يعرض 1 - 20 نتائج من 36 نتيجة بحث عن '"carbon-carbon composite material"', وقت الاستعلام: 0.52s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Integrated Technologies and Energy Saving; No. 2 (2024): Integrated Technologies and Energy Saving; 104-116 ; Интегрированные технологии и энергосбережение; № 2 (2024): Інтегровані технології та енергозбереження; 104-116 ; Інтегровані технології та енергозбереження; № 2 (2024): Інтегровані технології та енергозбереження; 104-116 ; 2708-0625 ; 2078-5364

    وصف الملف: application/pdf

  2. 2
    Academic Journal

    المصدر: Інтегровані технології та енергозбереження; № 4 (2023): Інтегровані технології та енергозбереження; 49-57 ; Integrated Technologies and Energy Saving; No. 4 (2023): Integrated Technologies and Energy Saving; 49-57 ; Интегрированные технологии и энергосбережение; № 4 (2023): Інтегровані технології та енергозбереження; 49-57 ; 2708-0625 ; 2078-5364

    وصف الملف: application/pdf

  3. 3
    Academic Journal

    المصدر: Інтегровані технології та енергозбереження; № 3 (2023): Інтегровані технології та енергозбереження; 55-66 ; Integrated Technologies and Energy Saving; No. 3 (2023): Integrated Tehnologies and Energy Saving; 55-66 ; Интегрированные технологии и энергосбережение; № 3 (2023): Інтегровані технології та енергозбереження; 55-66 ; 2708-0625 ; 2078-5364

    وصف الملف: application/pdf

  4. 4
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 2 (2020); 65-73 ; Новые огнеупоры; № 2 (2020); 65-73 ; 1683-4518 ; 10.17073/1683-4518-2020-2

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1381/1171; Zhang, M. Effect of vacuum thermal cyclic exposures on the carbon/carbon composites / M. Zhang, K. Li, X. Shi [et al.] // Vacuum. ― 2015. ― Vol. 122, № А. ― P. 236‒242.; Zmij, V. Complex protective coatings for graphite and carbon-carbon composite materials / V. Zmij, S. Rudenkyi // Materials Sciences and Applications. ― 2015. ― Vol. 6, № 1. ― P. 879‒888.; Xue, Li-Zhen. Flexural fatigue behavior of 2D crossply carbon/carbon composites at room temperature / Li-Zhen Xue, Ke-Zhi Lin, Yan Jia [et al.] // Mater. Sci. & Eng. ― 2015. ― Vol. 634, № A. ― P. 209‒214.; Chen, Wang. Numerical analyses of ablative behavior of C/C composite materials international / Wang Chen // J. Heat and Mass Transfer. ― 2016. ― Vol. 206 ― P. 2832‒2852.; Loghman-Estarki, M. Large scale synthesis of nontransformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating / M. Loghman-Estarki, H. Edris, R. Razavi [et al.] // Ceram. Int. ― 2015. ― Vol. 39, № 13. ― P.12042‒12047.; Абраимов, Н. В. Высокотемпературные материалы и покрытия для газовых турбин / Н. В. Абраимов. ― М. : Машиностроение, 1993. ― 336 c.; Шульга, А. В. Композиты. Ч. 1. Основы материаловедения композиционных материалов / А. В. Шульга. ― М. : НИЯУ МИФИ, 2013. ― 96 с.; Bolek, T. Simulation of the influence of the interface roughness on the residual stresses induced in (ZrO2 + Y2O3) + NiAl-type composite coatings deposited on Inconel 713C / T. Bolek, R. Siteka, J. Sienkiewicz [et al.] // Vacuum. ― 2016. ― Vol. XXX, № А.; Пат. 2499078 Российская Федерация, МПК8 C 23 C 4/08, C 23 C 4/10, C 23 C 4/12. Способ получения эрозионно-стойких теплозащитных покрытий / Сайгин В. В., Сафронов А. В., Тишина Г. Н.; заявитель и патентообладатель ОАО «Композит». ― № 2012130369/02; заявл. 17.07.12; опубл. 20.11.13, Бюл. № 32.; Пат. 2445199 Российская Федерация, МПК C 23 C 4/10, C 23 C 14/06, B 23 P 6/00. Способ упрочнения блока сопловых лопаток турбомашин из никелевых и кобальтовых сплавов / Новиков А. В., Мингажев А. Д., Кишалов Е. А.; заявитель и патентообладатель ООО «Производственное предприятие Турбинаспец сервис». ― № 2010111698/02; заявл. 25.03.10; опубл. 20.03.12, Бюл. № 8.; Sinitsyn, D. Yu. Influence of modifying additives on the phase stability and resistance to oxidation of coatings based on stabilized zirconium dioxide and a carbon carboncarbon composite material / D. Yu. Sinitsyn, V. N. Anikin, S. A. Eremin [et al.] // Nanomechanics Science and Technology. An International Journal. ― 2016. ― Vol. 7, № 4. ― P. 311‒334.; Nozahic, F. Thermal cycling and reactivity of a MoSi2/ZrO2 composite designed for self-healing thermal barrier coatings / F. Nozahic, D. Monceau, C. Estournès [et al.] // Materials Design. ― 2016. ― Vol. 94, № 1. ― P. 444‒448.; Кашин, Д. С. Разработка жаростойких покрытий для деталей из жаропрочных сплавов на основе ниобия / Д. С. Кашин, П. А. Стехов // Электронный научный журнал «Труды ВИАМ». ― 2017. ― № 1. ― C. 3‒10.; Светлов, И. Л. Влияние защитных покрытий на жаростойкость и длительную прочность монокристаллов никелевых жаропрочных сплавов IV поколения / И. Л. Светлов, С. А. Мубояджян, С. А. Будиновский // Электронный научный журнал «Труды ВИАМ». ― 2007. ― № 1. ― C. 339‒346.; Yi, D. MoSi2‒ZrO2 composites ― fabrication, microstructures and properties / D. Yi, C. Li // Materials Science and Engineering. ― 1999. ― Vol. 261, № А261.; Литовченко, С. В. Получение и физикомеханические свойства оксидно-силицидных покрытий на молибдене / С. В. Литовченко, В. М. Береснев, В. А. Чишкала [и др.] // ФИП. ― 2013. ― № 4. ― C. 393‒405.; Литовченко, С. В. Силицидные покрытия на молибдене: получение, структура, свойства / С. В. Литовченко, В. М. Береснев, А. А. Дробышевская [и др.] // ФИП. ― 2012. ― Vol. 10, № 2. ― C. 110‒137.; Fu, Q. G. SiC‒MoSi2/ZrO2‒MoSi2 coating to protect C/C composites against oxidation / Q. G. Fu, J. P. Zhang, Z. Z. Zhang [et al.] // Transactions of Nonferrous Metals Society of China. ― 2013. ― Vol. 23, № 23. ― P. 2113‒2117.; https://newogneup.elpub.ru/jour/article/view/1381

  5. 5
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 8 (2020); 46-52 ; Новые огнеупоры; № 8 (2020); 46-52 ; 1683-4518 ; 10.17073/1683-4518-2020-8

