-
1Academic Journal
المصدر: Materiales de Construcción; Vol. 71 No. 343 (2021); e255 ; Materiales de Construcción; Vol. 71 Núm. 343 (2021); e255 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2021.v71.i343
مصطلحات موضوعية: Blended cement, Adherence, Flexural strength, Interstitial zone, Mortar, Cemento con adiciones, Adherencia, Resistencia a la flexión, Zona intersticial, Mortero
وصف الملف: text/html; application/pdf; text/xml
Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2326/3155; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2326/3156; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2326/3157; Yuan, F; Pan, J; Xu, Z. (2013) A comparison of engineered cementitious composites versus normal concrete in beam-column joints under reversed cyclic loading. Mat. Struct. 46, 145-159. https://doi.org/10.1617/s11527-012-9890-6; Gou, S; Ding, R; Fan, J.; Nie, X.; Zhang J. (2018) Seismic performance of a novel precast concrete beam-column connection using low-shrinkage engineered cementitious composites. Constr. Build. Mater. 192, 643-656. https://doi.org/10.1016/j.conbuildmat.2018.10.103; Said, S.H.; Razak, H.A. (2016) Structural behavior of RC engineered cementitious composite (ECC) exterior beam-column joints under reversed cyclic loading. Constr. Build. Mater. 107, 226-234. https://doi.org/10.1016/j.conbuildmat.2016.01.001; Qudah, S; Maalej, M. (2014) Application of engineered cementitious composites (ECC) in interior beam-column connections for enhanced seismic resistance. Engi. Struc. 69, 235-245. https://doi.org/10.1016/j.engstruct.2014.03.026; Emmons, P.H.; Vaysburd, A.M. (1996) System concept in design and construction of durable concrete repairs. Constr. Build. Mater. 10 [1], 69-75. https://doi.org/10.1016/0950-0618(95)00065-8; Popovics, S; Rajendran, N; Penko, M. (1987) Rapid hardening cements for repair of concrete. ACI Mater. J. 84 [1], 64-73. https://doi.org/10.14359/9740; Li, V.C.; Maalej, M. (1996) Toughening in cement based composites: Part I. Cement, mortar, and concrete. Cem. Conc. Comp. 18 [4], 223-237. https://doi.org/10.1016/0958-9465(95)00028-3; Mechtcherine, V. (2013) Novel cement-based composites for the strengthening and repair of concrete structures. Constr. Build Mater. 41, 365-373. https://doi.org/10.1016/j.conbuildmat.2012.11.117; Ramakrishna, G; Sundararajan, T. (2005) Impact strength of a few natural fiber reinforced cement mortar slabs: A comparative study. Cem. Conc. Comp. 27 [5], 547-553. https://doi.org/10.1016/j.cemconcomp.2004.09.006; Wagh, A.S.; Singh, D; Jeong, S.Y. (1997) Chemically bonded phosphate ceramics for stabilization and solidification of mixed waste. Hazardous and radioactive waste treatment technologies handbook. 4 [2], 127-139.; Rao, A.J.; Pagilla, K.R.; Wagh, A.S. (2000) Stabilization and solidification of metal-laden wastes by compaction and magnesium phosphate-based binder. J. Air Waste Manag. Assoc. 50 [9], 1623-1631. https://doi.org/10.1080/10473289.2000.10464193 PMid:11055158; Zhang, S; Shi, H.S.; Huang, S.W. (2013) Dehydration characteristics of struvite-K pertaining to magnesium potassium phosphate cement system in non-isothermal condition. J. Ther. Ana. Calo. 111, 35-40. https://doi.org/10.1007/s10973-011-2170-9; Suk-Pyo, K.; Jae-Hwan, K. (2015) Influence of Mixing Factors on the Early-Age Properties of Magnesium Potassium Phosphate Cement Mortar. J. Archi. Ins. Korea Struc. Cons. 31 [5], 61-68. https://doi.org/10.5659/JAIK_SC.2015.31.5.61; Chau, C.K.; Qiao, F; Li, Z. (2011) Microstructure of magnesium potassium phosphate cement. Constr. Build. Mater. 25 [6], 2911-2917. https://doi.org/10.1016/j.conbuildmat.2010.12.035; Ding, Z; Dong, B.; Xing, F; Han, N.; Li, Z. (2012) Cementing mechanism of potassium phosphate based magnesium phosphate cement. Ceram. Int. 38 [8], 6281-6288. https://doi.org/10.1016/j.ceramint.2012.04.083; Ma, H.; Xu, B.; Li, Z. (2014) Magnesium potassium phosphate cement paste: Degree of reaction; porosity and pore structure. Cem. Concr. Res. 65, 96-104. https://doi.org/10.1016/j.cemconres.2014.07.012; Ma, H.; Xu, B.; Liu, J; Pei, H.; Li, Z. (2014) Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste. Mater. Design. 64, 497-502. https://doi.org/10.1016/j.matdes.2014.07.073; Mestres, G; Ginebra, M.P. (2011) Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 7 [4], 1853-1861. https://doi.org/10.1016/j.actbio.2010.12.008 PMid:21147277; Li, Y; Shi, T; Chen, B. (2015) Performance of magnesium phosphate cement at elevated temperatures. Constr. Build. Mater. 91, 126-132. https://doi.org/10.1016/j.conbuildmat.2015.05.055; Xing, S.; Wu, C. (2018) Preparation of magnesium phosphate cement and application in concrete repair. MATEC Web Conf. 142, 01012. https://doi.org/10.1051/matecconf/201814202007; Yang, Q.; Zhu, B.; Wu, X. (2000) Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater. Struc. 