يعرض 1 - 20 نتائج من 43 نتيجة بحث عن '"deformation source"', وقت الاستعلام: 0.73s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Department of Physics and Astronomy, Alma Mater Studiorum, Universita` di Bologna, Viale Berti Pichat 6/2, Bologna, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia

    وصف الملف: application/pdf

    Relation: Journal of Volcanology and Geothermal Research; /443 (2023); Afanasyev, A., Costa, A., Chiodini, G., 2015. Investigation of hydrothermal activity at Campi Flegrei caldera using 3D numerical simulations: extension to high temperature processes. J. Volcanol. Geotherm. Res. 299, 68–77. ISSN 0377–0273. https://doi.org/10.1016/j.jvolgeores.2015.04.004. AGIP, 1987. Geologia e Geofisica del Sistema Geotermico dei Campi Flegrei. Servizi Centrali per l’Esplorazione, SERGMMESG, San Donato, p. 19. Aki, K., 1965. Maximum likelihood estimate of b in the formula log N = a − bM and its confidence limits. Bull. Earthquake Res. Inst. Tokyo Univ. 43, 237–239. Aki, K., Richards, P.G., 2002. Quantitative seismology, 2nd edition, 1. University Science Books. Amoruso, A., Crescentini, L., Linde, A.T., Sacks, I.S., Scarpa, R., Romano, P., 2007. A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei. Geophys. Res. Lett. 34, L22313. https://doi.org/10.1029/ 2007GL031644. Amoruso, A., Crescentini, L., Sabbetta, I., 2014. Paired deformation sources of the Campi Flegrei caldera (Italy) required by recent (1980–2010) deformation history. J. Geophys. Res. Solid Earth 119, 858–879. https://doi.org/10.1002/ 2013JB010392. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., Natale, G.D., 2006. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys. Res. Lett. 33 (1) https://doi.org/10.1029/2005GL024904. Bejan, A., 1984. Convection Heat Transfer. Wiley. Belardinelli, M., Bonafede, M., Nespoli, M., 2019. Stress heterogeneities and failure mechanisms induced by temperature and pore-pressure increase in volcanic regions. Earth Planet. Sci. Lett. 525, 115765. https://doi.org/10.1016/j.epsl.2019.115765. Belardinelli, M.E., Nespoli, M., Bonafede, M., 2022. Stress changes caused by exsolution of magmatic fluids within an axi-symmetric inclusion. Geophys. J. Int. Ggac093 https://doi.org/10.1093/gji/ggac093. URL. Benussi, C., Belardinelli, M.E., Nespoli, M., 2023. How to model thick thermo-poroelastic inclusions. Bull. Geophys. Oceanogr. https://doi.org/10.4430/bgo00429. Berrino, G., 1994. Gravity changes induced by height-mass variations at the Campi Flegrei caldera. J. Volcanol. Geotherm. Res. 61 (3), 293–309. https://doi.org/ 10.1016/0377-0273(94)90010-8. International Conference on Active Volcanoes and Risk Mitigation. URL. http://www.sciencedirect.com/science/article/pii/0377027 394900108. Bevilacqua, A., De Martino, P., Giudicepietro, F., et al., 2022. Data analysis of the unsteadily accelerating GPS and seismic records at Campi Flegrei caldera from 2000 to 2020. Sci. Rep. 12, 19175. https://doi.org/10.1038/s41598-022-23628-5. Bianco, F., Del Pezzo, E., Saccorotti, G., Ventura, G., 2004. The role of hydrothermal fluids in triggering the July August 2000 seismic swarm at Campi Flegrei, Italy: evidence from seismological and mesostructural data. J. Volcanol. Geotherm. Res. 133 (1–4), 229–246. https://doi.org/10.1016/S0377-0273(03)00400-1. Biot, M.A., 1941. General theory of three-dimensional consolidation. J. Appl. Phys. 12 (2), 155–164. Bonafede, M., Dragoni, M., Quareni, F., 1986. Displacement and stress fields produced by a Centre of dilation and by a pressure source in a viscoelastic half-space: Application to the study of ground deformation and seismic activity at campi flegrei, Italy. Geophys. J. R. Astron. Soc. 87 (2), 455–485. Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M., Fiebig, J., 2007. The origin of the fumaroles of la solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta 71 (12), 3040–3055. https://doi.org/10.1016/j.gca.2007.04.007. Calo, ` M., Tramelli, A., 2018. Anatomy of the Campi Flegrei caldera using enhanced seismic tomography models. Sci. Rep. 8 (16254) https://doi.org/10.1038/s41598- 018-34456-x. Carlino, S., Somma, R., Troise, C., Natale, G.D., 2012. The geothermal exploration of campanian volca- noes: Historical review and future development. Renew. Sust. Energ. Rev. 16 (1), 1004–1030. https://doi.org/10.1016/j.rser.2011.09.023. Carlino, S., Piochi, Monica, Tramelli, Anna, Mormone, Angela, Montanaro, Cristian, Scheu, Bettina, Klaus, Mayer, 2018. Field-scale permeability and temperature of volcanic crust from borehole data: Campi Flegrei, southern Italy. J. Volcanol. Geotherm. Res. 357, 276–286. ISSN 0377–0273. https://doi.org/10.1016/j.jvolgeo res.2018.05.003. Chiodini, G., Avino, R., Caliro, S., Minopoli, C., 2011. Temperature and pressure gas geoindicators at the solfatara fumaroles (campi flegrei)’. Ann. Geophys. 54, 2. https://doi.org/10.4401/ag-5002, URL: http://hdl.handle.net/2122/7211. Chiodini, G., Vandemeulebrouck, J., Caliro, S., D’Auria, L., De Martino, P., Mangiacapra, A., Petrillo, Z., 2015. Evidence of thermal-driven processes triggering the 20052014 unrest at campi flegrei caldera. Earth Planet. Sci. Lett. 414, 58–67. URL: https://www.sciencedirect.com/science/article/pii/S0012821X15000333. Chiodini, G., Caliro, S., Avino, R., Bini, G., Giudicepietro, F., De Cesare, W., Ricciolino, P., Aiuppa, A., Cardellini, C., Petrillo, Z., Selva, J., Siniscalchi, A., Tripaldi, S., 2021. Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 414, 107245. https://doi.org/10.1016/j.epsl.2015.01.012. D’Auria, L., Martini, M., Esposito, A., Ricciolino, P., Giudicepietro, F., 2008. A unified 3D velocity model for the Neapolitan volcanic areas. In: Marzocchi, W., Zollo, A. (Eds.), Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes. INGV-DPC, Naples, Italy, pp. 375–390. D’ Auria, L., Giudicepietro, F., Aquino, I., Borriello, G., Del Gaudio, C., Lo Bascio, D., Ricco, C., 2011. Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010). J. Geophys. Res. Solid Earth 116 (B4). https://doi.org/10.1029/2010JB007837. D’Auria, L., Pepe, S., Castaldo, R., et al., 2015. Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci Rep 5, 13100. https://doi.org/10.1038/srep13100. De Martino, P., Dolce, M., Brandi, G., Scarpato, G., Tammaro, U., 2021. The Ground Deformation History of the Neapolitan Volcanic Area (Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019). Remote Sens. 13 (14), 2725. https://doi.org/10.3390/ rs13142725. De Natale, G., Troise, C., Pingue, F., 2001. A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera. J. Geodyn. 32, 487–517. https://doi. org/10.1016/S0264-3707(01)00045-X. De Siena, L., Del Pezzo, E., Bianco, F., 2010. Seismic attenuation imaging of Campi Flegrei: evidence of gas reservoirs, hydrothermal basins, and feeding systems. J. Geophys. Res. 115, B09312. https://doi.org/10.1029/2009JB006938. De Vivo, B., 2006. Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites, Vol. 9. Elsevier. Di Vito, M.A., Isaia, R., Orsi, G., Southon, J.D., Vita, S.D., d’Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91 (2–4), 221–246. https://doi. org/10.1016/S0377-0273(99)00037-2. Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241 (1226), 376–396. Heap, M.J., Baud, P., Meredith, P.G., Vinciguerra, S., Reuschl´e, T., 2014. The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling. Solid Earth 5, 25–44. https://doi.org/10.5194/se-5- 25-2014. Heap, M.J., Wadsworth, F.B., Heng, Z., Xu, T., Griffiths, L., Aguilar Velasco, A., Vair, E., Vistour, M., Reuschl, T., Troll, V.R., Deegan, F.M., Tang, C., 2021. The tensile strength of volcanic rocks: experiments and models. J. Volcanol. Geotherm. Res. 418, 107348. https://doi.org/10.1016/j.jvolgeores.2022.107576. Judenherc, S., Zollo, A., 