يعرض 1 - 20 نتائج من 36 نتيجة بحث عن '"crecimiento de los árboles"', وقت الاستعلام: 0.79s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: electronico

    Relation: Este estudio está financiado por los contratos de investigación establecidos entre el Instituto Valenciano de Investigaciones Agrarias y el Institut de Recerca i Tecnología Agroalimentaries (IRTA) y del IRTA con Eurochem Agro Iberia, S.L.; Quinones, A., Rodríguez-Carretero, I., Morales-Alfaro, J., Pascual-Roca, M. & i Rufat, J. (2023). Fraccionamiento de la materia seca y del nitrógeno en olivo superintensivo (II). Vida rural, 530, 32-38.; https://hdl.handle.net/20.500.11939/8597

  2. 2
    Academic Journal
  3. 3
    Dissertation/ Thesis
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
  8. 8
    Dissertation/ Thesis

    المؤلفون: Jaramillo Mejia, Paola Andrea

    المساهمون: Duque Montoya, Alvaro, Zuleta, Daniel, Conservación, Uso y Biodiversidad, Zuleta, Daniel 0000-0001-9832-6188

    جغرافية الموضوع: Amazonas, Colombia

    وصف الملف: xviii, 38 páginas; application/pdf

    Relation: RedCol; LaReferencia; Barton, K. (2022). Package ‘ MuMIn .’ 1.; Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01; Bauman, D., Fortunel, C., Delhaye, G., Malhi, Y., Cernusak, L. A., Bentley, L. P., Rifai, S. W., Aguirre-Gutiérrez, J., Menor, I. O., Phillips, O. L., McNellis, B. E., Bradford, M., Laurance, S. G. W., Hutchinson, M. F., Dempsey, R., Santos-Andrade, P. E., Ninantay-Rivera, H. R., Chambi Paucar, J. R., & McMahon, S. M. (2022). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608(7923), 528–533. https://doi.org/10.1038/s41586-022-04737-7; Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261–266. https://doi.org/10.1126/science.aat7631; Chamorro, C. (1989). Biologia de los suelos del Parque Nacional Natural Amacayacu, y zonas adjacentes, Amazonas-Colombia.; Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366.; Chuyong, G. B., Kenfack, D., Harms, K. E., Thomas, D. W., Condit, R., & Comita, L. S. (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212(8), 1363–1374. https://doi.org/10.1007/s11258-011-9912-4; Comita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.x; Comita, L. S., & Engelbrecht, B. M. J. (2009). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. 90(10), 2755–2765.; Condit. (1998). Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots.; Condit, R. (1998). Tropical forest census plot. In Springer-verlag: Vol. CONDIT, R.; Condit, Richard, Hubbell, S. P., & Foster, R. B. (1993). Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Forest Ecology and Management, 62(1–4), 123–143. https://doi.org/10.1016/0378-1127(93)90046-P; Condit, Richard, Hubbell, S. P., & Foster, R. B. (1995). Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65(4), 419–439. https://doi.org/10.2307/2963497; Condit, Richard, Lao, S., Singh, A., Esufali, S., & Dolins, S. (2014). Data and database standards for permanent forest plots in a global network. Forest Ecology and Management, 316, 21–31.; Condit, Richard, Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science, 295(5555), 666–669. https://doi.org/10.1126/science.1066854; Cosme, L. H. M., Schietti, J., Costa, F. R. C., & Oliveira, R. S. (2017). The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 215(1), 113–125. https://doi.org/10.1111/nph.14508; Costa, F., Schietti, J., Stark, S. C., & Smith, M. N. (2022). The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist. https://doi.org/10.1111/nph.17914; Cushman, K. C., Bunyavejchewin, S., Cárdenas, D., Condit, R., Davies, S. J., Duque, Á., Hubbell, S. P., Kiratiprayoon, S., Lum, S. K. Y., & Muller-Landau, H. C. (2021). Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 53(5), 1442–1453. https://doi.org/10.1111/btp.12994; Davies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. (2021). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253(December 2020). https://doi.org/10.1016/j.biocon.2020.108907; DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13(2), 77–81.; Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172–13177. https://doi.org/10.1073/pnas.1421010112; Duque, A., Muller-landau, H. C., Valencia, R., Cardenas, D., Davies, S., Oliveira, A. De, Romero-saltos, H., & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure , diversity , and dominance from three large. 669–686. https://doi.org/10.1007/s10531-016-1265-9; Esteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. (2021). The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229(4), 1995–2006. https://doi.org/10.1111/nph.17005; Feeley, K. J., Rehm, E. M., & Machovina, B. (2012). perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2). https://doi.org/10.21425/f5fbg12621; Feeley, K. J., & Zuleta, D. (2022). Changing forests under climate change. Nature Plants, 8(9), 984–985. https://doi.org/10.1038/s41477-022-01228-5; Fortunel, C., McFadden, I. R., Valencia, R., & Kraft, N. J. B. (2019). Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 51(3), 304–310. https://doi.org/10.1111/btp.12643; Fortunel, C., Timothy Paine, C. E., Fine, P. V. A., Mesones, I., Goret, J.-Y., Burban, B., Cazal, J., & Baraloto, C. (2016). There ’ s no place like home : seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecology Letters, 1256–1266. https://doi.org/10.1111/ele.12661; Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.x; Harms, K. E., Wright, S. J., Caldero, O., & Herre, E. A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. 30(1997), 493–495.; Holdridge, L. R. (1978). Ecología : basada en zonas de vida. San José [Costa Rica] IICA 1978. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000741904&lang=es&site=eds-live; Hoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4; Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography.; Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/science.283.5401.554; Itoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Stuart, J. D., & Yamakura, T. (2012). The Effect of Habitat Association and Edaphic Conditions on Tree Mortality during El Niño-induced Drought in a Bornean Dipterocarp Forest. 44(5), 606–617.; Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21(7), 989–1000. https://doi.org/10.1111/ele.12964; Kenfack, D., Chuyong, G. B., Condit, R., Russo, S. E., & Thomas, D. W. (2014). Demographic variation and habitat specialization of tree species in a diverse tropical forest of cameroon. Forest Ecosystems, 1(1), 1–13. https://doi.org/10.1186/s40663-014-0022-3; Lenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.v069.i01; Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., & Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20610–20615. https://doi.org/10.1073/pnas.0804619106; Mazerolle, M. J. (2020). Model selection and multimodel inference using the AICcmodavg package. 1–22.; McDowell, J. M., & Simon, S. A. (2008). Molecular diversity at the plant-pathogen interface. Developmental and Comparative Immunology, 32(7), 736–744. https://doi.org/10.1016/j.dci.2007.11.005; McDowell, N., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3(5), 294–308. https://doi.org/10.1038/s43017-022-00272-1; Metcalf, C. J. E., Clark, J. S., & Clark, D. A. (2009). Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 25(1), 1–12. https://doi.org/DOI:10.1017/S0266467408005646; Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., & Poorter, L. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221(3), 1457–1465. https://doi.org/10.1111/nph.15463; Oliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266; Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña-Claros, M., Sterck, F., Villegas, Z., & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x; Russo, S. E., Brown, P., Tan, S., & Davies, S. J. (2008). Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 192–203. https://doi.org/10.1111/j.1365-2745.2007.01330.x; Russo, S. E., Davies, S. J., King, D. A., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93(5), 879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.x; Russo, S. E., McMahon, S. M., Detto, M., Ledder, G., Wright, S. J., Condit, R. S., Davies, S. J., Ashton, P. S., Bunyavejchewin, S., Chang-Yang, C. H., Ediriweera, S., Ewango, C. E. N., Fletcher, C., Foster, R. B., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Hart, T., Hsieh, C. F., Hubbell, S. P., … Zimmerman, J. K. (2021). The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology and Evolution, 5(2), 174–183. https://doi.org/10.1038/s41559-020-01340-9; Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218(3), 1015–1024. https://doi.org/10.1111/nph.15058; Sousa, T. R., Schietti, J., Coelho de Souza, F., Esquivel-Muelbert, A., Ribeiro, I. O., Emílio, T., Pequeno, P. A. C. L., Phillips, O., & Costa, F. R. C. (2020). Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 108(5), 2070–2082. https://doi.org/10.1111/1365-2745.13377; Valencia, R., Condit, R., Muller-landau, H. C., Hernandez, C., & Navarrete, H. (2009). Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 473–482. https://doi.org/10.1017/S0266467409990095; Valencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. C., Hernández, C., Romoleroux, K., Losos, E., Magård, E., & Balslev, H. (2004). Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92(2), 214–229. https://doi.org/10.1111/j.0022-0477.2004.00876.x; Wright, J. S., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Diaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecological Society of America, 91(12), 3664–3674.; Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database.; Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., & Davies, S. (2017). Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 98(10), 2538–2546. https://doi.org/10.1002/ecy.1950; Zuleta, D., Muller-Landau, H. C., Duque, A., Caro, N., Cardenas, D., Leon-Pelaez, J. D., & Feeley, K. J. (In Press). Interspecific and intraspecific variation of tree branch, leaf, and stomatal traits in relation to topography in an aseasonal Amazon forest. Functional Ecology.; Zuleta, D., Russo, S. E., Barona, A., Barreto-Silva, J. S., Cardenas, D., Castaño, N., Davies, S. J., Detto, M., Sua, S., Turner, B. L., & Duque, A. (2020). Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil, 450(1–2), 133–149. https://doi.org/10.1007/s11104-018-3878-0; https://repositorio.unal.edu.co/handle/unal/84127; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
  12. 12
    Academic Journal

    المصدر: electronico

    Relation: Este trabajo ha sido financiado por los proyectos CICYT AGL2004- 07940-C03-03 y Rideco-Consolider CDS2006-0067.; Intrigliolo, D. S. & Castel, J. R. (2009). Estrategias de riego y aclareo en el ciruelo japonés Cv. Black Gold en caso de escasez de recursos hídricos. Agrícola vergel, 332, 444-448.; http://hdl.handle.net/20.500.11939/7475

  13. 13
    Academic Journal

    المصدر: electronico

    Relation: Este estudio ha sido financiado con el proyecto INIA RTA01-116.; Montaña, C., Carot, M., Quiñones, A., Martínez-Alcántara, B., Primo-Millo, E. & Legaz, F. (2005). Riego deficitario en goteo superficial y subterráneo. Vida rural, 210, 40-44.; http://hdl.handle.net/20.500.11939/7728

  14. 14
    Academic Journal
  15. 15
    Dissertation/ Thesis
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
    Academic Journal
  20. 20