يعرض 1 - 20 نتائج من 41 نتيجة بحث عن '"corrosion measurements"', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
  6. 6
    Academic Journal
  7. 7
  8. 8
    Dissertation/ Thesis
  9. 9
    Academic Journal

    المصدر: Materials Research Express

    Relation: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078114537&doi=10.1088%2f2053-1591%2fab61ac&partnerID=40&md5=7a4ad2169e0860bd2a75097f1fe97774; Alam, M.E.E., Han, S., Hamouda, A.S., Nguyen, Q.B., Gupta, M., (2011) Magnesium Technology 2011, pp. 553-558; Cho, K., Magnesium technology and manufacturing for ultra lightweight armored ground vehicles (2009) Proc. Of the 2008 Army Science Conf.; Esmaily, M., Fundamentals and advances in magnesium alloy corrosion (2017) Prog. Mater Sci., 89, pp. 92-193; Calderón, J.A., Jiménez, J.P., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings (2016) Surf. Coatings Technol., 304, pp. 167-178; Research, E., Tech Brief, D., (2009), pp. 75-77; Cao, F., Song, G.-L., Atrens, A., Corrosion and passivation of magnesium alloys (2016) Corros. Sci., 111, pp. 835-845; Li, J., Jiang, Q., Sun, H., Li, Y., Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt% sodium chloride solution (2016) Corros. Sci., 111, pp. 288-301; Gray, J.E., Luan, B., Protective coatings on magnesium and its alloys-a critical review (2002) J. Alloys Compd., 336, pp. 88-113; Segarra, J.A., Calderón, B., Portolés, A., Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests (2015) Rev. Metal., 51, p. e050; Sreekanth, D., Rameshbabu, N., Venkateswarlu, K., Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation (2012) Ceram. Int., 38, pp. 4607-4615; Ramalingam, V.V., Ramasamy, P., Kovukkal, M.D., Myilsamy, G., Research and development in magnesium alloys for industrial and biomedical applications: A review (2019) Met. Mater. Int., 24; Ashassi-Sorkhabi, H., Moradi-Alavian, S., Jafari, R., Kazempour, A., Asghari, E., Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol-gel coating applied on AZ91 Mg alloy (2019) Mater. Chem. Phys., 225, pp. 298-308; Hsu, C., Nazari, M.H., Li, Q., Shi, X., Enhancing degradation and corrosion resistance of AZ31 magnesium alloy through hydrophobic coating (2019) Mater. Chem. Phys., 225, pp. 426-432; Wang, Y., An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy (2019) Surf. Coatings Technol., 360, pp. 276-284; Nazeer, A.A., Al-Hetlani, E., Amin, M.O., Quiñones-Ruiz, T., Lednev, I.K., A poly(butyl methacrylate)/graphene oxide/TiO2 nanocomposite coating with superior corrosion protection for AZ31 alloy in chloride solution (2019) Chem. Eng. J., 361, pp. 485-498; Dehnavi, V., Luan, B.L., Shoesmith, D.W., Liu, X.Y., Rohani, S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior (2013) Surf. Coatings Technol., 226, pp. 100-107; Zhang, R.F., Film formation in the second step of micro-arc oxidation on magnesium alloys (2010) Corros. Sci., 52, pp. 1285-1290; Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., Thompson, G.E., Characterization of AC PEO coatings on magnesium alloys (2009) Surf. Coatings Technol., 203, pp. 2207-2220; Barati Darband, G., Aliofkhazraei, M., Hamghalam, P., Valizade, N., Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications (2017) J. Magnes. Alloy., 5, pp. 74-132; Xin, Y.C., Chu, P.K., (2010) Surface Engineering of Light Alloys, pp. 362-397; Ur Rehman, Z., Koo, B.H., Effect of Na2SiO3 ·5H2O concentration on the microstructure and corrosion properties of two-step PEO coatings formed on AZ91 alloy (2017) Surf. Coatings Technol., 317, pp. 117-124; Bai, A., Chen, Z.-J., Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D (2009) Surf. Coatings Technol., 203, pp. 1956-1963; Lin, C.S., Fu, Y.C., Characterization of anodic films on AZ31 magnesium alloys in alkaline solutions containing fluoride and phosphate anions (2006) J. Electrochem. Soc., 153, p. B417; Chen, H., Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives (2010) Surf. Coatings Technol., 205, pp. S32-S35; Echeverry-Rendon, M., Improved corrosion resistance of commercially pure magnesium after its modification by plasma electrolytic oxidation with organic additives (2018) J. Biomater. Appl., 33, pp. 725-740; Einkhah, F., Lee, K.M., Sani, M.A.F., Yoo, B., Shin, D.H., Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation (2014) Surf. Coatings Technol., 238, pp. 75-79; Lee, K.M., Ko, Y.G., Shin, D.H., Microstructural characteristics of oxide layers formed on Mg-9wt%Al-1wt%Zn alloy via two-step plasma electrolytic oxidation (2014) J. Alloys Compd., 615, pp. S418-S422; Tsunekawa, S., Aoki, Y., Habazaki, H., Two-step plasma electrolytic oxidation of Ti-15V-3Al-3Cr-3Sn for wear-resistant and adhesive coating (2011) Surf. Coatings Technol., 205, pp. 4732-4740; Raj, V., Rajaram, M.P., Balasubramanian, G., Vincent, S., Kanagaraj, D., Pulse anodizing - An overview (2003) Trans. IMF, 81, pp. 114-121; Juhl, A.D., Why it makes sense to upgrade to pulse anodizing (2009) Met. Finish., 107, pp. 24-27; Song, X., Lu, J., Yin, X., Jiang, J., Wang, J., The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy (2013) J. Magnes. Alloy., 1, pp. 318-322; Hwang, I.J., Hwang, D.Y., Ko, Y.G., Shin, D.H., Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation (2012) Surf. Coatings Technol., 206, pp. 3360-3365; Bala Srinivasan, P., Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy (2010) Appl. Surf. Sci., 256, pp. 3928-3935; Alabbasi, A., Bobby Kannan, M., Walter, R., Störmer, M., Blawert, C., Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid (2013) Mater. Lett., 106, pp. 18-21; Bononi, M., Giovanardi, R., Bozza, A., Pulsed current hard anodizing of heat treated aluminum alloys: Frequency and current amplitude influence (2016) Surf. Coatings Technol., 307, pp. 861-870; Chen, D., Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy (2018) Appl. Surf. Sci., 434, pp. 326-335; Yu, L., Cao, J., Cheng, Y., An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles (2015) Surf. Coatings Technol., 276, pp. 266-278; Narayanan, T.S.N.S., Park, I.