-
1Academic Journal
المؤلفون: Stojiljkovic, Vuk
المصدر: Selecciones Matemáticas; Vol. 9 No. 02 (2022): August - December; 370 - 380 ; Selecciones Matemáticas; Vol. 9 Núm. 02 (2022): Agosto - Diciembre; 370 - 380 ; Selecciones Matemáticas; v. 9 n. 02 (2022): Agosto - Dezembro; 370 - 380 ; 2411-1783
مصطلحات موضوعية: Fractional derivatives, Fractional calculus, Derivadas fraccionarias, cálculo fraccionario
وصف الملف: application/pdf
-
2Academic Journal
المؤلفون: Pucheta, Pablo
المصدر: Extensionismo, Innovación y Transferencia Tecnológica; Vol. 4 (2018); 339-351 ; 2422-6424
مصطلحات موضوعية: Ecuación integral de Volterra, cálculo fraccionario, transformada de Laplace
وصف الملف: application/pdf
Relation: https://revistas.unne.edu.ar/index.php/eitt/article/view/2901/2577; https://revistas.unne.edu.ar/index.php/eitt/article/view/2901; http://repositorio.unne.edu.ar/handle/123456789/37662
-
3
المؤلفون: Valente, Maria Serra
المساهمون: Guerra, João, Gaivão, José, Repositório da Universidade de Lisboa
مصطلحات موضوعية: cálculo fraccionário, movimento Browniano fraccionário, integral Riemann-Stieljtes generalizada, estabilidade exponencial, fractional calculus, fractional Brownian motion, generalized Riemann-Stieltjes integral, exponential stability
وصف الملف: application/pdf
Relation: Valente, Maria Serra (2019). "Stability of non-trivial solutions of stochastic differential equations driven by the fractional Brownian motion". Dissertação de Mestrado, Universidade de Lisboa. Instituto Superior de Economia e Gestão.
الاتاحة: http://hdl.handle.net/10400.5/18993
-
4Book
المؤلفون: Isaac Campos Cantón, 0000-0002-3189-3417, Juan Alberto Vértiz Hernández, 0000-0002-6732-3352, Roberto Carlos Martínez Montejano, 000-0002-8996-4134, José Salomé Murguía Ibarra, 0000-0001-7239-8968, Luis Eduardo Reyes López, 0000-0003-0541-1215, Baltazar Cerda Cerda, 0000-0002-1496-4869, Luis Carlos Lujano Hernández, 0000-0002-5281-7528, Juan Manuel Fortuna Cervantes, 0000-0002-9229-3159, Campos Cantón, Isaac, Vértiz Hernández, Juan Alberto, Martínez Montejano, Roberto Carlos, Murguía Ibarra, José Salomé, Reyes López, Luis Eduardo, Cerda Cerda, Baltazar, Lujano Hernández, Luis Carlos, Fortuna Cervantes, Juan Manuel
المساهمون: Campos Cantón, Isaac, Vértiz Hernández, Juan Alberto
مصطلحات موضوعية: Integrador, Cálculo fraccionario, Butterworth, Chebyshev, Riemman-Louville, OpAmps, Cámara termográfica, Circuito electrónico, Falla electrónica, Procesamiento de imagen, Termografía, Nanosatélite, CubeSat, Densidad atmosférica, Arrastre libre, Automatización industrial, Sistemas dinámicos, Sistemas de cifrado, Potencial de acción, Célula excitable, Modelo electrónico, Arduino, Covid-19, Microcontrolador, Ventilador Ambu, Exoesqueleto, Aprendizaje profundo, Redes neuronales convolucionales, Circuitos analógicos, Circuitos lógicos
وصف الملف: application/pdf
Relation: Versión publicada; REPOSITORIO NACIONAL CONACYT; https://repositorioinstitucional.uaslp.mx/xmlui/handle/i/7494
-
5Dissertation/ Thesis
Thesis Advisors: Vinagre Jara, Blas Manuel, Universidad de Extremadura. Departamento de Ingeniería Eléctrica, Electrónica y Automática
مصطلحات موضوعية: Control híbrido, Cálculo fraccionario, Estabilidad, Hybrid control, Fractional calculus, Stability, 3311.02 Ingeniería de Control, 3311.14 Servomecanismos, 1207.02 Sistemas de Control
URL الوصول: http://hdl.handle.net/10662/584
-
6Academic Journal
المؤلفون: Avalos Rodríguez, Jesús Pascual
المصدر: Revista CIENCIA Y TECNOLOGÍA; Vol. 17 Núm. 3 (2021): Revista CYT; 91-99 ; 2306-2002 ; 1810-6781
مصطلحات موضوعية: Ecuaciones diferenciales fraccionarias, derivada fraccionaria, integral fraccionaria, Cálculo fraccionario, Fractional differential equations, fractional derivative, fractional integral, Fractional Calculus
وصف الملف: application/pdf
-
7Academic Journal
المؤلفون: Moreno, Higidia
المصدر: Revista CIENCIA Y TECNOLOGÍA; Vol. 17 Núm. 1 (2021): Revista CYT; 97-108 ; 2306-2002 ; 1810-6781
مصطلحات موضوعية: Transposición Didáctica, Cálculo Fraccionario, Diseño curricular
وصف الملف: application/pdf
-
8Dissertation/ Thesis
المؤلفون: Abril Bermúdez, Felipe Segundo
المساهمون: Quimbay Herrera, Carlos José, Econofisica y Sociofisica, Felipe Segundo Abril Bermúdez 0000-0002-2512-4929, Felipe Segundo Abril Bermúdez
مصطلحات موضوعية: 530 - Física::539 - Física moderna, 330 - Economía::332 - Economía financiera, 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas, Multifractal system, Supersymmetry, Fractional calculus, Análisis multifractal, Supersimetría, Cálculo fraccionario, Movimiento browniano, Análisis de series de tiempo, Procesos estocásticos, Brownian movements, Time-series analysis, Stochastic processes, Fractional stochastic path integral formalism, Fractional Brownian motion, Econophysics, Multifractality, Shannon index, Supersymmetric theory of stochastic dynamics, Formalismo de integral de camino estocástica fraccional, Movimiento Browniano fraccional, Econofísica, Multifractalidad, Índice de Shannon, Teoría supersimétrica de la dinámica estocástica