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1452/1240; Zhang, M. Effect of vacuum thermal cyclic exposures on the carbon/carbon composites / M. Zhang, K. Li, X. Shi [et al.] // Vacuum. ― 2015. ― Vol. 122, № А. ― P. 236-242.; Zmij, V. Complex protective coatings for graphite and carbon-carbon composite materials / V. Zmij, S. Rudenkyi // Materials Sciences and Applications. ― 2015. ― Vol. 6, № 1. ― P. 879-888.; Xue, Li-Zhen. Flexural fatigue behavior of 2D crossply carbon/carbon composites at room temperature / Li-Zhen Xue, Ke-Zhi Lin, Yan Jia [et al.] // Mater. Sci. Eng. ― 2015. ― Vol. 634, № A. ― P. 209-214.; Chen, Wang. Numerical analyses of ablative behavior of C/C composite materials international / Wang Chen // Journal Heat and Mass Transfer. ― 2016. ― Vol. 206 ― P. 2832-2852.; Каблов, Е. Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» / Е. Н. Каблов // Авиационные материалы и технологии. ― 2015. ― № 1. ― С. 3-33.; Каблов, Е. Н. Перспективные высокотемпературные керамические композиционные материалы / Е. Н. Каблов, Д. В. Гращенков, Н. В. Исаева [и др.] // Российский химический журнал. ― 2010. ― № 1. ― С. 20-24.; Каблов, Е. Н. Высокотемпературные конструкционные композиционные материалы на основе стекла и керамики для перспективных изделий авиационной техники / Е. Н. Каблов, Д. В. Гращенков, Н. В. Исаева [и др.] // Стекло и керамика. ― 2012. ― № 4. ― С. 7-11.; Каблов, Е. Н. Современные материалы ― основа инновационной модернизации России / Е. Н. Каблов // Металлы Евразии. ― 2012. ― № 3. ― С. 10-15.; Доспехи для «Бурана». Материалы и технологии ВИАМ для МКС «Энергия–Буран»; под ред. Е. Н. Каблова. ― М. : Наука и жизнь, 2013. ― 128 с.; Прямилова, Е. Н. Термохимическая стойкость керамики на основе боридов циркония и гафния / Е. Н. Прямилова, В. З. Пойлов, Ю. Б. Лямин // Вестник ПНИПУ. Сер.: Химическая технология и биотехнология. ― 2014. ― № 4. ― С. 55-67.; Fahrenholtz, W. G. Ultra-high temperature ceramics: materials for extreme environment applications / W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee [et al.] // The American Ceramic Society. ― 2014. ― P. 441.; Justin, J. Ultra high temperature ceramics: densification, properties and thermal stability / J. Justin, A. Jankowiak // Handbook of Advanced Ceramics. ― 2011. ― Vol. 3, № 1.; Ли, О. Исследование окислительно-защитных покрытий для углерод-углеродных композитов / О. Ли, Ц. Фу, Ц. Хуан [и др.] // Научно-исследовательский центр C/C композитов, лаборатория сверхвысоких температур композитов, Северо-Западный политехнический университет. ― 2005. ― № 1.; Сорокин, О. Ю. Керамические композиционные материалы с высокой окислительной стойкостью для перспективных летательных аппаратов / О. Ю. Сорокин, Д. В. Гращенков, С. С. Солнцев [и др.] // Труды ВИАМ / ФГУП ВНИИ авиационных материалов. ― 2014. ― № 6.; Hu, P. Effect of SiC content on the ablation and oxidation behavior of ZrB2-based ultra high temperature ceramic composites / P. Hu, K. Gui, Y. Yang [et al.] // Materials. ― 2013. ― Vol. 6, № 1.; Pat. 2006284352 A1 US. High temperature oxidation resistant material for spacecraft, hot structure part, spacecraft, and method for producing high temperature oxidation resistant material for spacecraft / Oguri Kazuyuki, Sekigawa Takahiro // 27.12.06.; Loing Liu. The ZrO2 formation in ZrB2/SiC composite irradiatedby laser / Loing Liu, Zhuang Ma, Zhenyu Yan [et. al.] // Materials. ― 2015. ― Vol. 8. ― P. 8745-8750; Eakins, E. Toward oxidation resistant ZrB2-SiC ultra high temperature ceramics / E. Eakins, D. D. Jayaseelan, W. E. Lee [et.al.] // Metall. Mater. Trans. A. ― 2011. ― Vol. 42. ― P. 878-887.; Rujie, He. Mechanical and electrical properties of MoSi2-based ceramics with various ZrB2‒ 20 vol. % SiC as additives for ultra-high temperature heating element / Rujie He, Tong Zongwei, Zhang Keqiang [et al.] // Ceram. Int. ― 2017. ― Vol. 44.; Яцюк, И. В. Кинетика и механизм высокотемпературного окисления керамических материалов в системе ZrB2‒SiC‒MoSi2 / И. В. Яцюк, А. Ю. Потанин, С. И. Рупасов [и др.] // Изв. вузов. Цветная металлургия. ― 2017. ― № 6; https://newogneup.elpub.ru/jour/article/view/1452

  6. 6
  7. 7
  8. 8
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 8 (2019); 23-33 ; Новые огнеупоры; № 8 (2019); 23-33 ; 1683-4518 ; 10.17073/1683-4518-2019-8