-S., Lee, M.-H., (2015) Surface Modification of Magnesium and Its Alloys for Biomedical Applications, 2, pp. 235-267. , ed S Narayanan et al (Amsterdam: Elsevier); Song, J., Nam, K., Moon, J., Choi, Y., Lim, D., Influence of the duty cycle on structural and mechanical properties of oxide layers on Al-1050 by a plasma electrolytic oxidation process (2014) Met. Mater. Int., 20, pp. 451-458; Hairong, D., Effect of growth rate on microstructure and corrosion resistance of micro-arc oxidation coatings on magnesium alloy (2017) Rare Met. Mater. Eng., 46, pp. 2399-2404; Qian, J., Wang, C., Li, D., Guo, B., Song, G., Formation mechanism of pulse current anodized film on AZ91D Mg alloy (2008) Trans. Nonferrous Met. Soc. China, 18, pp. 19-23; Choi, Y., Salman, S., Kuroda, K., Okido, M., Enhanced corrosion resistance of AZ31 magnesium alloy by pulse anodization (2013) J. Electrochem. Soc., 160, pp. C364-C368; Rasband, W.S., (2018) ImageJ; Mingo, B., Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy (2018) Appl. Surf. Sci., 433, pp. 653-667; Atrens, A., Song, G.-L., Cao, F., Shi, Z., Bowen, P.K., Advances in Mg corrosion and research suggestions (2013) J. Magnes. Alloy., 1, pp. 177-200; Song, G., Atrens, A., Hryn, J.N., (2016) Essential Readings in Magnesium Technology, pp. 565-572; Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., Matykina, E., Corrosion and wear of PEO coated AZ91/SiC composites (2017) Surf. Coatings Technol., 309, pp. 1023-1032; B117-18, A., (2018), pp. 1-15; ASTM D610-08 2008 1-6 Surfaces.Standard test method for evaluating degree of rusting on painted steel; Hussein, R.O., Nie, X., Northwood, D.O., Yerokhin, A., Matthews, A., Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process (2010) J. Phys. D: Appl. Phys., 43 (10); Liu, F., Yu, J., Song, Y., Shan, D., Han, E.-H., Effect of potassium fluoride on the in-situ sealing pores of plasma electrolytic oxidation film on AM50 Mg alloy (2015) Mater. Chem. Phys., 162, pp. 452-460; Hwang, D.Y., Kim, Y.M., Shin, D.H., Corrosion resistance of plasma-anodized AZ91 Mg alloy in the electrolyte with/without potassium fluoride (2009) Mater. Trans., 50, pp. 671-678; Pezzato, L., Brunelli, K., Babbolin, R., Dolcet, P., Dabalà, M., Sealing of PEO coated AZ91 magnesium alloy using la-based solutions (2017) Int. J. Corros., 2017, pp. 1-13; Gabor, A.E., Lanthanum separation from aqueous solutions using magnesium silicate functionalized with tetrabutylammonium dihydrogen phosphate (2016) J. Chem. Eng. Data, 61, pp. 535-542; Arrabal, R., Matykina, E., Skeldon, P., Thompson, G.E., Pardo, A., Transport of Species during Plasma Electrolytic Oxidation of WE43-T6 Magnesium Alloy (2008) J. Electrochem. Soc., 155, p. C101; Bonilla, F.A., Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte (2002) J. Electrochem. Soc., 149, p. B4; Cui, X.-J., Liu, C.-H., Yang, R.-S., Li, M.-T., Lin, X.-Z., Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism (2015) Surf. Coatings Technol., 269, pp. 228-237; Salman, S.A., Okido, M., (2013) In Corrosion Prevention of Magnesium Alloys, pp. 197-231; Betancur, B., Tratamiento, L., (2017) Superficial Del Magnesio Comercialmente Puro Mediante Electrolítica Por Plasma (PEO) Para Su Aplicación en Implantes Óseos Bioabsorbibles.; Duan, H., Yan, C., Wang, F., Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution (2007) Electrochim. Acta, 52, pp. 5002-5009; Sabaghi Joni, M., Fattah-Alhosseini, A., Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy (2016) J. Alloys Compd., 661, pp. 237-244; Li, J., Zhang, B., Wei, Q., Wang, N., Hou, B., Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5 wt% NaCl solution (2017) Electrochim. Acta, 238, pp. 156-167; Delgado, M.C., García-Galvan, F.R., Barranco, V., Aliofkhazraei, M., (2017) Magnesium Alloys; Yun Xiong, Q., The study of a phosphate conversion coating on magnesium Alloy AZ91D: III. Nano-particle Modification (2017) Int. J. Electrochem. Sci., 12, pp. 4238-4250; Feliu, S., Llorente, I., Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability (2015) Appl. Surf. Sci., 347, pp. 736-746; Lee, C.D., Kang, C.S., Shin, K.S., Effects of chunk breakage and surface protective film on negative difference effect of magnesium alloys (2001) Met. Mater. Int., 7, pp. 385-391; Samaniego Miracle, A., (2014) Profundización en Los Mecanismos de Corrosión de Las Aleaciones de Magnesio: Estrategias Para Mejorar la Resistencia A la Corrosión.; Li, W., Zhu, L., Li, Y., Zhao, B., Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na2SiO3 and KF (2006) J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 13, pp. 450-455; Mori, Y., Koshi, A., Liao, J., Asoh, H., Ono, S., Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes (2014) Corros. Sci., 88, pp. 254-262; http://hdl.handle.net/11407/5737