33, 229-234. https://doi.org/10.1007/BF02479332; Júlio, E.N.B.S.; Branco, F.A.B.; Silva, V.D. (2004) Concrete-to-concrete bond strength: influence of the roughness of the substrate surface. Constr. Build. Mater. 18 [9], 675-681. https://doi.org/10.1016/j.conbuildmat.2004.04.023; Mu, B.; Meyer, C.; Shimanovich, S. (2002) Improving the interface bond between fiber mesh and cementitious matrix. Cem. Conc. Res. 32 [5], 783-787. https://doi.org/10.1016/S0008-8846(02)00715-9; Martinola, G.; Meda, A.; Plizzari, G.A.; Rinaldi, Z. (2010) Strengthening and repair of RC beams with fiber reinforced concrete. Cem. Conc. Comp. 32 [9], 731-739. https://doi.org/10.1016/j.cemconcomp.2010.07.001; Hongtao, W; Juhui, C. (2007) Study on the setting time of magnesia-phosphate cement. J. Logis. Engin. Univ. 23 [2], 84-87.; Qian, J.; You, C; Wang, Q.; Wang, H.; Jia, X. (2014) A method for assessing bond performance of cement-based repair materials. Constr. Build. Mater. 68, 307-313. https://doi.org/10.1016/j.conbuildmat.2014.06.048; Momayez, A; Ehsani, M.R.; Ramezanianpour, A.A. (2005) Comparison of methods for evaluating bond strength between substrate concrete and repair materials. Cem. Conc. Rese. 35 [4], 748-757. https://doi.org/10.1016/j.cemconres.2004.05.027; Saha, A.K.; Sarker, P.K. (2016) Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Constr. Build. Mater. 123, 135-142. https://doi.org/10.1016/j.conbuildmat.2016.06.144; Katsiotis, N.S.; Tsakiridis, P.E.; Velissariou, D.; Katsiotis, M.S.; Alhassan, S.M.; Beazi, M. (2015) Utilization of ferronickel slag as additive in Portland cement: A Hydration Leaching Study. Waste Bio. Valor. 6, 177-189. https://doi.org/10.1007/s12649-015-9346-7; Lemonis, N; Tsakiridis, P.E.; Katsiotis, N.S.; Antiohosc, S.; Papageorgiouc, D.; Katsiotisd, M.S.; Beazi-Katsiotia, M. (2015) Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Constr. Build. Mater. 81, 130-139. https://doi.org/10.1016/j.conbuildmat.2015.02.046; Güneyisi, E.; Gesoğlu, M.; Karaoğlu, S.; Mermerdaş, K. (2012) Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr Build. Mater. 34, 120-130. https://doi.org/10.1016/j.conbuildmat.2012.02.017; Nochaiya, T.; Wongkeo, W.; Chaipanich, A. (2010) Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete. Fuel. 89 [3], 768-774. https://doi.org/10.1016/j.fuel.2009.10.003; Nili, M; Afroughsabet, V. (2010) Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Engin. 37 [8], 879-886. https://doi.org/10.1016/j.ijimpeng.2010.03.004; Holschemacher, K; Mueller, T; Ribakov, Y. (2010) Effect of steel fibres on mechanical properties of high-strength concrete. Mat. Design. 31 [5], 2604-2615. https://doi.org/10.1016/j.matdes.2009.11.025; Xu, B.W.; Shi, H.S. (2009) Correlations among mechanical properties of steel fiber reinforced concrete. Constr. Build. Mater. 23 [12], 3468-3474. https://doi.org/10.1016/j.conbuildmat.2009.08.017; Zhang, S.; Zhang, C.; Liao, L. (2019) Investigation on the relationship between the steel fibre distribution and the post-cracking behaviour of SFRC. Constr. Build. Mater. 200, 539-550. https://doi.org/10.1016/j.conbuildmat.2018.12.081; Sirisha, K.; Rambabu, T.; Shankar, Y.R.; Ravikumar, P. (2014) Validity of bond strength tests: A critical review: Part I. J. Conserv. Dent. 17 [4], 305-311. https://doi.org/10.4103/0972-0707.136340 PMid:25125840 PMCid:PMC4127686; Zhandarov, S.F.; Mäder, E.; Yurkevich, O.R. (2002) Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part I: Local bond strength. J. Adhes. Sci. Technol. 16 [9], 1171-1200. https://doi.org/10.1163/156856102320256837; Zhandarov, S.; Mäder, E. (2016) Determining the interfacial toughness from force-displacement curves in the pull-out and microbond tests using the alternative method. Int. J. Adhes. Adhes. 65, 11-18. https://doi.org/10.1016/j.ijadhadh.2015.10.020; Ahmed, S.F.U.; Mihashi, H. (2007) A review on durability properties of strain hardening fibre reinforced cementitious composites (SHFRCC). Cem. Conc. Comp. 29 [5], 365-376. https://doi.org/10.1016/j.cemconcomp.2006.12.014; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2326
-
2Academic Journal
المصدر: Materiales de Construcción; Vol. 70 No. 338 (2020); e218 ; Materiales de Construcción; Vol. 70 Núm. 338 (2020); e218 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2020.v70.i338
مصطلحات موضوعية: Granite, Blended cement, Curing, Compressive strength, Modelization, Granito, Cemento con adiciones, Curado, Resistencia a la compresión, Modelización
وصف الملف: text/html; application/pdf; application/xml
Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2287/3039; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2287/3040; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2287/3041; Garcia-Talegon, J.; Iñigo, A.C.; Vicente-Tavera, S.; Molina-Ballesteros, E. (2016) Silicified Granites (Bleeding Stone and Ochre Granite) as Global Heritage Stones Resources from Avila (Central of Spain). Geosci. Canada. 43 [1], 53-62. https://doi.org/10.12789/geocanj.2016.43.087; Champiré, F.; Fabbri, A.; Morel, J.-C.; Wong, H.; McGregor, F. (2016) Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Construc. Build. Mater. 110 [1], 70-78. https://doi.org/10.1016/j.conbuildmat.2016.01.027; UNE-EN 13286-51. (Una Norma Española - European Norm). (2006) Unbound and hydraulically bound mixtures - Part 51: Method for the manufacture of test specimens of hydraulically bound mixtures using vibrating hammer compaction.; Ministry of Public Works. (2014) General Specifications for Roads and Bridges Works (PG-3). 5th Part Pavements, 50-312.; UNE-EN 13286-41. (2003) Unbound and hydraulically bound mixtures - Part 41: Test method for the determination of the compressive strength of hydraulically bound mixtures.; UNE 103501. (1994) Geotechnics. Compaction test. Modified Proctor.; UNE 103900. (2013) In situ determination of density and moisture content of soil and granular materials by nuclear methods: low depths.; UNE-EN 933-2. (1996) Test for geometrical properties of aggregates. Part 2: determination of particle size distribution. Test sieves, nominal size of apertures.; UNE 103101. (1995) Particle size analysis of a soil by screening.; UNE 103103. (1994) Determination of the liquid limit of a soil by the Casagrande apparatus method.; UNE 103104. (1993) Test for plastic limit of a soil.; Anagnostopoulos, C.A. (2015) Strength properties of an epoxy resin and cement-stabilized silty clay soil. Appl. Clay Sci. 114, 517-529. https://doi.org/10.1016/j.clay.2015.07.007; Niu, X.; Xie, H.; Sun, Y.; Yao, Y. (2017) Basic Physical Properties and Mechanical Behavior of Compacted Weathered Granite Soils. Inter. J. Geomechan. 17 [10]. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000983; Wu, Y.; Yamamoto, H.; Izumi, A. (2016) Experimental Investigation on Crushing of Granular Material in One- Dimensional Test. Period. Polytech. Civil Engineer. 60 [1], 27-36. https://doi.org/10.3311/PPci.8028; Kariyawasam, K.K.G.K.D.; Jayasinghe, C. (2016) Cement stabilized rammed earth as a sustainable construction material. Construc. Build. Mater. 105, 519-527. https://doi.org/10.1016/j.conbuildmat.2015.12.189; Kasama, K.; Zen, K.; Iwataki, K. (2007) High-strengthening of cement-treated clay by mechanical dehydration. Soils Found. 47 [2], 171-184. https://doi.org/10.3208/sandf.47.171; Liu, Z.B.; Xie, S.Y.; Shao, J.F.; Conil, N. (2015) Effects of deviatoric stress and structural anisotropy on compressive creep behavior of a clayey rock. Appl. Clay Sci. 114, 491-496. https://doi.org/10.1016/j.clay.2015.06.039; Saldanha, R.; Consoli, N.C. (2016) Accelerated Mix Design of Lime Stabilized Materials. J. Mater. Civil. Engin. 28 [3]. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001437; Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construc. 66 [321], e075. https://doi.org/10.3989/mc.2016.08414; UNE 103808. (2006) Load test of plate soils.; Ministry of Public Works. Instruction for the reception of cements RC-16. (2016).; UNE-EN 13286-45. (2004) Unbound and hydraulically bound mixtures - Part 45: Test method for the determination of the workability period of hydraulically bound mixtures.; Yu, C.; Liao, R.; Zhu, C.; Cai, X.; Ma, J. (2018) Test on the stabilization of Oil-Contaminated Wenzhou Clay by Cement. Advanc. Civil Engineer. 2018, 9675479. https://doi.org/10.1155/2018/9675479; Amadi, A.A.; Osu, A.S. (2018) Effect of curing time on strength development in black cotton soil - Quarry fines composite stabilized with cement kiln dust (CKD). J. King Saud Univ. - Engineer. Sci. 30 [4], 305-312. https://doi.org/10.1016/j.jksues.2016.04.001; Li, Q.; Chen, J.; Shi, Q.; Zhao, S. (2014) Macroscopic and Microscopic Mechanisms of Cement-Stabilized Soft Clay Mixed with Seawater by Adding Ultrafine Silica Fume. Advanc. Mater. Sci. Engineer. 2014, 810652. https://doi.org/10.1155/2014/810652; Rahmi, A.; Taib, S.; Sahdi, F. (2018) Investigation of the Application of Various Water Additive Ratios on Unconfined Compressive Strength of Cement-Stabilized Amorphous Peat at Different Natural Moisture Contents. Advanc. Civil Engineer. 2018, 1945808. https://doi.org/10.1155/2018/1945808; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2287
-
3
المؤلفون: Bonavetti, V. L., Rahhal, V. F., Locati, F., Irassar, E. F., Marfil, S., Maiza, P.