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1239/1080; Гаршин А. П. Современные технологии получения волокнисто-армированных композиционных материалов с керамической огнеупорной матрицей (Обзор) / А. П. Гаршин, В. И. Кулик, С. А. Матвеев, А. С. Нилов // Новые огнеупоры. — 2017. — № 4. — С. 20-35. [Garshin, A. P. The state-of-art technologies for the fiber-reinforced composition materials with the ceramic refractory matrix (Review) / A. P. Garshin, V. I. Kulik, S. A. Matveev, A. S. Nilov // Refract. Ind. Ceram. — 2017. — Vol. 58, № 2. — P. 148-161.]; ГОСТ Р 56465-2015. Системы космические. Материалы неметаллические на основе керамоматричных и углерод-углеродных композиционных материалов, применяемые в составе жидкостных ракетных двигателей малой тяги (ориентации и коррекции импульсов). Классификация. Номенклатура показателей.; Krenkel, W. Carbon fiber reinforced CMC for high-performance structures / W. Krenkel // International Journal of Applied Ceramic Technology. — 2004. — Vol. 1, № 2. — P. 188-200.; El-Hija, H. A. Development of C/C-SiC brake pads for high-performance elevators / H. A. El-Hija, W. Krenkel, Hugel // International Journal of Applied Ceramic Technology. — 2005. — Vol. 2, № 2. — Р. 105-113.; Li, B. Low-cost preparation and frictional behaviour of a three-dimensional needled carbon/silicon carbide composite / B. Li, L. Cheng, L. Yu fet al.] // J. Eur. Ceram. Soc. — 2009. — Vol. 29, № 3. — Р. 497-503.; Станкус, С. В. Термические свойства германия и кремния в конденсированном состоянии / С. В. Стан-кус, Р. А. Хайрулин, П. В. Тягельский // Теплофизика высоких температур. — 1999. — Т. 37, № 4. — C. 559-564.; Елаков А. Б. Разработка технологии изготовления углерод-углеродного композиционного материала на основе нетканого окисленного полиакрилонитрила : дис. . канд. техн. наук / А. Б. Елаков. — Королев, 2018. — 144 с.; Кулик, В. И. Исследование триботехнических характеристик композиционных материалов с карбидкремниевой матрицей / В. И. Кулик, А. С. Нилов, А. П. Гаршин [и др.] // Новые огнеупоры. — 2012. — № 8. — С. 45-56. [Kulik, V. I. The investigation of tribotechnical characteristics for composites based on carbide-silicon matrix / V. I. Kulik, A. S. Nilov, A. P. Garshin [et al.] // Refract. Ind. Ceram. — 2012. — Vol. 53, № 4. — P. 259-268.]; Гаршин, А. П. Конструкционные карбидокремниевые материалы / А. П. Гаршин, В. В. Карлин, Г. С. Олейник, В. Н. Островерхов. — Л. : Машиностроение (Ленингр. отд-ние), 1975. — 152 с.; MentzJ. Processing of porous C/SiC «via siliconizing» / J. Mentz, M. Muller, H.-P. Buchkremer, D. Stover // Proc. of International Conference on Carbon Materials «Carbon'01», Lexington, Ky, 14-19 July 2001. https://acs.omnibooksonline.com/data/papers/2001_31.3.pdf.; Ершов, А. Е. Метод расчета фазового состава SiC-Si-C-материалов, получаемых силицированием углеродных матриц / А. Е. Ершов, С. Л. Шикунов, В. Н. Курлов // Журнал технической физики. — 2017. — Т. 87, вып. 6. — С. 888-895.; Крамаренко, Е. И. Получение и свойства фрикционных углерод-керамических материалов класса С/ SiC / Е. И. Крамаренко, В. В. Кулаков, А. М. Кенигфест [и др.] // Изв. Самарского научного центра Российской академии наук. — 2011. — Т. 13, № 4 (3). — С. 759-764.; Костиков, В. И. Основы технологии углерод-углекарбидкремниевых композитов для изделий экстремальных условий эксплуатации / В. И. Костиков, Н. М. Черненко, И. И. Сидоров // Тр. 3-й Междунар. конф. «Материалы и покрытия в экстремальных условиях», 13-17 сентября 2004 г., г. Кацивели, Украина, 2004. — C. 9, 10.; Композиционные материалы : справочник / В. В. Васильев, В. Д. Протасов, В. В. Болотин [и др.]; под общ. ред. В. В. Васильева, Ю. М. Тарнопольского. — М. : Машиностроение, 1990. — 512 с.; Corman, G. S. Silicon melt infiltrated ceramic composites (HiPerCompTM); In Hanbook of ceramic composites / G. S. Corman, K. L. Luthra; ed. by P. Narottam. — Bansal, Boston, Dordrecht, London : Kluver Academic Publishers, 2005. — 554 р.; Шикунов, С. Л. Получение композиционных материалов на основе карбида кремния силицировани-ем углеродных матриц / С. Л. Шикунов, В. Н. Курлов // Журнал технической физики. — 2017. — Т. 87, вып. 12. — С. 1871-1878.; Magnant, J. Carbon fiber / reaction-bonded carbide matrix for composite materials — manufacture and characterization / J. Magnant, L. Maille, R. Pailler [et al.] // J. Eur. Ceram. Soc. — 2012. — Vol. 32, № 16. — P. 4497-4505.; Молчанов, В. В. Сорбенты и носители на основе нанопористых углеродных ксерогелей / В. В. Молчанов, М. Н. Щучкин, В. И. Зайковский [и др.] // Кинетика и катализ. — 2008. — T. 49, № 5. — С. 734-740.; Muller, M. Origin and effect of fiber attack for the processing of C/SiC / M. Muller, J. Mentz, P. H. Buchkremer, D. Stover : in High temperature ceramic matrix composite by W. Krenkel [et al.] (eds). — 2001. — P. 66-72.; Гаршин, А. П. Основные направления повышения коррозионно- и жаростойкости огнеупорных волокнисто-армированных керамоматричных композитов / А. П. Гаршин, В. И. Кулик, А. С. Нилов // Новые огнеупоры. — 2017. — № 12. — С. 49-59. [Garshin, A. P. Main areas for improving refractory fiber-reinforced ceramic matrix composite corrosion and heat resistance (Review) / A. P. Garshin, V. I. Kulik, A. S. Nilov // Refract. Ind. Ceram. — 2018. — Vol. 58, № 6. — Р. 673-682.]; Бакланова, Н. И. Интерфейсные покрытия на армирующих углеродных и карбидокремниевых волокнах для композитов с керамической матрицей : дис. . докт. хим. наук / Н. И. Бакланова. — Новосибирск, 2011. — 380 с.; Kobayashi, K. High temperature oxidation of carbon/SiC/B4C composite in different atmospheres / K. Kobayashi, K. Maeda, H. Sano, Y. Uchiyama // Tanso. — 1992. — Vol. 151. — P. 20-26.; Пат. 2337083 Российская Федерация. Способ получения волокнисто-армированного углеродкарбидокремниевого композиционного материала / Кулик В. И., Нилов А. С., Загашвили Ю. В., Кулик А. В., Рамм М. С.; заявл. 07.06.06; опубл. 27.10.08, Бюл. № 30.; Krenkel, W. Ceramic matrix composites for high performance friction applications / W. Krenkel, N. Langhof // In Proceedings of the IV Advanced Ceramics and Applications Conference, 2017. — Р. 13-28.; Пат. 2480433 Российская Федерация. Способ изготовления герметичных изделий из углеродкарбидокремниевого материала / Синани И. Л., Бушуев В. М., Бутузов С. Е.; заявл. 08.07.11; опубл. 27.04.13, Бюл. № 12.; Породзинский, И. А. Высокоплотные карбидкремниевые материалы с регулируемым фазовым составом : дис. . канд. техн. наук / И. А. Породзинский. — Москва, 2015. — 146 с.; Пат. 2471707 Российская Федерация. Способ изготовления герметичных изделий из углерод-углеродного или углерод-карбидокремниевого композиционного материала / Синани И. Л., Бушуев В. М., Бутузов С. Е.; заявл. 20.01.11; опубл. 10.01.13, Бюл. № 1.; Nam, K. W. Effect of crack healing of SiC according to times of SiO2 colloid coating / K. W. Nam // Journal of Powder Technology. — 2013. — Article ID 695895. — 5 p.; Пат. 2008/007411 WO. Braking band composite structure of a brake disk / Goller R. S., Mauri В., Orlandi М.; опубл. 17.01.2008.; Courtois, C. Protection against oxidation of C/SiC composites: oxidation behaviour of CVD TiB2 coated substrates / C. Courtois, J. Desmaison, H. Tawil // Journal de Physique IV Colloque, 1993. — Vol. 3. — P. 843-853.; Фиалков, А. С. Углерод, межслоевые соединения и композиты на его основе / А. С. Фиалков. — М. : Аспект Пресс, 1997. — 718 с.; https://newogneup.elpub.ru/jour/article/view/1239

  9. 9
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 7 (2019); 19-27 ; Новые огнеупоры; № 7 (2019); 19-27 ; 1683-4518 ; 10.17073/1683-4518-2019-7