  10. 10
    Dissertation/ Thesis

    المؤلفون: Jevremović, Ivana Lj.

    المساهمون: Mišković Stanković, Vesna, Nešić, Srđan, Krstajić, Nedeljko, Bajat, Jelena

    المصدر: Универзитет у Београду

    وصف الملف: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
    Conference

    المساهمون: Laboratoire Capteurs Fibres Optiques (CEA, LIST) (LCFO (CEA, LIST)), Département Métrologie Instrumentation & Information (CEA, LIST) (DM2I (CEA, LIST)), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Jerome Peter Lynch, Chung-Bang Yun, Kon-Well Wang

    المصدر: Proceedings of SPIE ; Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013 ; https://cea.hal.science/cea-01823915 ; Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013, Mar 2013, San Diego, CA, United States. pp.8692 4U, ⟨10.1117/12.2015145⟩ ; https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8692/1/Corrosion-detection-and-evolution-monitoring-in-reinforced-concrete-structures-by/10.1117/12.2015145.short

    جغرافية الموضوع: San Diego, CA, United States

  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    المصدر: Caglar , B , Fischer , P , Kauranen , P , Karttunen , M & Elsner , P 2014 , ' Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries ' , Journal of Power Sources , vol. 256 , pp. 88-95 . https://doi.org/10.1016/j.jpowsour.2014.01.060

  19. 19
    Academic Journal

    المساهمون: Jinghai, Li, Wei, Fei, Bao, Xiaojun, Wang, Wei

    المصدر: Engblom , M , Lindberg , D K , Yrjas , P , Niemi , J K , Laurén , T & Hupa , M 2014 , TOWARDS BETTER UNDERSTANDING OF TEMPERATURE GRADIENTS IN SUPERHEATER CORROSION . in L Jinghai , F Wei , X Bao & W Wang (eds) , 11th International Conference on Fluidized Bed Technology, CFB-11 . Institute of Process Engineering, Chinese Academy of Sciences , pp. – , conference; 2014-05-14; 2014-05-17 , 14/05/14 .

  20. 20

    المساهمون: Laboratoire Capteurs Fibres Optiques (LCFO), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI ), Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Jerome Peter Lynch, Chung-Bang Yun, Kon-Well Wang, Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)

    المصدر: Proceedings of SPIE
    Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
    Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013, Mar 2013, San Diego, CA, United States. pp.8692 4U, ⟨10.1117/12.2015145⟩