المصدر: Materiales de Construcción; Vol. 70 No. 337 (2020); e208
Materiales de Construcción; Vol. 70 Núm. 337 (2020); e208مصطلحات موضوعية: Petrography, Hydration, Blended cement, Scanning Electron Microscopy (SEM), Cemento con Adiciones, Hidratación, Petrografía, Puzolana, Microscopía Electrónica de Barrido (MEB), Pozzolan
وصف الملف: text/html; application/pdf; application/xml
-
4Academic Journal
المؤلفون: Abbas, Rafik, Abo-El-Enein, Salah A., Ezzat, El-Sayed
المصدر: Materiales de Construcción; Vol. 60 No. 300 (2010); 33-49 ; Materiales de Construcción; Vol. 60 Núm. 300 (2010); 33-49 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2010.v60.i300
مصطلحات موضوعية: blended cement, metakaolin, sulfate-chloride attack, chloride penetration, cemento con adiciones, metacaolín, ataque sulfatos-cloruros, penetración cloruros
وصف الملف: application/pdf
Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/606/653; Kostuch, J. A.; Walters, V.; Jones, T. R.: “High performance concretes incorporating metakaolin: a Review”, Concrete 2000 (1993), E&FN Spon, pp. 1799-1811.; Sabir, B. B.; Wild, S.; Khatib, J. M.: “On the workability and strength development of metakaolin concrete”, Concrete for Environmental Enhancement and Protection (1996), E&FN Spon, pp. 651-656.; Curcio, F.; Deangelis, B. A. Pagliolico, S.: “Metakaolin as a pozzolanic microfiller for high-performance mortars”, Cem. Concr. Res., vol. 28, nº 6 (1998), pp. 803-809. doi:10.1016/S0008-8846(98)00045-3; Sabir, B. B.; Wild, S.; Bai, J.: “Metakaolin and calcined clay as pozzolans for concrete: a review”, Cement and Concrete Composites, vol. 23 (2001), pp. 441-454. doi:10.1016/S0958-9465(00)00092-5; Siddique, R.; Klaus, J.: “Influence of metakaolin on the properties of mortar and concrete: A review”, Applied Clay Science, vol. 43, nº 3-4 (2009), pp. 392-400. doi:10.1016/j.clay.2008.11.007; Bakhshi, M.; Ghalibafian, M.: Properties of high-performance concrete containing high reactivity metakaolin. SP-228, ACI, Farmington Hills, Mich. (2005), pp. 287-296; Razak, H. A.; Wong, H. S.: “Effect of incorporating metakaolin on fresh and hardened properties of concrete”. SP-200, ACI, Farmington Hills, Mich. (2001), pp. 309-324; Justice, J. M.; Kennsion, L. H.; Mohr, B. J.; Beckwith, S. L.; McCormick, L. E.; Wiggins, B.; Zhang, K. Z. Z.; Kurtis, E.: “Comparison of two metakaolins and a silica fume used as supplementary cementitious materials”. SP-228, ACI, Farmington Hills, Mich. (2005), pp. 213-236.; Caldarone, M. A; Gruber, K. A.; Burg, R. G.: “High reactivity metakaolin: A new generation mineral admixture”, Concrete International, vol. 16, nº 11 (1994), pp. 37-40.; Caldarone, M. A.; Gruber, K. A.: “High reactivity metakaolin - a mineral admixture for high-performance concrete”, Proceedings of the International Conference on Concrete under Severe Conditions, Environment and Loading, Sapporo, Japan, vol. 2 (1995) pp. 1015-1024; Zhang, M. H; Malhotra, V. M.: “Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete”, Cem. Concr. Res., vol. 25, nº 8 (1995), pp. 1713-1725. doi:10.1016/0008-8846(95)00167-0; Bai, J.; Wild, S.; B. B. Sabir, B. B.; Kinuthia, J. M.: “Workability of concrete incorporating pulverized fuel ash and metakaolin”, Magazine of Concrete Research, vol. 51, nº 3 (1999), pp. 207-216. doi:10.1680/macr.1999.51.3.207; Wild, S.; Khatib, J. M.; Roose, L. J.: “Chemical shrinkage and autogenous shrinkage of Portland cement-metakaolin pastes”, Advances in Cement Research, vol. 10, nº 3 (1998), pp. 109-119.; Boddy, R.D.; Hooton, K.A.; Gruber: “Long-Term testing of the chloride penetration resistance of concrete containing high reactivity metakaolin”, Cem. Concr. Res., vol. 31, nº 5 (2001), pp. 759-765. doi:10.1016/S0008-8846(01)00492-6; Justice, J. M.; Kurtis K. E.: “Influence of metakaolin surface area on properties of cement-based materials”, ASCE, Journal of Materials in Civil Engineering, vol. 19, nº 9 (2007), pp. 762-771. doi:10.1061/(ASCE)0899-1561(2007)19:9(762); Balaguru P.: “Properties of normal and high-strength concrete containing metakaolin”. SP-199, ACI, Farmington Hills, Mich. (2001), pp. 737-756.; Ramlochan T.; Thomas, M.: “Effect of