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1264/1105; Pradere, Ch. Thermal and thermomechanical characterization of carbon and ceramic fibers at very high temperature / Ch. Pradere. ― Ecole Natiionale Superiered`Artset Metiers Centre de Bordeaux, 2004. ― 296 p. https://pastel.archives-ouvertes.fr/file/index/docid/500111/filename/ThesePradere.pdf.; Ohlhorst, C. W. Thermal conductivity data base of various structural carbon-carbon composite materials / C. W. Ohlhorst, W. L. Vauhn, P. O. Ransone, H.-T. Tsou. ― Hampton, Virginia, Langley Research Center, 1997. ― 96 p. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.82.682&rep=rep1&type=pdf.; Grujicic, M. Computational analysis of the thermal conductivity of the carboncarbon composite materials / M. Grujicic, C. L. Zhao, E. C. Dusel [et al.] // J. Mater. Sci. ― 2006. ― Vol. 41, Iss. 24. ― Р. 8244‒8256. https://link.springer.com/article/10.1007/s10853-006-1003-x.; Kolesnikov, S. A. Formation of carbon-carbon composite material thermal conductivity standarts / S. A. Kolesnikov, M. Yu. Bamborin, V. A. Vorontsov [et al.] // Refract. Ind. Ceram. — 2017. — Vol. 58, № 1. — Р. 94‒102. Колесников, С. А. Формирование уровня теплопроводности углерод-углеродного композиционного материала / С. А. Колесников, М. Ю. Бамборин, В. А. Воронцов [и др.] // Новые огнеупоры. ― 2017. ― № 2. ― С. 30‒38.; Kolesnikov, S. A. Study of thermophysical property formation of spatially reinforced carbon-carbon composite materials / S. A. Kolesnikov, L. V. Kim, V. A. Vorontsov [et al.] // Refract. Ind. Ceram. — 2017. — Vol. 58, № 4. — Р. 439‒449. Колесников, С. А. Исследование формирования теплофизических характеристик объемно-армированных углерод-углеродных композиционных материалов / С. А. Колесников, Л. В. Ким, В. А. Воронцов [и др.] // Новые огнеупоры. ― 2017. ― № 8. ― C. 45‒56.; Glass, D. E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles / D. E. Glass // 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080017096.pdf.; Пат. 2651344 Российская Федерация. Наконечник гиперзвукового летательного аппарата / Горяев А. Н., Назаренко В. В., Матросов А. В., Горский В. В., Ватолина Е. Н., Тащилов С. В., Тимофеев А. Н. ― № 2016149536; заявл. 16.12.16; опубл. 19.04.18, Бюл. № 11. http://www.findpatent.ru/patent/265/2651344.html.; Колесников, С. А. Углерод-углеродные композиты, разработка, исследование и применение в высокотемпературной технике / С. А. Колесников, А. К. Проценко // Сб. докл. Междунар. конф. «Современное состояние и перспективы развития электродной продукции, конструкционных и композиционных углеродных материалов» (25‒26 ноября 2010 г., Челябинск). ― C. 259‒271.; Mullenix, N. Parallel tightly coupled solver for unsteady hypersonic ablation of graphite / N. Mullenix, A. Povitsky // AIAA 2010-4451 40th Fluid Dynamics Conference and Exhibit (28 June ‒ 1 July 2010, Chicago, Illinois). http://www.enu.kz/repository/2010/AIAA-2010-4451.pdf.; Feng, Zhi-Hai. Analytical model of thermal conductivity for carbon/carbon composites with pitch-based matrix / Zhi-Hai Feng, Jia-Yun Zhi, Zhen Fan [et al.] // Advances in Mechanical Engineering. ― 2015. ― Vol. 7, № 1. ― Article ID 242586. DOI:10.1155.-2014/242586. https://www.researchgate.net/publication/275513278_An_Analytical_Model_of_Thermal_Conductivity_for_CarbonCarbon_Composites_with_Pitch-Based_Matrix.; Медведский, А. Л. Исследование физико-механических свойств 4D-углеродного композиционного материала на макро- и микроуровнях при воздействии высоких температур / А. Л. Медведский, Ю. В. Корнеев, А. С. Курбатов // Электронный журнал «Труды МАИ». ― 2015. ― Вып. № 41. www.mai.ru/science/trudy/.; Minapoor, Sh. Simulation of non-crimp 3D orthogonal carbon fabric composite for aerospace applications using finite element method / Sh. Minapoor, S. Ajeli, M. Javadi Toghchi // International Journal of Aerospace and Mechanical Engineering. ― 2015. ― Vol. 9, № 6. ― P. 982‒990. https://waset.org/publications/10001564/simulation-of-non-crimp-3d-orthogonal-carbon-fabric-composite-for-aerospaceapplications-using-finite-element-method.; Многомерно-армированные углерод-углеродные композиционные материалы. http://niigrafit.ru/produktsiya/kompozity.php.; Manocha, Lalit M. High performance carbon-carbon composites / Lalit M. Manocha // Sadhana. ― 2003. ― Vol. 28, Parts 1/2. ― P. 349‒358. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.582.8031&rep=rep1&type=pdf.; Проценко, А. К. Разработка углерод-углеродных технологий и перспективы их развития. В сб. Научно-исследовательскому институту конструкционных материалов на основе графита ― 55 лет / А. К. Проценко, С. А. Колесников. ― М. : Научные технологии, 2015. ― 246 с. http://www.niigrafit.ru/nauka-i-obrazovanie/sbornik.pdf.; Пат. 2498962 Российская Федерация. Армирующий каркас углерод-углеродного композиционного материала / Кречка Г. А., Клейменов В. Д., Савельев В. Н. ― № 2011127880/02; заявл. 06.07.11; опубл. 20.11.13, Бюл. № 32. http://www.findpatent.ru/patent/249/2498962.html.; Иженбин, И. А. Томографическая система на базе томографа «Орел» для осуществления томографического сканирования образцов из УУКМ материалов типа 39п7.001 и 4КМС-Л / И. А. Иженбин // Электронный научный архив Томского политехнического университета, 2016 г. http://earchive.tpu.ru/bitstream/11683/28151/1/TPU174557.pdf.; Радиационные пирометры типа РАПИР, Кельвин, LandRT8A. http://echome.ru/radiacionnyj-pirometr.html.; https://newogneup.elpub.ru/jour/article/view/1264

  10. 10
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 8 (2019); 13-22 ; Новые огнеупоры; № 8 (2019); 13-22 ; 1683-4518 ; 10.17073/1683-4518-2019-8

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1238/1079; Ohlhorst, Craig W. Thermal conductivity database of various structuralcarbon-carbon compositematerials / Craig W. Ohlhorst, Wallace L. Vauhn, Philip O. Ransone, Hwa-Tsu Tsou. — Langley Research Center. Hampton, Virginia, 1997. — 96 p. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.82.682&rep=rep1&type =pdf.; Pradere, Ch. Termal and thermomechanical characterization of carbon and ceramic fibers at very high temperature / Ch. Pradere. — Ecole Natiionale Superiered'Arts et Metiers Centre de Bordeaux, 2004. — 296 p. https://pastel.archives-ouvertes.fr/file/index/docid/500111/filename/ThesePradere.pdf.; Lachaud, J. 3D modeling of thermochemical ablation in carbon-based materials: effect of ani-sotropy on surface roughness onest / J. Lachaud, Y. Aspa, G. L. Vignoles, J.-M Goyheneche. http://jeanlachaud.com/research/lachaud-ISMSE2006.pdf.; Grujicic, M. Computational analysis of the thermal conductivity of the carbon-carbon composite materials / M. Grujicic, C. L. Zhao, E. C. Dusel [et al.] // J. Mater. Sci. — 2006. — Vol. 41, № 24. — Р. 8244-8256. https://link.springer.com/article/10.1007/s10853-006-1003-x.; Пат. 2498962 Российская Федерация. Армирующий каркас углерод-углеродного композиционного материала / Кречка Г. А., Савельев В. Н., Клейменов В. Д. — № 2011127880/02; заявл. 06.07.11; опубл. 20.11.13, Бюл. № 32. http://www.findpatent.ru/patent/249/2498962.html.; Дементьев, О. Н. Оценка влияния механически уносимых частиц тепловой защиты гиперзвуковых летательных аппаратов на устойчивость течения в пограничном слое и теплообмен / О. Н. Дементьев, Г. Ф. Костин, Н. Н. Тихонов, Б. М. Тюлькин // Вестник Челябинского государственного университета. — 2012. — № 14 (268). Физика. Вып. 13. — С. 9-13. https://cyberleninka.ru/article/n/otsenka-vliyaniya-mehanicheski-unosimyh-chastits-teplovoy-zaschity-giperzvukovyh-letatelnyh-apparatov-na-ustoychivost-techeniya-v.; Иженбин, И. А. Томографическая система на базе томографа «Орел» для осуществления томографического сканирования образцов из УУКМ материалов типа 39п7.001 и 4КМС-Л / И. А. Иженбин // Электронный научный архив Томского политехнического университета. — 2016. http://earchive.tpu.ru/bitstream/11683/28151/1/TPU174557.pdf.; Shi, Hong-bin. Effect of graphitization parameters on the residual stress in 4D carbon fiber / carbon composites / Hong-Bin Shi, Min Tang, Bo Gao, Jun-Ming Su // New Carbon Materials. — 2011. — Vol. 26, № 4. — Р. 287, 288. DOI: 10. 1016/ S1872-5805(11)60082-6. https://www.sciencedirect.com/journal/new-carbon-materials/vol/26/issue/4.; Колесников, С. А. Формирование уровня теплопроводности углерод-углеродного композиционного материала / С. А. Колесников, М. Ю. Бамборин, В. А. Воронцов [и др.] // Новые огнеупоры. — 2017. — № 2. — С. 30-38. [Kolesnikov, S. A. Formation of carbon-carbon composite material thermal conductivity standards / S. A. Kolesnikov, M. Yu. Bamborin, V. A. Vorontsov [et al.] // Refract. Ind. Ceram. — 2017. — Vol. 58, № 1. — P. 94-102.]; Колесников, С. А. Исследование формирования теплофизических характеристик объемноармированных углерод-углеродных композиционных материалов / С. А. Колесников, Л. В. Ким, В. А. Воронцов [и др.] // Новые огнеупоры. — 2017. — № 8. — С. 45-56. [Kolesnikov, S. A. Study of thermophysical property formation of spatially reinforced carbon-carbon composite material / S. A. Kolesnikov, L. V. Kim, V. A. Vorontsov // Refract. Ind. Ceram. — 2017. — Vol. 58, № 4. — P. 439-449.]; Организация Объединенных Наций A/AC.105/ C.1/L.312. Принципы, касающиеся использования ядерных источников энергии в космическом пространстве. Приняты резолюцией 47/68 Генеральной Ассамблеи от 14 декабря 1992 г. http://www.un.org/ru/documents/decl_conv/conventions/outerspace_nucpower.shtml.; Проценко, А. К. Разработка углерод-углеродных технологий и перспективы их развития. В сб. Научноисследовательскому институту конструкционных материалов на основе графита — 55 лет / А. К. Проценко, С. А. Колесников. — М. : Научные технологии, 2015. — 246 с. http://www.niigrafit.ru/nauka-i-obrazovanie/sbornik.pdf.; Хартов, В. В. Проектная концепция десантного модуля «Экзомарс-2018», создаваемого НПО им. С. А. Лавочкина / В. В. Хартов, М. Б. Мартынов, А. В. Лу-кьянчиков, С. Н. Алексашкин // Вестник НПО им. С. А. Лавочкина. — 2014. — № 2 (23). — С. 5-12.; Полежаев, Ю. В. Тепловая защита / Ю. В. Полежаев, Ф. Б. Юрьевич; под ред. А. В. Лыкова. — М. : Энергия, 1976. — 392 с.; Тепловой блок изделия РИТ «Ангел». https://helpiks.org/6-77726.html.; Многомерно-армированные углерод-углеродные композиционные материалы. http://niigrafit.ru/produktsiya/kompozity.php.; Manocha, L. M. High performance carbon-carbon composites / L. M. Manocha // Sadhana. — 2003. — Vol. 28, Parts 1/2.—Р. 349-358. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.582.8031&rep=rep1&type=pdf.; Салич, В. Л. Проектирование камеры кислородноводородного ракетного двигателя тягой 100 Н на основе численного моделирования внутрикамерных процессов / В. Л. Салич // Вестник УГАТУ. — 2014. — Т. 18, № 4 (65). — С. 20-26. http://journal.ugatu.ac.ru.; Соседов, В. П. Свойства конструкционных материалов на основе графита; справочник / В. П. Соседов, B. Г. Нагорный, А. С. Котосонов [и др.]. — М. : Металлургия, 1975. — 336 с.; ГОСТ 9.910-88. Метод испытания на термоусталость в газовых потоках на клиновидных образцах. http://echemistry.ru/assets/files/literatura/gost/gost-9.910-88-edinaya-sistema-zashhity-ot-korrozii-i-stareniya.-metally-splavy-pokrytiya-zharostojkie.-metod-ispytaniya-na-termoustalost-v-gazovyh-potokah-na-klinovidnyh-obrazcah.pdf.; Тимошенко, С. П. Теория упругости; 2-е изд. / C. П. Тимошенко, Дж. Гудьер; пер. с англ. под ред. Г. С. Шапиро. — М. : Наука. Главная редакция физикоматематической литературы, 1979. — 560 с.; Карпов, А. П. Высокотемпературные механические свойства углеродных и композиционных углерод-углеродных материалов / А. П. Карпов, Г. Е. Мостовой // Перспективные материалы. — 2015. — № 3. — С. 13-21.; Аксельрод, Л. М. Математическое моделирование разрушения футеровок металлургического оборудования под действием термоударов / Л. М. Аксельрод, А. В. Заболотский // Сборник научных идей. Современная наука. — 2010. — № 2 (4). — С. 165-169. http://modern.science.triacon.org/ru/issues/2010/files/papers/2/165-169.pdf.; Колесников, С. А. Высокотемпературная обработка углерод-углеродных композиционных материалов. Сообщение 2. Термическая стабилизация геометрии деталей из углерод-углеродных композиционных материалов двумерного армирования / С. А. Колесников, Г. Е. Мостовой, С. В. Васильченко // Новые огнеупоры. — 2012. — № 6. — С. 32-40. [Kolesnikov, S. A. High-temperature treatment of carbon-carbon composite materials. Communication 2. Thermal stabilization of two-dimensionally reinforced carbon-carbon composite material object geometry / S. A. Kolesnikov, G. E. Mostovoi, S. V. Vasil'chenko [et al.] // Refract. Ind. Ceram. — 2012. — Vol. 53, № 3. — P. 185-192.]; https://newogneup.elpub.ru/jour/article/view/1238