2004. The bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J. Geophys. Res. Solid Earth 109 (B10). https://doi.org/10.1029/2003JB002876. La Rocca, M., Galluzzo, D., 2019. Focal mechanisms of recent seismicity at Campi Flegrei, Italy. J. Volcanol. Geotherm. Res. 388, 106687. https://doi.org/10.1016/j. jvolgeores.2019.106687. Lima, A., PBodnar, R.J., De Vivo, B., Spera, F., Belkin, H., 2021. Interpretation of recent unrest events (bradyseism) at Campi Flegrei, Napoli (Italy): Comparison of models based on cyclical hydrothermal events versus shallow magmatic intrusive events. Geofluids 1–16. https://doi.org/10.1155/2021/2000255. D’Auria, L., Massa, B., Cristiano, E., Gaudio, C.D., Giudicepietro, F., Ricciardi, G., Ricco, C., 2014. Retrieving the stress field within the Campi Flegrei caldera (southern Italy) through an integrated geodetical and seismological approach. Pure Appl. Geophys. 172 (11), 3247–3263. https://doi.org/10.1007/s00024-014-1004-7. de Lorenzo, S., Gasparini, P., Mongelli, F., Zollo, A., 2001. Thermal state of the Campi Flegrei caldera inferred from seismic attenuation tomography. J. Geodyn. 32, 467–486. https://doi.org/10.1016/S0264-3707(01)00044-8. Mantiloni, L., Nespoli, M., Belardinelli, M.E., Bonafede, M., 2020. Deformation and stress in hydrothermal regions: the case of a disk-shaped inclusion in a half-space. J. Volcanol. Geotherm. Res. 403, 107011. https://doi.org/10.1016/j. jvolgeores.2020.107011. McTigue, D.F., 1986. Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. 91 (B9), 9533–9542. Murru, M., Montuori, C., Console, R., Lisi, A., 2005. Mapping of the b value anomalies beneath Mt. Etna, Italy, during July–August 2001 lateral eruption. Geophys. Res. Lett. 32 (5) https://doi.org/10.1029/2004GL021545. Nespoli, M., Belardinelli, M.E., Bonafede, M., 2021. Stress and deformation induced in layered media by cylindrical thermo-poro-elastic sources: an application to campi flegrei (Italy). J. Volcanol. Geotherm. Res. 415, 107269. https://doi.org/10.1016/j. jvolgeores.2021.107269. Nespoli, M., Belardinelli, M.E., Cal, M., Tramelli, A., Bonafede, M., 2022. Deformation induced by distributions of single forces in a layered half-space. EFGRN/EFCMP. Comput. Geosci. 164, 105136. https://doi.org/10.1016/j.cageo.2022.105136. Nespoli, M., Belardinelli, M.E., Bonafede, M., 2023. Thermo-poro-viscoelastic response of a disc-shaped inclusion. Geophys. J. Int. 235, 135–149. https://doi.org/10.1093/gji/ ggad212. Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M., Isaia, R., Petrazzuoli, S., Ricciardi, G., Ricco, C., 1999. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 91 (2), 415–451. https://doi. org/10.1016/S0377-0273(99)00050-5. Piochi, M., Kilburn, C.R.J., Di Vito, M.A., et al., 2014. The volcanic and geothermally active Campi Flegrei caldera (2014): an integrated multidisciplinary image of its M. Nespoli et al.Journal of Volcanology and Geothermal Research 443 (2023) 107930 10 buried structure. Int. J. Earth Sci. (Geol. Rundsch.) 103, 401–421. https://doi.org/ 10.1007/s00531-013-0972-7. Piochi, M., Cantucci, B., Montegrossi, G., Currenti, G., 2021. Hydrothermal alteration at the san vito area of the campi flegrei geothermal system in Italy: mineral review and geochemical modeling. Minerals 2021 (11), 810. https://doi.org/10.3390/ min11080810. Rinaldi, A.P., Nespoli, M., 2017. TOUGH2-SEED: A coupled fluid flow and mechanicalstochastic approach to model injection-induced seismicity. Comput. Geosci. 108, 86–97. https://doi.org/10.1016/j.cageo.2016.12.003. TOUGH Symposium 2015: Recent Enhancements to the TOUGH Family of Codes and Coupled Flow and Geomechanics Processes Modeling. Sambridge, M., 1999. Geophysical inversion with a neighbourhood algorithm-II. Apprais-ing the ensemble. Geophys. J. Int. 138 (3), 727–746. https://doi.org/ 10.1046/j.1365-246X.1999.00876.x. Schorlemmer, D., Wiemer, S., Wyss, M., 2005. Variations in earthquake-size distribution across different stress regimes. Nature 437, 539–542. https://doi.org/10.1038/ nature04094. Selva, J., Orsi, G., Di Vito, M.A., Marzocchi, W., Sandri, L., 2012. Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Bull. Volcanol. 74, 497–510. https://doi.org/10.1007/s00445-011-0528-2. Shi, Y., Bolt, B.A., 1982. The standard error of the magnitude-frequency b value. Bull. Seismol. Soc. Am. 72 (5), 1677–1687. https://doi.org/10.1785/BSSA0720051677. Stissi, S.C., Currenti, G.M., Cannavo, F., Napoli, R., 2023. Evidence of poro-elastic inflation at the onset of the 2021 Vulcano Island unrest. Front. Earth Sci. Sec. Volcanol. 11 https://doi.org/10.3389/feart.2023.1179095. Todesco, M., 2009. Signals from the Campi Flegrei hydrothermal system: Role of a “magmatic” source of fluids. J. Geophys. Res. 114, B05201. https://doi.org/ 10.1029/2008JB006134. Todesco, M., 2021. Calderas breathing: Poroelastic ground deformation at campi flegrei (Italy). Front. Earth Sci. 9, 691. URL: https://doi.org/10.3389/feart.2021.702665. Tramelli, A., Godano, C., Ricciolino, P., Giudicepietro, F., Caliro, S., Orazi, M., De Martino, P., Chiodini, G., 2021. Statistics of seismicity to investigate the campi flegrei caldera unrest. Sci. Rep. 11 (1), 7211. https://doi.org/10.1038/s41598-021- 86506-6. Tramelli, A., Giudicepietro, F., Ricciolino, P., Chiodini, G., 2022. The seismicity of campi flegrei in the contest of an evolving long term unrest. Sci. Rep. 12 (1), 2900. https:// doi.org/10.1038/s41598-022-06928-8. Trasatti, E., Bonafede, M., Ferrari, C., Giunchi, C., Berrino, G., 2011. On deformation sources in volcanic areas: modeling the Campi Flegrei (Italy) 1982–84 unrest. Earth Planet. Sci. Lett. 306 (3–4),, 175–185. https://doi.org/10.1016/j.epsl.2011.03.033. Trasatti, E., Polcari, M., Bonafede, M., Stramondo, S., 2015. Geodetic constraints to the source mechanism of the 2011–2013 unrest at Campi Flegrei (Italy) caldera. Geophys. Res. Lett. 42 (10), 3847–3854. https://doi.org/10.1002/2015GL063621. Troiano, A., Di Giuseppe, M.G., Isaia, R., 2022. 3D structure of the Campi Flegrei caldera central sector reconstructed through short-period magnetotelluric imaging. Sci. Rep. 12, 20802. https://doi.org/10.1038/s41598-022-24998-6. Turcotte, D.L., 1989. Fractals in geology and geophysics. PAGEOPH 131, 171–196. https://doi.org/10.1007/BF00874486. Vilardo, G., Alessio, G., Luongo, G., 1991. Analysis of the magnitude-frequency distribution for the 19831984 earthquake activity of Campi Flegrei, Italy. J. Volcanol. Geotherm. Res. 48 (1), 115–125. https://doi.org/10.1016/0377-0273 (91)90037-Z. Vitale, S., Natale, J., 2023. Combined volcano-tectonic processes for the drowning of the Roman western coastal settlements at Campi Flegrei (southern Italy). Earth Planets Space 75, 38. https://doi.org/10.1186/s40623-023-01795-7. Wang, H.F., 2017. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press. Wiemer, S., Wyss, M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. In: Advances in Geophysics, 45. Elsevier, p. 259V. https://doi.org/10.1016/S0065-2687(02)80007-3. Wyss, M., Klein, F., Nagamine, K., Wiemer, S., 2001. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: evidence for the distribution of magma below Kilauea’s East rift zone. Journal of Volcanology and Geothermal Research 106 (1–2), 23–37.https. https://doi.org/10.1016/S0377-0273(00)00263-8. Wyss, M., Shimazaki, K., Wiemer, S., 1997. Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. J. Geophys. Res. Solid Earth 102 (B9), 20413–20422. https://doi.org/10.1029/97JB01074. Zencher, F., Bonafede, M., Stefansson, R., 2006. Near-lithostatic pore pressure at seismogenic depths: a thermoporoelastic model. Geophys. J. Int. 166 (3), 1318–1334. https://doi.org/10.1111/j.1365-246X.2006.03069.x.