metakaolin on external sulfate attack”. SP-192, ACI, Farmington Hills, Mich. (2000). pp. 239-252.; Parande, K.; Babu, B.; Karthik, M. A.; Kumaar, K.K.; Palaniswamy, N.: “Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar”, Construction and Building Materials, vol. 22, nº 3 (2008), pp. 127-134. doi:10.1016/j.conbuildmat.2006.10.003; Coleman, N. J.; McWhinnie, W.: “Solid State Chemistry of Metakaolin-Blended Ordinary Portland Cement”. Journal of Materials Science, vol. 35, nº 11 (2000), pp. 2701-2710. doi:10.1023/A:1004753926277; Abo-El-Enein, S. A.; Abbas, R.; Ezzat, E.: “Properties and durability of metakaolin blended cemens”, Mater Construcc, vol. 60, nº 299 (2010), pp. 21-35. doi:10.3989/mc.2010.50509; Poon, C.S.; Kou, S.C.; Lam, L.: “Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete”, Construction and Building Materials, vol. 20 (2006), pp. 858-865. doi:10.1016/j.conbuildmat.2005.07.001; Arikan, M.; Sobolev, K.; Ertu.n, T.; Yegˇinobali, A.; Turker, P.: “Properties of blended cements with thermally activated kaolin”, Construction and Building Materials, vol. 23, nº 1 (2009), pp. 62-70. doi:10.1016/j.conbuildmat.2008.02.008; Badogiannis, E.; Kakali, G.; Dimopoulou, G.; Chaniotakis, E.;. Tsivilis, S: “Metakaolin as a main cement constituent: exploitation of poor Greek kaolins”, Cement and Concrete Composites, vol. 27 (2005), pp. 197-203. doi:10.1016/j.cemconcomp.2004.02.007; Badogiannis, E.; Tsivilis,S.: Exploitation of poor Greek kaolins: durability of metakaolin concrete. Cement and Concrete Composites, vol. 31, nº 2 (2009), pp. 128-133. doi:10.1016/j.cemconcomp.2008.11.001; Castellote, M.; Andrade, C.: “Round-Robin test on chloride analysis in concrete - part II: analysis of water soluble chloride content”, Materials and Structure, vol. 34, nº 10 (2001), pp. 589-596. doi:10.1007/BF02482124; Castellote, M.; Andrade, C.: “Round-Robin test on chloride analysis in concrete - part I: analysis of total chloride content”, Materials and Structure, vol. 34, nº 9 (2001), pp. 532-549. doi:10.1007/BF02482181; Kim, H. S.; Lee, S. H; Moon, H. Y.: “Strength properties and durability aspects of high strength concrete using Korean metakaolin”. Construction and Building Materials, vol. 21, nº 4 (2007), pp. 1229-1237. doi:10.1016/j.conbuildmat.2006.05.007; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/606
-
5Academic Journal
المؤلفون: Abo-El-Enein, Salah A., Abbas, Rafik, Ezzat, El-Sayed
المصدر: Materiales de Construcción; Vol. 60 No. 299 (2010); 21-35 ; Materiales de Construcción; Vol. 60 Núm. 299 (2010); 21-35 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2010.v60.i299
مصطلحات موضوعية: blended cement, metakaolin, strength, durability, microstructure, cemento con adiciones, metacaolín, resistencia, durabilidad, microestructura
وصف الملف: application/pdf
Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/424/470; Poon, C. S.; Kou, S. C.; Lam, L.: “Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete”. Construction and Building Materials, vol. 20 (2006), pp. 858-865. doi:10.1016/j.conbuildmat.2005.07.001; Kingery, W. D.; Uhlamann, D. R.; Bowen, H. K.: Introduction to Ceramics. 2nd ed., John Wily and Sons, New York, 1976.; Moulin, E.; Blanc, P.; Sorrentino, D.: “Influence of key cement chemical parameters on the properties of metakaolin blended cement”. Cement andConcrete Composites, vol. 23, nº 6 (2001), pp. 463-469.; Saynam, R. A.; Kalsotra, A. K.; Mehta, S. K.; Sing, R. S.; Mandal, G.: “Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India)”. Journal of Thermal Analysis, vol. 35 (1989), pp. 99-106. doi:10.1007/BF01914268; Ambroise, J.; Murat, M.; Pera, J.: “Investigations on synthetic binders obtained by middle-temperature thermal dissociation of clay minerals”. Silicate Industries, vol. 7, nº 8 (1986), pp. 107-111.; Ambroise, J.; Murat, M.; Pera, J.: “Hydration reaction and hardening of calcined clays and related minerals: extension of the research and general conclusions”. Cem. Concr. Res., vol. 15 (1985), pp. 261-268. doi:10.1016/0008-8846(85)90037-7; Bensted, J.; Barnes, P.: “Structure and Performance of Cements”. 