  11. 11
    Academic Journal
  12. 12
    Academic Journal

    المساهمون: Министерства образования и науки, проект RFMEFI57814X0044

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 4 (2017); 44-49 ; Новые огнеупоры; № 4 (2017); 44-49 ; 1683-4518 ; 10.17073/1683-4518-2017-4

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/747/725; Wang, Ya-lei. Effect of gas composition on microstructure and growth behavior of HfC coatings prepared by LPCVD / Ya-lei Wang, Xiang Xiong, Guo-dong Li [et al.] // Solid State Sci. ― 2013. ― Vol. 20. ― P. 86‒91.; Xue, Li-Zhen. Flexural fatigue behavior of 2D crossply carbon/carbon compositesat room temperature / LiZhen Xue, Ke-Zhi Lin, Yan Jia [et al.] // Mater. Sci. & Eng. ― 2015. ― Vol. 634, № A. ― P. 209‒214.; Chen, Wang. Numerical analyses of ablative behavior of C/C composite materials international / Wang Chen // J. Heat and Mass Transfer. ― 2016. ― P. 720‒726.; Wang, Ya-lei. Microstructure and ablation behavior of hafnium carbide coating for carbon/carbon composites / Ya-lei Wang, Xiang Xiong, Guo-dong Li [et al.] // Surf. Coat. Technol. ― 2012. ― Vol. 206. ― P. 2832‒2852.; Зефиров, А. П. Термодинамические свойства неорганических веществ / А. П. Зефиров. ― М. : Атомиздат, 1965. ― 340 c.; Gomes, J. R. The effect of sliding speed and temperature on the tribological behaviour of carboncarbon composites / J. R. Gomes, O. M. Silva, C. M. Silva [et al.] // Wear. ― 2001. ― Vol. 249. ― P. 240‒245.; Tian, Song. Single-crystalline hafnium carbide nanowire growth below the eutectic temperature by CVD / Song Tian, Hejun Li, Yulei Zhang [et al.] // J. Cryst. Growth. ― 2013. ― Vol. 384. ― P. 44‒49.; Tian, Song. Synthesis and characterization of hafnium carbide microcrystal chains with a carbon-rich shell via CVD / Song Tian, Hejun Li, Yulei Zhang [et al.] // J. Alloys Comp. ― 2013. ― Vol. 580. ― P. 407‒411.; Yang, Xi. Effect of stress level on fatigue behavior of 2D C/C composites / Xi Yang, He-jun Li, Kua-hai Yu [et al.] // Trans. Nonferrous Met. Soc. China. ― 2013. ― Vol. 23. ― P. 2135‒2140.; Cао, Wei-feng. Fracture mechanism of 2D-C/C composites with pure smooth laminar pyrocarbon matrix under flexural loading / Wei-feng Cао, He-jun Li, Ling-jun Guo [et al.] // Trans. Nonferrous Met. Soc. China. ― 2013. ― Vol. 23. ― P. 2141‒2146.; Eremin, S. Parameters of chemical vapor deposition on a structure and the properties of nanostructured TaC coating on a carbon composite material / S. Eremin, V. Anikin, I. Burmistrov [et al.] // Nanomechanics Sci. and Technol.: аn Intern. J. ― 2014. ― Vol. 5, № 3. ― P. 181‒189.; https://newogneup.elpub.ru/jour/article/view/747

  13. 13
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 2 (2017); 30-38 ; Новые огнеупоры; № 2 (2017); 30-38 ; 1683-4518 ; 10.17073/1683-4518-2017-2