  3. 3
    Academic Journal

    المؤلفون: Antonella Amoruso, Luca Crescentini

    المصدر: Remote Sensing; Volume 15; Issue 12; Pages: 3038

    مصطلحات موضوعية: EOF analysis, DInSAR time series, Vesuvio, deformation source

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Earth Observation for Emergency Management; https://dx.doi.org/10.3390/rs15123038

  4. 4
    Academic Journal

    المؤلفون: Antonella Amoruso, Luca Crescentini

    المصدر: Remote Sensing; Volume 14; Issue 22; Pages: 5698

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Remote Sensing in Geology, Geomorphology and Hydrology; https://dx.doi.org/10.3390/rs14225698

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المصدر: Remote Sensing; Volume 13; Issue 12; Pages: 2298

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Remote Sensing in Geology, Geomorphology and Hydrology; https://dx.doi.org/10.3390/rs13122298

  7. 7
    Academic Journal

    المؤلفون: Benussi, C, Belardinelli, ME, Nespoli, M

    المساهمون: Benussi, C, Belardinelli, ME, Nespoli, M

    وصف الملف: ELETTRONICO

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001079786500001; volume:2024; firstpage:1; lastpage:16; numberofpages:16; journal:BULLETIN OF GEOPHYSICS AND OCEANOGRAPHY; https://hdl.handle.net/11585/954742

  8. 8
  9. 9
    Academic Journal

    المساهمون: Bonafede, M., Department of Physics, Section of Geophysics, University of Bologna, Italy, Trasatti, E., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia, Giunchi, C., Berrino, G., Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia

    Relation: EGU General Assembly 2010; http://hdl.handle.net/2122/6728

  10. 10
    Academic Journal
  11. 11
    Dissertation/ Thesis
  12. 12
  13. 13
  14. 14
    Academic Journal

    المساهمون: Ferrari, Claudio, Bonafede, Maurizio, Belardinelli, MARIA ELINA

    وصف الملف: STAMPA

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000384855300013; volume:96; firstpage:136; lastpage:146; numberofpages:11; journal:COMPUTERS & GEOSCIENCES; http://hdl.handle.net/11585/560741; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84983450983

  15. 15
  16. 16
  17. 17
    Dissertation/ Thesis
  18. 18
  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377027311000394; http://hdl.handle.net/11336/68449; Velez, Maria Laura; Euillades, Pablo Andrés; Caselli, Alberto Tomás; Blanco, Mauro Hugo; Díaz, Jose Martínez; Deformation of Copahue volcano: Inversion of InSAR data using a genetic algorithm; Elsevier Science; Journal of Volcanology and Geothermal Research; 202; 1-2; 4-2011; 117-126; CONICET Digital; CONICET

  20. 20
    Dissertation/ Thesis