الاتاحة: http://hdl.handle.net/2122/6728
-
10Academic Journal
المؤلفون: Takuya NISHIMURA
المصدر: Journal of Geography (Chigaku Zasshi). 2002, 111(2):166
-
11Dissertation/ Thesis
المؤلفون: Hotta, Kohei
Thesis Advisors: 井口, 正人, 平原, 和朗, 大倉, 敬宏, 堀田, 耕平, ホッタ, コウヘイ
مصطلحات موضوعية: Sakurajima Volcano, GNSS, tilt and strain, deformation source model, magma intrusion, 400
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/2433/215323
-
12
المؤلفون: Hotta, Kohei
المساهمون: 井口, 正人, 平原, 和朗, 大倉, 敬宏
مصطلحات موضوعية: GNSS, tilt and strain, Sakurajima Volcano, deformation source model, magma intrusion
وصف الملف: application/pdf
-
13
المؤلفون: M. Blanco, José Jesús Martínez Díaz, Alberto Tomás Caselli, Pablo A. Euillades, Maria Laura Velez
المصدر: Journal of Volcanology and Geothermal Research. 202:117-126
مصطلحات موضوعية: geography, geography.geographical_feature_category, SUBSIDENCE, SBAS-DINSAR, GENETIC ALGORITHM, Ciencias de la Tierra y relacionadas con el Medio Ambiente, Vulcanología, Geophysics, Volcano, Geochemistry and Petrology, VOLCANIC-HYDROTHERMAL SYSTEM, Interferometric synthetic aperture radar, COPAHUE VOLCANO, Geomorphology, CIENCIAS NATURALES Y EXACTAS, Seismology, Geology, DEFORMATION SOURCE
وصف الملف: application/pdf
-
14Academic Journal
المساهمون: Ferrari, Claudio, Bonafede, Maurizio, Belardinelli, MARIA ELINA
مصطلحات موضوعية: C++, Object-oriented programming, Elastic half-space, Deformation source models, Boundary element methods
وصف الملف: STAMPA
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000384855300013; volume:96; firstpage:136; lastpage:146; numberofpages:11; journal:COMPUTERS & GEOSCIENCES; http://hdl.handle.net/11585/560741; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84983450983
-
15
المؤلفون: Maurizio Bonafede, Claudio Ferrari, Maria Elina Belardinelli
المساهمون: Ferrari, Claudio, Bonafede, Maurizio, Belardinelli, MARIA ELINA
مصطلحات موضوعية: Object-oriented programming, 010504 meteorology & atmospheric sciences, Computer science, Interface (Java), Boundary (topology), Geodetic datum, Deformation (meteorology), 010502 geochemistry & geophysics, 01 natural sciences, Inversion (discrete mathematics), Computational science, Set (abstract data type), C++, Object-oriented programming, Elastic half-space, Deformation source models, Boundary element methods, Free surface, Computers in Earth Sciences, 0105 earth and related environmental sciences, Information Systems
وصف الملف: STAMPA
-
16
المؤلفون: Ansari, Homa, Goel, Kanika, Parizzi, Alessandro, Sudhaus, Henriette, Adam, Nico, Eineder, Michael
مصطلحات موضوعية: InSAR, Tandem-L, Error Analysis, Deformation Source Modeling
-
17Dissertation/ Thesis
المؤلفون: Bathke, Hannes
مصطلحات موضوعية: InSAR, Deformationsquellenmodellierung, Llaima Vulkan, Tendürek Vulkan, Ringstörungen, deformation source modeling, Llaima volcano, Tendürek volcano, ring-fault, Earth sciences
وصف الملف: application/pdf
-
18Academic Journal
المؤلفون: Velez, M.L., Euillades, P., Caselli, A., Blanco, M., Díaz, J.M.
مصطلحات موضوعية: Copahue volcano, Deformation source, Genetic algorithm, SBAS-DInSAR, Subsidence, Volcanic-hydrothermal system, Active volcanoes, Argentina, Best fit, Conceptual model, D-inSAR, Deformation analysis, Deformation rates, Differential synthetic aperture radar, ENVISAT, Half-space, Hydrothermal system, InSAR data, Interferograms, Inverse modelling, Magmatic fluids, Mean velocities, Optimization tools, Phreatic, Pressure source, Radar image, Volcanic complex, Volume change, Deformation, Genetic algorithms
-
19Academic Journal
المؤلفون: Velez, Maria Laura, Euillades, Pablo Andrés, Caselli, Alberto Tomás, Blanco, Mauro Hugo, Díaz, Jose Martínez
مصطلحات موضوعية: Copahue Volcano, Deformation Source, Genetic Algorithm, Sbas-Dinsar, Subsidence, Volcanic-Hydrothermal System, https://purl.org/becyt/ford/1.5, https://purl.org/becyt/ford/1
وصف الملف: application/pdf
Relation: info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377027311000394; http://hdl.handle.net/11336/68449; Velez, Maria Laura; Euillades, Pablo Andrés; Caselli, Alberto Tomás; Blanco, Mauro Hugo; Díaz, Jose Martínez; Deformation of Copahue volcano: Inversion of InSAR data using a genetic algorithm; Elsevier Science; Journal of Volcanology and Geothermal Research; 202; 1-2; 4-2011; 117-126; CONICET Digital; CONICET
الاتاحة: http://hdl.handle.net/11336/68449
-
20Dissertation/ Thesis
المؤلفون: Hotta, Kohei
المساهمون: 井口, 正人, 平原, 和朗, 大倉, 敬宏, 堀田, 耕平, ホッタ, コウヘイ
مصطلحات موضوعية: Sakurajima Volcano, GNSS, tilt and strain, deformation source model, magma intrusion
Time: 400
وصف الملف: application/pdf
Relation: http://hdl.handle.net/2433/215323; 14301甲第19510号; 14301