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/642/633; Котельников, Р. Б. Особо тугоплавкие элементы и соединения / Р. Б. Котельников, С. Н. Башлыков, З. Г. Галиакбаров, А. И. Каштанов. ― М. : Металлургия, 1968. ― 376 с.; Соколовский, М. И. Углеродные материалы НИИ-графит в разработках РДТТ ОАО НПО «Искра» /М. И. Соколовский, В. В. Лукьянов, Ю. Г. Лузенин // Современные проблемы производства и эксплуатации углеродной продукции : сб. науч. тр. ― Челябинск : Библиотека А. Миллера, 2000. ― С. 220, 221.; Соколовский, М. И. Материалы углеродного класса в РДТТ. Требования, предъявляемые к УУКМ, направления совершенствования / М. И. Соколовский, Г. А. Зыков, В. В. Лукьянов [и др.] // Современные проблемы производства и эксплуатации углеродной продукции : сб. науч. тр. ― Челябинск. : Библиотека А. Миллера, 2000. ― С. 151‒153.; Бабкин, М. Ю. Оценка термостойкости графитированных электродов / М. Ю. Бабкин // Современное состояние и перспективы развития электродной продукции, конструкционных и композиционных углеродных материалов : сб. докл. междунар. конф. ― Челябинск : Энциклопедия, 2010. ― С. 202‒205.; Кинджери, В. Д. Измерения при высоких температурах / В. Д. Кинджери. ― М. : Металлургиздат, 1963. ― 236 с.; УУКМ марок «Десна-4», КМ-ВМ-4Д, КМ-ВМ-2Д и Десна Т-1. http://www.Niigrafit.ru; Проценко, А. К. Разработка углерод-углеродных технологий и перспективы их развития / А. К. Проценко, С. А. Колесников // Научно-исследовательскому институту конструкционных материалов на основе графита ― 55 лет : сб. статей. ― М. : Научные технологии, 2015. ― С. 31‒59. http://www.niigrafit.ru/naukai-obrazovanie/sbornik.pdf; Аксельрод, Л. М. Математическое моделирование разрушения футеровок металлургического оборудования под действием термоударов / Л. М. Аксельрод, А. В. Заболотский // Современная наука : сб. науч. статей. ― 2010. ― № 2 (4). ― С. 165‒169. http://modern.science.triacon.org/ru/issues/2010/files/papers/2/165-169.pdf; Аполлонов, В. К. Исследование воздействия лазерного излучения на зеркальные поверхности материалов / В. К. Аполлонов. ― М. : Наука, 1975. ― 101 с.; Милёхин, Ю. М. Расчет методом характеристик нестационарных внутрибаллистических параметров выхода РДТТ на рабочий режим / Ю. М. Милёхин, А. Н. Ключников, В. С. Попов, Н. Д. Пелипас // Физика горения и взрыва. ― 2014. ― Т. 50, № 6. ― С. 61‒75. http://www.sibran.ru/upload/iblock/3b7/3b7130e7bf08c1492cc57e439128ffbc.pdf; Соколов, А. И. Многомерно армированные углеродуглеродные композиционные материалы / А. И. Соколов, А. К. Проценко, С. А. Колесников // Новые промышленные технологии. ― 2009. ― № 3. ― С. 29‒32.; Glass, D. E. Materials development for hypersonic flight vehicles / D. E. Glass, R. Dirlingz, H. Groops // http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070004792.pdf.; Шулепов, С. В. Физика углеродных материалов / С. В. Шулепов. ― Челябинск : Металлургия, Челябинское отделение, 1990. ― 336 с.; Нагорный, В. Г. Свойства конструкционных материалов на основе графита : справочник / В. Г. Нагорный, А. С. Котосонов, В. С. Островский [и др.]; под ред. В. П. Соседова. ― М. : Металлургия, 1975. ― 336 с.; Lalit M. Manocha. High performance carbon-carbon composites / Lalit M. Manocha // Sahana. ― 2003. ― Vol. 28, рarts 1/2. February/april. ― P. 349‒358.; Фитцер, Э. Углеродные волокна и углекомпозиты / Э. Фитцер, Р. Дифендорф, И. Калнин [и др.]; под ред. Э. Фитцера; пер. с англ. ― М. : Мир, 1988. ― 336 с.; Golecki, I. Properties of high thermal conductivity carbon-carbon composites for thermal management applications / I. Golecki, L. Xue, R. Leung [еt al.] //High-Temperature Electronic Materials, Devices and Sensors Conference, 1998. 27 Feb. 1998. ― San Diego, CA, USA. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=730696; Lavin, J. G. The correlation of thermal conductivity with electrical resistivity in mesophase pitch-based carbon fibers / J. G. Lavin, D. R. Boyington, J. Lanijani [еt al.] // Carbon. ― 1993. ― Vol. 31. ― P. 1001‒1004. http://fgmdb.kakuda.jaxa.jp/SSPSHTML/e-004st4.html; https://newogneup.elpub.ru/jour/article/view/642

  14. 14
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 8 (2017); 45-56 ; Новые огнеупоры; № 8 (2017); 45-56 ; 1683-4518 ; 10.17073/1683-4518-2017-8

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/850/794; Елисеев, Ю. С. Неметаллические композиционные материалы в элементах конструкций и производстве авиационных газотурбинных двигателей : уч. пособие для вузов / Ю. С. Елисеев, В. В. Крымов, С. А. Колесников, Ю. Н. Васильев. ― М. : МВТУ им. Н. Э. Баумана, 2007. ― 368 с. http://www.twiprx.com/file/114852/; SGL Group – The Carbon Company. A leading global manufacturer of carbon-based products. Specialty graphites for high-temperature furnaces. http://www.sglgroup.com/cms/_common/downloads/products/product-groups/gs/brochures/Specialty_Graphites_for_High_Temperature_Furnaces_e.pdf; Thakre, P. Mechanical erosion of graphite nozzle in solid-propellant rocker motor / P. Thakre, R. Rawat, R. Clayton, V. Yang // J. Propulsion and Power. ― 2013. ― Vol. 29, № 3. http://www.yang.gatech.edu/publications/Journal/JPP%20(2013,%20Thakre).pdf; Шишков, А. А. Рабочие процессы в ракетных двигателях твердого топлива : cправочник / А. А. Шишков, С. Д. Панин, Б. В. Румянцев. ― М. : Машиностроение, 1988. ― 240 с. http://www.studmed.ru/shishkov-aa-rumyancev-bv-gazogeneratory-raketnyhsistem_a668b218f1b.html; UUKM brands of «Desna-4», 4-KM-VM-4, KM-VM-2D and «Desna T-1» (in Russian). http://www.Niigrafit.ru; Manocha, L. M. High performance carbon-carbon composites / L. M. Manocha // Sadhana. ― 2003. ― Vol. 28, Parts 1/2. February/April. ― Р. 349‒358. http://www.ias.ac.in/article/fulltext/sadh/028/01-02/0349-0358; Pradere, Ch. Thermal and thermomechanical characterization of carbon and ceramic fibers at very high temperature / Ch. Pradere. https://tel.archives-ouvertes.fr/file/index/docid/500111/filename/ThesePradere.pdf; Лутков, А. И. Тепловые и электрические свойства углеродных материалов / А. И. Лутков. ― М. : Металлургия, 1992. ― 176 с.; Pathak, S. V. Enhanced heat transfer in composite materials / S. V. Pathak, Kh. Alam, D. Irwin. https://etd.ohiolink.edu/rws_etd/document/get/ohiou1368105955/inline; Колесников, С. А. Формирование уровня коэффициента теплопроводности углерод-углеродного композиционного материала / С. А. Колесников, М. Ю. Бамборин, В. А. Воронцов [и др.] // Новые огнеупоры. ― 2017. ― № 2. ― С. 30‒38. http://search.rsl.ru/ru/record/01001568155; Бамборин, М. Ю. Исследование влияния высокотемпературной обработки на окислительную стойкость углерод-углеродных композиционных материалов / М. Ю. Бамборин, С. А. Колесников // Новые огнеупоры. ― 2014. ― № 6. ― С. 23‒32. http://newogneup.elpub.ru/jour/article/view/515; Медведский, А. Л. Исследование физикомеханических свойств 4D углерод-углеродного композиционного материала на макро- и микроуровнях при действии высоких температур / А. Л. Медведский, Ю. В. Корнев, А. С. Курбатов // Электронный журнал «Тр. МАИ». ― Вып. № 41. ― С. 1‒15. www.mai.ru/science/trudy/; Вишняков, Л. Р. Композиционные материалы : cправочник / Л. Р. Вишняков, Т. В. Грудина, В. Х. Кадыров [и др.]; под ред. Д. М. Карпиноса. ― Киев : Наукова думка, 1985. ― 294 с.; Исаченко, В. П. Теплопередача. Издание 4-е переработанное и дополненное / В. П. Исаченко, В. А. Осипова, А. С. Сукомел. ― М. : Энергоиздат, 1981. ― 415 с.; Thakre, P. Chemical erosion of carbon-carbon/graphite nozzles in solid-propelliant rocket motors / P. Thakre, V. Yang // J. Propulsion and Power. ― 2008. ― Vol. 24, № 4. ― Р. 822‒833. https://www.researchgate.net/publication/239415312_Chemical_Erosion_of_Carbon-CarbonGraphite_Nozzles_in_Solid-Propellant_Rocket_Motors; Колесников, С. А. Сопротивление окислению углерод-углеродных композиционных материалов в диапазоне температур диффузионного торможения / С. А. Колесников // Известия вузoв. Химия и химическая технология. ― 2015. ― T. 58, № 7. ― С. 3‒5. https://docviewer.yandex.ru/?url=https%3A%2F%2Frucont.ru%2Ffile.ashx%3Fguid%3Db5e406cf-e1ee-46f4-919adec671a8430e&name=file.ashx%3Fguid%3Db5e406cfe1ee-46f4-919a-dec671a8430e&lang=ru&c=58ba6611ba60; David, E. Glass ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles / E. David // 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080017096.pdf; https://newogneup.elpub.ru/jour/article/view/850