2nd ed., Spon press, New York, 2002.; Chandrasekhar, S.; Ramaswamy, S.: “Influence of mineral impurities on the properties of kaolin and its thermally treated products”. Applied ClayScience, vol. 21 (2002), pp. 133-142. doi:10.1016/S0169-1317(01)00083-7; Ding, J.; Li, Z.: “Effects of metakaolin and silica fume on properties of concrete”. ACI Materials Journal, vol. 99, nº 4 (2002), pp. 393-398.; Torres, J.; Mejía de Gutiérrez, R.; Puertas, F.: “Effect of kaolin treatment temperature on mortar chloride permeability”. Mater. Construcc., vol. 57, nº 285 (2007), pp. 61-69.; Serry, M. A.; Taha, A. S.; El-Hemaly, S. A. S.; El-Didamony, H.: “MK-Lime Hydrations Product”. Thermochimica Acta, vol. 79 (1984), pp. 103-110. doi:10.1016/0040-6031(84)87097-5; Serry, M. A.: “Influence of calcination conditions on the hydration of MK-lime”. Silicate Industry, vol. 5-6 (1987), pp. 2687-2648.; Frías, M.; Cabrera, J.: “Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20 °C”. Cem. Concr. Res., vol. 31 (2001), pp. 519-527. doi:10.1016/S0008-8846(00)00465-8; Sánchez de Rojas, M. I.; Cabrera, J.: “The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin-lime-water systems”. Cem. Concr. Res., vol. 32 (2002), pp. 133-138. doi:10.1016/S0008-8846(01)00642-1; Morsy, M. S.: “Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin-lime sludge-silica fume system”, Housing and Building Research Center Journal, vol. 1, pp. 114-126 (2005).; Frías, M.; Sánchez de Rojas, M. I.; Cabrera, J.: “The effect that the pozzolanic reaction of metakaolin has on the heat evolution in MK- cement mortar”. Cem. Concr. Res., vol. 30 (2000), pp. 209-216. doi:10.1016/S0008-8846(99)00231-8; De Silva, P. S.; Glasser, F. G.: “Phase relations in the system Cao-Al2O3-SiO2-H2O relevant to MK-lime hydration”. Cem. Concr. Res., vol. 23 (1993), pp. 627-639. doi:10.1016/0008-8846(93)90014-Z; De Silva, P. S.; Glasser, F. G.: “Hydration of cements dased on MK: thermochemistry”. Aadvanced Cement Research, vol. 4, nº 16 (1992), pp. 167-178.; Taha, A. S.; El-Didamony, H.; Abo-El-Enein, S. A.; Ame, A.: “Physicochemical properties of super sulfated cement paste. Zement-Kalk-Gips”, vol. 34 (1981), pp. 351-353.; Colman, N. J.; Mcwhinnie, W. R.: “The solid state chemistry of metakaolin-blended ordinary Portland cement”. Journal of Material Science, vol. 35 (2000), pp. 2701-2710. doi:10.1023/A:1004753926277; Sha, W.: “Differential Scanning Calorimetry study of the hydration products in Portland cement wastes with metakaolin replacement.” Proceeding of the International Conference on Advances in Building Technology, vol. 1 (2002), pp. 881-888.; Lee, S. T.; Moon, H. Y.; Hooton, R. D.; Kim, J. P.: “Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortars exposed to magnesium sulfate solution”. Cem. Concr. Res., vol. 35 (2005), pp. 1314-1323. doi:10.1016/j.cemconres.2004.10.035; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/424
-
6Academic Journal
المؤلفون: Alcaide Romero, Juan, García Alcocel, Eva María, Vilaplana-Ortego, Eduardo, Cazorla-Amorós, Diego, Garcés, Pedro
المساهمون: Universidad de Alicante. Departamento de Química Inorgánica, Universidad de Alicante. Departamento de Ingeniería de la Construcción, Obras Públicas e Infraestructura Urbana, Universidad de Alicante. Departamento de Construcciones Arquitectónicas, Materiales Carbonosos y Medio Ambiente, Espectroscopía Atómica-Masas y Química Analítica en Condiciones Extremas, Durabilidad de Materiales y Construcciones en Ingeniería y Arquitectura
مصطلحات موضوعية: Cemento con adiciones, Mortero, Propiedades mecánicas, Caracterización, Sustitución, Blended cements, Mortar, Mechanical properties, Characterization, Substitution, Ciencia de los Materiales e Ingeniería Metalúrgica, Química Inorgánica, Ingeniería de la Construcción, Construcciones Arquitectónicas
Relation: http://dx.doi.org/10.3989/mc.2007.v57.i287.56; ALCAIDE, J.S., et al. “Caracterización mecánica de morteros de cemento Portland con breas de petróleo y de alquitrán de carbón”. Materiales de Construcción. Vol. 57, n. 287 (jul.-sept. 2007). ISSN 0465-2746, pp. 53-62; 1988-3226 (Internet); http://hdl.handle.net/10045/20445
-
7Academic Journal
المؤلفون: Vegas, I., Frías, M., Urreta, J., San José, J. T.
المصدر: Materiales de Construcción; Vol. 56 No. 283 (2006); 49-60 ; Materiales de Construcción; Vol. 56 Núm. 283 (2006); 49-60 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2006.v56.i283
مصطلحات موضوعية: paper de-inking sludge, active addition, metakaolin, cement with additions, cement properties, lodos de destintado del papel, adición activa, metacaolín, cemento con adiciones, propiedades del cemento
وصف الملف: application/pdf
Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/8/7; Horton, R.: “Factor Ten Emisión Reductions: The Key to Sustainable Development and Economic Prosperity for the Cement and Concrete Industry”, 3rd CANMET/ACI International Symposium on Sustainable Development of Cement and Concrete. Ed. V. M. Malhotra, ACI SP-202, San Francisco, USA (2001), pp. 1-14.; Frías, M., Sánchez de Rojas, M. I., Menéndez, I., Cristina, C. y García de Lomas, M.: “Propiedades de la escocia Si-Mn como material puzolánico en la fabricación de cementos Portland”, Mater. Construcc., vol. 55, nº 280 (2005), pp. 1-9.; Villar Cociña, E., Frías, M., Valencia, E. y Sánchez de Rojas, M. I.: “Validación de un modelo cinético-difusivo para caracterizar la cinética de reacción puzolánica en sistemas ceniza de paja de caña-arcilla-cal”, Mater. Construcc., vol. 55, nº 278 (2005), pp. 29-40.; Frías, M., Sánchez de Rojas, M. I.: “Influence of metastable hydrated phases on the pore size distribution and degree of hydration of MK-blended cements cured at 60 ºC”, Cem. Concr. Res., 35 (2005), pp. 1292-1298. doi:10.1016/j.cemconres.2004.10.038; Pera, J. y Ambroise, J.: “Pozzolanic properties of calcined paper sludge”, Proceedings of the 11th International Congress on the Chemistry of Cement. (2003), pp. 1351-1360.; Pera, J., Ambroise, J. y Chabannet, M.: “Transformation of wastes into complementary cementing materials”, 7th International Conference on fly ash, silica fume, slag and natural pozzolans in concrete. Ed. V. M. Malhotra, ACI SP-26, vol. II, Chennai, India (2001), pp. 459-475.; Pera, J. y Amrouz, A.: “Development of highly reactive metakaolin from paper sludge”, Advanced Cement Based Materials, 7 (1998), pp. 49-56. doi:10.1016/S1065-7355(97)00016-3; Pera, J. y Ambroise, J.: “Calcined paper sludge: an interesting admixture for the cement industry”, Proceedings of the Sidney Diamond Symposium-Materials Science of Concrete. Ed. M. Cohen et al. (1998). pp. 467-479.; Frías, M., Sánchez de Rojas, M. I. y Rivera, J.: “Influence of calcining conditions on pozzolanic activity and reaction kinetics in paper sludge-calcium hydroxide mixes”, 8th CANMET/ACI International Conference on fly ash, silica fume, slag and natural pozzolans in concrete. Ed. V. M. Malhotra (2004), pp. 879-892.; Rodríguez, O., Frías, M., Sánchez de Rojas, M. I. y Menéndez, I.: “Viabilidad de la incorporación de lodos de papel al cemento como adición puzolánica”, VI Congreso Nacional de Materiales Compuestos, UPV (Ed.), vol. 1 (2005), Valencia, España, pp. 917-923.; Confederation of European Paper Industries (CEPI) and the International Confederation of Paper and Board Converters in Europe (CITPA). Towards a Thematic Strategy on Prevention and Recycling of Waste Paper and board manufacturing and converting industry’s position (2003).; Schultz, L. G.: “Quantitative interpretation of the mineralogical composition from X-ray and Chemical data for the Pierre Shale. U. S. Geol. Surv. Prof. Pap. (1964), 391 C, 31 pp.; Barahona, E.: Arcillas de ladrillería de la provincia de Granada. Evaluación de algunos ensayos en materias primas. Tesis Doctoral, Universidad de Granada, 1964, 398 pp.; Brindley, G. W.: “Order-Disorder in Clay Minerals Structure”, en G. W. Bridley y G. Brown (eds.): Cristal Structures of Clays Minerals and their X-Ray identification. Mineralogical Society Monograph 5. Londres, 1980, p. 496.; Frías, M., Sánchez de Rojas, M. I., Rodriguez, O., García, R. y Vigil, R.: “Characterization of calcined paper sludge as environmentally- friendly source of MK for manufacturing of cementing matrixes”, Cem. Concr. Res, under review (2005).; UNE-EN 197-1, Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes, 2000.; Taylor, H. F. W.: Cement Chemistry. Thomas Telford Publishing, Tomas Telford Services Ltd, 2ª Edición, Londres, 1997, p. 436.; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/8
-
8Academic Journal
المؤلفون: Videla, C., Aguilar, C.