  15. 15
    Academic Journal

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 3 (2017); 159-166 ; Новые огнеупоры; № 3 (2017); 159-166 ; 1683-4518 ; 10.17073/1683-4518-2017-3

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/781/757; Zmij, V. Complex Protective Coatings for Graphite and Carbon-Carbon Composite Materials / V. Zmij, S. Rudenkyi // Mater. Sci. Appl. ― 2015. ― Vol. 6, № 1.; Yang, W. A novel preparation and properties of insitu grown carbon nanotube reinforced carbon/carbon composites / W. Yang, R. Luo, Z. Hou [et al.] // Vacuum. ― 2016. ― Vol. 132, № 1.; Loghman-Estarki, M. Large scale synthesis of nontransformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating / M. Loghman-Estarki, H. Edris, R. Razavi [et al.] // Ceram. Int. ― 2015. ― Vol. 39, № 13.; Шульга, А. В. Композиты. Ч. 1. Основы материаловедения композиционных материалов / А. В. Шульга. ― М. : НИЯУ МИФИ, 2013. ― 96 с.; Абраимов, Н. В. Высокотемпературные материалы и покрытия для газовых турбин / Н. В. Абраимов. ― М. : Машиностроение, 1993.; Пат. 2375499 Российская Федерация, МПК8 C 23 F 17/00, C 23 C 14/16, C 23 C 4/08, C 23 C 4/10. Способ получения многослойного теплозащитного покрытия на деталях из жаропрочных сплавов / Поклад В. А., Крюков М. А., Рябенко Б. В., Козлов Д. Л.; заявитель и патентообладатель ФГУП «Московское машиностроительное производственное предприятие «Салют». ― № 2007146968/02; заявл. 20.12.07; опубл. 27.06.09, Бюл. № 34.; Пат. 2511146 Российская Федерация, МПК8 C 23 C 4/10, C 23 C 28/02, D 01 F 11/10. Способ нанесения на углеродные волокна и ткани / Панков В. П., Ковалев В. Д.; заявитель и патентообладатель ООО НПП «Плазма». ― № 2013104305/02; заявл. 04.02.13; опубл. 10.04.14, Бюл. № 10.; Пат. 2499078 Российская Федерация, МПК8 C 23 C 4/08, C 23 C 4/10, C 23 C 4/12. Способ получения эрозионно-стойких теплозащитных покрытий / Сайгин В. В., Сафронов А. В., Тишина Г. Н.; заявитель и патентообладатель ОАО «Композит». ― № 2012130369/02; заявл. 17.07.12; опубл. 20.11.13, Бюл. № 32.; Пат. 2445199 Российская Федерация, МПК C 23 C 4/10, C 23 C 14/06, B 23 P 6/00. Способ упрочнения блока сопловых лопаток турбомашин из никелевых и кобальтовых сплавов / Новиков А. В., Мингажев А. Д., Кишалов Е. А.; заявитель и патентообладатель ООО «Производственное предприятие Турбинаспеwсервис». ― № 2010111698/02; заявл. 25.03.10; опубл. 20.03.12, Бюл. № 8.; Qinghe, Y. Thermal stability of nanostructured 13 wt% Al2O3 ‒8 wt% Y2O3 –ZrO2 thermal barrier coatings / Y. Qinghe, Z. Chungen, F. Zhao [et al.] // J. Europ. Ceram. Soc. ― 2010. ― Vol. 30, № 4.; Mahmood, I. Improved oxidation resistance for thermal barrier ceramic coating project / I. Mahmood, W. Jameel, L. Khaleel [et al.] // Int. J. Res. Eng. & Technol. ― 2013. ― Vol. 1, № 1.; Пат. 2332522 США, МПК8 C 23 C 4/10. Плазменное напыление / Розенфланц А. З., Селиккайа А., Андерсон Т. Д.; заявитель и патентообладатель ЗМ Инновейтив Пропертиз Компани. ― № 2005102394/02; заявл. 02.06.03; опубл. 27.07.05, Бюл. № 24.; Naumenko, A. P. Vibrational Analysis and Raman Spectra of tetragonal Zirconia / A. P. Naumenko, N. I. Berezovska, M. M. Biliy [et al.] // Physics and chemistry of solid state. ― 2008. ― Vol. 9, № 1.; https://newogneup.elpub.ru/jour/article/view/781

  16. 16
    Academic Journal

    المساهمون: Минобрнауки России

    المصدر: NOVYE OGNEUPORY (NEW REFRACTORIES); № 6 (2017); 60-65 ; Новые огнеупоры; № 6 (2017); 60-65 ; 1683-4518 ; 10.17073/1683-4518-2017-6

    وصف الملف: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/821/785; Григорьев, С. Н. Технология комбинированного поверхностного упрочнения режущего инструмента из оксидно-карбидной керамики / С. Н. Григорьев, М. А. Волосова // Вестник машиностроения. ― 2005. ― № 9. ― С. 32‒36.; Grigor'ev, S. N. Complex surface hardening of oxidecarbide ceramic cutting tools / S. N. Grigor'ev, M. A. Volosova // Russ. Eng. Res. ― 2005. ― Vol. 25, № 9. ― С. 7‒12.; Volosova, M. Cutting ceramic inserts: the influence of abrasive machining and surface coatings on the operational characteristics / M. Volosova, S. Grigor'ev // Mech. Ind. ― 2016. ― Vol. 17, № 7. ― С. 705.; Кузин, В. В. Эффективное применение высокоплотной керамики для изготовления режущих и деформирующих инструментов / В. В. Кузин // Новые огнеупоры. ― 2010. ― № 12. ― С. 13‒19. Kuzin, V. V. Effective use of high density ceramic for manufacture of cutting and working tools / V. V. Kuzin // Refract. Ind. Ceram. ― 2010. ― Vol. 51, № 6. ― Р. 421‒426.; Табаков, В. П. Многослойные покрытия инструмента, работающего в условиях непрерывного резания / В. П. Табаков, А. А. Ермолаев // СТИН. ― 2005. ― № 7. ― С. 21‒25. Tabakov, V. P. Multi-layer coatings of the tools operating in continuous cutting conditions / V. P. Tabakov, A. A. Ermolaev // Russ. Eng. Res. ― 2005. ― Т. 25, № 7. ― С. 61‒65.; Sokovi´c, M. Cutting properties of the Al2O3 + SiC(w) based tool ceramic reinforced with the PVD and CVD wear resistant coatings / M. Sokovi´c, J. Mikuła, L.A. Dobrza´nski [et al.] // J. Mater. Proc. Technol. ― 2005. ― Vol. 164/165. ― Р. 924‒929.; Peng, Zh. Hard and wear-resistant titanium nitride films for ceramic cutting tools by pulsed high energy density plasma / Zh. Peng, H. Miao, W. Wang [et al.] // Surf. Coat. Technol. ― 2003. ― Vol. 6. ― Р. 183‒188.; Кузин, В. В. Разработка и исследование режущих инструментов из нитридной керамики c покрытием / В. В. Кузин // Тракторы и сельскохозяйственные машины. ― 2006. ― № 9. ― С. 48‒52.; Nakamichi, M. Material design of ceramic coating by plasma spray method / M. Nakamichi, T. Takabatake, H. Kawamura // Fusion Eng. Des. ― 1998. ― Vol. 41. ― P. 143‒147.; Kuzin, V. Tool life and wear mechanism of coated Si3N4 ceramic tools in turning grey cast iron / V. Kuzin, S. Grigoriev // Key Eng. Mater. ― 2014. ― Vol. 581. ― Р. 14‒17.; Табаков, В. П. Исследование процессов трещинообразования в износостойких покрытиях режущего инструмента / В. П. Табаков, А. В. Чихранов // Вест. Тамбовского университета. Серия : Естественные и технические науки. ― 2013. ― Т. 18, № 4-2. ― С. 1916‒1918.; Волосова, М. А. Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 2. Действует сосредоточенная сила / М. А. Волосова, С. Н. Григорьев, В. В. Кузин // Новые огнеупоры. ― 2014. ― № 10. ― С. 77‒82. Volosova, M. A. Effect of titanium nitride coatings on stress structural inhomogeneity in oxide-carbide ceramic. Part 2. Concentrated force action / M. A. Volosova, S. N. Grigor’ev, V. V. Kuzin // Refract. Ind. Ceram. ― 2015. ― Vol. 55, № 5. ― Р. 487‒491.; Волосова, М. А. Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 3. Действует распределенная силовая нагрузка / М. А. Волосова, С. Н. Григорьев, В. В. Кузин // Новые огнеупоры. ― 2014. ― № 12. ― С. 35‒40. Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 3. Action of distributed force load / M. A. Volosova, S. N. Grigor’ev, V. V. Kuzin // Refract. Ind. Ceram. ― 2015. ― Vol. 55, № 6. ― Р. 565‒569.; Волосова, М. А. Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 4. Действует тепловой поток / М. А. Волосова, С. Н. Григорьев, В. В. Кузин // Новые огнеупоры. ― 2015. ― № 2. ― С. 47‒52. Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 4. Action of heat flow / M. A. Volosova, S. N. Grigor’ev, V. V. Kuzin // Refract. Ind. Ceram. ― 2015. ― Vol. 56, № 1. ― Р. 91‒96.; Волосова, М. А. Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 5. Действует комбинированная нагрузка / М. А. Волосова, С. Н. Григорьев, В. В. Кузин // Новые огнеупоры. ― 2015. ― № 4. ― С. 49‒53. Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 5. A combined load operates / M. A. Volosova, S. N. Grigor’ev, V. V. Kuzin // Refract. Ind. Ceram. ― 2015. ― Vol. 56, № 2. ― Р. 197‒200.; Григорьев, С. Н. Напряженно-деформированное состояние инструментов из нитридной керамики с покрытием / С. Н. Григорьев, В. В. Кузин, М. А. Волосова // Вестник машиностроения. ― 2012. ― № 6. ― С. 64‒69. Grigor'ev, S. N. Stress-strain state of a coated nitrideceramic tool / S. N. Grigor'ev, V. V. Kuzin, M. A. Volosova // Russ. Eng. Res. ― 2012. ― Vol. 32, № 7/8. ― Р. 561‒566.; Кузин, В. В. Основные закономерности влияния толщины покрытия на напряженно-деформированное состояние поверхностного слоя керамики / В. В. Кузин, М. А. Волосова // Упрочняющие технологии и покрытия. ― 2015. ― № 6. ― С. 12‒17.; Кузин, В. В. Влияние покрытия TiC на напряженно-деформированное состояние пластины из высокоплотной нитридной керамики в условиях нестационарной термоупругости / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. ― 2013. ― № 9. ― С. 52‒57. Kuzin, V. V. Effect of a TiC coating on the stressstrain state of a plate of a high-density nitride ceramic under nonsteady thermoelastic conditions / V. V. Kuzin, S. N. Grigor’ev, M. A. Volosova // Refract. Ind. Ceram. ― 2014. ― Vol. 54, № 5. ― Р. 376‒380.; Кузин, В. В. Напряженное состояние границы между керамикой и покрытием под действием силовых нагрузок / В. В. Кузин, М. Ю. Фёдоров // Новые огнеупоры. ― 2016. ― № 4. ― С. 38‒44. Kuzin, V. V. The stressed state of the boundary between ceramic and a coating under the effect of power loads / V. V. Kuzin, M. Y. Fedorov // Refract. Ind. Ceram. ― 2016. ― Vol. 57, № 2. ― Р. 192‒198.; Кузин, В. В. Напряженное состояние границы между керамикой и покрытием под действием комбинированной нагрузки / В. В. Кузин, М. Ю. Фёдоров // Новые огнеупоры. ― 2016. ― № 6. ― С. 43‒48. Kuzin, V. V. Stressed state of a boundary between ceramic and coating under action of a combined load / V. V. Kuzin, M. Y. Fedorov // Refract. Ind. Ceram. ― 2016. ― Vol. 57, № 3. ― Р. 308‒312.; Кузин, В. В. Микроструктурная модель керамической режущей пластины / В. В. Кузин // Вестник машиностроения. ― 2011. ― № 5. ― С. 72‒76. Kuzin, V. V. Microstructural model of ceramic cutting plate / V. V. Kuzin // Russ. Eng. Res. ― 2011. ― Vol. 31, № 5. ― Р. 479‒483.; Григорьев, С. Н. Автоматизированная система термопрочностных расчетов керамических режущих пластин / С. Н. Григорьев, В. И. Мяченков, В. В. Кузин // Вестник машиностроения. ― 2011. ― № 11. ― С. 26‒31. Grigor’ev, S. N. Automated thermal-strength calculations of ceramic cutting plates / S. N. Grigor’ev, V. I. Myachenkov, V. V. Kuzin // Russ. Eng. Res. ― 2011. ― Vol. 31, № 11. ― Р. 1060‒1066.; Kuzin, V. Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material / V. Kuzin, S. Grigor'ev // Appl. Mechan. Mater. ― 2014. ― Vol. 486. ― Р. 32‒35.; https://newogneup.elpub.ru/jour/article/view/821

  17. 17
    Academic Journal

    مصطلحات موضوعية: УГЛЕРОД-УГЛЕРОДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ,CARBON-CARBON COMPOSITE MATERIAL,МАТЕРИАЛ "УГЛЕКОН","UGLECON" MATERIAL,МАТЕРИАЛ "ЛУЧ",ТЕРМОГРАДИЕНТНЫЙ МЕТОД,THERMOGRADIENT METHOD,ЗОНА ПИРОЛИЗА,УГЛЕРОДНЫЙ КАРКАС,CARBON FRAMEWORK,ВЫСОКОМОДУЛЬНАЯ ТКАНЬ УТ-900,HIGH MODULUS FABRIC MATERIAL UT-900,НИЗКОМОДУЛЬНАЯ ТКАНЬ УРАЛ ТМ-4,LOW MODULUS FABRIC MATERIAL URAL TM-4,ПОРИСТОСТЬ,POROSITY,ПЛОТНОСТЬ,DENSITY,ГЕРМЕТИЗИРУЮЩИЕ ПОКРЫТИЯ,SEALING COATING,СКОРОСТЬ ДВИЖЕНИЯ ЗОНЫ ПИРОЛИЗА,VELOCITY OF THE PYROLYSIS ZONE,"LUCH" MATERIAL,PYROLYSIS ZONE

    وصف الملف: text/html

  18. 18
  19. 19
    Report

    المساهمون: Капранов, Борис Иванович

    وصف الملف: application/pdf

    Relation: Иженбин И. А. Разработка томографического контроля распределения плотности в изделиях из полимерных композицион-ных материалов УУКМ : дипломный проект / И. А. Иженбин; Национальный исследовательский Томский политехнический университет (ТПУ), Институт неразрушающего контроля (ИНК), Кафедра физических методов и приборов контроля качества (ФМПК); науч. рук. Б. И. Капранов. — Томск, 2016.; http://earchive.tpu.ru/handle/11683/28151

  20. 20