المصدر: Materiales de Construcción; Vol. 55 No. 278 (2005); 13-28 ; Materiales de Construcción; Vol. 55 Núm. 278 (2005); 13-28 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2005.v55.i278
مصطلحات موضوعية: shrinkage, bended cement, pozzolan, organic admixture, modelization, retracción, cemento con adiciones, puzolanas, aditivo orgánico, modelización
وصف الملف: application/pdf
Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/186/230; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/186
-
9
المؤلفون: Allahverdi, A., Akhondi, M., Mahinroosta, M.
المصدر: Materiales de Construcción; Vol. 68 No. 330 (2018); e154
Materiales de Construcción; Vol. 68 Núm. 330 (2018); e154مصطلحات موضوعية: Sulphate-resistant cement, Sulphate attack, Ataque por sulfatos, Cemento con adiciones, Composite, Blended cement, Compressive strength, Cementos resistentes a los sulfatos, Resistencia a la compresión
وصف الملف: text/html; application/pdf; application/xml
-
10
المؤلفون: Vegas, I., Frias, M., Urreta, J., JOSE TOMAS SAN JOSE LOMBERA
المصدر: Materiales de Construccion, Vol 56, Iss 283, Pp 49-60 (2006)
Web of Science
Materiales de Construcción; Vol. 56 No. 283 (2006); 49-60
Materiales de Construcción; Vol. 56 Núm. 283 (2006); 49-60
Materiales de Construcción
Consejo Superior de Investigaciones Científicas (CSIC)مصطلحات موضوعية: adición activa, metakaolin, cement properties, active addition, propiedades del cemento, metacaolín, lodos de destintado del papel, cemento con adiciones, TA401-492, cement with additions, lcsh:TA401-492, lcsh:Materials of engineering and construction. Mechanics of materials, Materials of engineering and construction. Mechanics of materials, paper de-inking sludge
وصف الملف: application/pdf
-
11
المؤلفون: D. Cazorla, Pedro Garcés, J. S. Alcaide, E. Vilaplana, E. G. Alcocel
المساهمون: Universidad de Alicante. Departamento de Química Inorgánica, Universidad de Alicante. Departamento de Ingeniería de la Construcción, Obras Públicas e Infraestructura Urbana, Universidad de Alicante. Departamento de Construcciones Arquitectónicas, Materiales Carbonosos y Medio Ambiente, Espectroscopía Atómica-Masas y Química Analítica en Condiciones Extremas, Durabilidad de Materiales y Construcciones en Ingeniería y Arquitectura
المصدر: RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)مصطلحات موضوعية: Engineering, Characterization, Mechanical properties, Mortero, Caracterización, Sustitución, law.invention, chemistry.chemical_compound, Flexural strength, law, medicine, General Materials Science, Coal, Coal tar, Composite material, Ingeniería de la Construcción, Cement, Blended cements, Química Inorgánica, Waste management, Propiedades mecánicas, business.industry, Ciencia de los Materiales e Ingeniería Metalúrgica, Building and Construction, Mortar, Portland cement, Construcciones Arquitectónicas, Compressive strength, chemistry, Mechanics of Materials, Cemento con adiciones, Petroleum, business, Substitution, medicine.drug
-
12
المؤلفون: C. Videla, C. Aguilar
المصدر: Materiales de Construcción; Vol. 55 No. 278 (2005); 13-28
Materiales de Construcción; Vol. 55 Núm. 278 (2005); 13-28
Materiales de Construcción
Consejo Superior de Investigaciones Científicas (CSIC)
Materiales de Construccion, Vol 55, Iss 278, Pp 13-28 (2005)مصطلحات موضوعية: modelización, organic admixture, puzolanas, puzolanaz, aditivo orgánicoz, modelización, aditivo orgánico, pozzolan, shrinkage, cemento con adiciones, TA401-492, lcsh:TA401-492, lcsh:Materials of engineering and construction. Mechanics of materials, retracción, Materials of engineering and construction. Mechanics of materials, modelization, bended cement
وصف الملف: application/pdf
-
13Electronic Resource
المؤلفون: Universidad de Alicante. Departamento de Química Inorgánica, Universidad de Alicante. Departamento de Ingeniería de la Construcción, Obras Públicas e Infraestructura Urbana, Universidad de Alicante. Departamento de Construcciones Arquitectónicas, Alcaide Romero, Juan, García Alcocel, Eva María, Vilaplana-Ortego, Eduardo, Cazorla-Amorós, Diego, Garcés, Pedro
-
14Electronic Resource
المؤلفون: Vegas, Iñigo, Frías, Moisés, Urreta, J., San-José, J. T.