وصف الملف: xviii, 160 páginas; application/pdf
Relation: F. S. Abril and C. J. Quimbay. Temporal fluctuation scaling in non-stationary time series using the path integral formalism. Phys. Rev. E, 103(4), 04 2021. doi: https://doi.org/10.1103/PhysRevE.103.042126.; F. S. Abril and C. J. Quimbay. Temporal Theil scaling in diffusive trajectory time series. Phys. Rev. E, 106(1), 07 2022. doi: https://doi.org/10.1103/PhysRevE.106.014117.; F. S. Abril and C. J. Quimbay. Evolution of temporal fluctuation scaling exponent in nonstationary time series using supersymmetric theory of stochastic dynamics. Manuscript accepted to be published on Phys. Rev. E at: https://journals.aps.org/pre/accepted/02074Rb1Xe31ac2a727e1f49be6f73c21dba65baf, 01 2024.; F. S. Abril and C. J. Quimbay. Temporal fluctuation scaling and temporal Theil scaling in financial time series. In Advances in quantitative methods for economics and business. Springer, 07 2024. Manuscript accepted to be published as a chapter (forthcoming).; F. S. Abril, J. E. Trinidad-Segovia, M. A. Sánchez-Granero, and C. J. Quimbay. Generalized Shannon index as a multifractal measure in financial time series. Department of Physics, Universidad Nacional de Colombia. Manuscript submitted for publication, 01 2024.; F. S. Abril and C. J. Quimbay. Feynman-Kac formula driven by an arbitrary fractional noise. Department of Physics, Universidad Nacional de Colombia. Manuscript submitted for publication, 11 2023.; F. S. Abril and C. J. Quimbay. Universality on the Spatial and Temporal Spread of Covid-19. Manuscript on webpage at: https://dx.doi.org/10.2139/ssrn.4511708, 2023.; V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, and H. E. Stanley. Econophysics: financial time series from a statistical physics point of view. Physica A, 279(1-4):443–456, 05 2000. doi: https://doi.org/10.1016/s0378-4371(00)00010-8.; H. E. Stanley, S. V. Buldyrev, G. Franzese, S. Havlin, F. Mallamace, P. Kumar, V. Plerou, and T. Preis. Correlated randomness and switching phenomena. Physica A, 389(15):2880–2893, 08 2010. doi: https://doi.org/10.1016/j.physa.2010.02.023.; H. E. Stanley, V. Afanasyev, L. A. N. Amaral, S. V. Buldyrev, A. L. Goldberger, S. Havlin, H. Leschhorn, P. Maass, R. N. Mantegna, C. K. Peng, P. A. Prince, M. A. Salinger, M. H. R. Stanley, and G. M. Viswanathan. Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A, 224(1-2):302–321, 02 1996. doi: https://doi.org/10.1016/0378-4371(95)00409-2.; R. N. Mantegna and H. E. Stanley. Scaling behavior in the dynamics of an economic index. Nature, 376(6535):46–49, 05 1993. doi: https://doi.org/10.1038/376046a0.; H. M. Gupta and J. R. Campanha. The gradually truncated Lévy flight for systems with power-law distributions. Physica A, 268(1-2):231–239, 06 1999. doi: https://doi.org/10.1016/S0378-4371(99)00028-X.; R. N. Mantegna and H. E. Stanley. Ultra-slow convergence to a Gaussian: The truncated Lévy flight. In Lévy Flights and Related Topics in Physics, pages 300–312. Springer, Berlin Heidelberg, Germany, 2005. doi: https://doi.org/10.1007/3-540-59222-9_42.; A. Dragulescu and V. M. Yakovenko. Statistical mechanics of money. Eur. Phys. J. B, 17(4):723–729, 10 2000. doi: https://doi.org/10.1007/s100510070114.; M. Patriarca, A. Chakraborti, and K. Kaski. Statistical model with a standard Gamma distribution. Phys. Rev. E, 70(1), 07 2004. doi: https://doi.org/10.1103/PhysRevE.70.016104.; A. C. Silva, R. E. Prange, and V. M. Yakovenko. Exponential Distribution of Financial Returns at Mesoscopic Time Lags: A New Stylized Fact. Physica A, 344(1-2):227–235, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.122.; J. P. Bouchaud. Elements for a theory of financial risks. Physica A, 263(1-4):415–426, 02 1999. doi: https://doi.org/10.1016/s0378-4371(98)00486-5.; H. Kleinert. Stochastic calculus for assets with non-Gaussian price fluctuations. Physica A, 311(3-4):536–562, 08 2002. doi: https://doi.org/10.1016/S0378-4371(02)00803-8.; T. Lix and F. Westerhoff. Economics crisis. Nature Phys., 5(1):2–3, 01 2009. doi: https://doi.org/10.1038/nphys1163.; J. D. Farmer and D. Foley. The economy needs agent-based modelling. Nature, 460(7256):685–686, 08 2009. doi: https://doi.org/10.1038/460685a.; C. Schinckus. Economic uncertainty and econophysics. Physica A, 388(20):4415–4423, 10 2009. doi: https://doi.org/10.1016/j.physa.2009.07.008.; C. Schinckus. Between complexity of modelling and modelling of complexity: An essay on econophysics. Physica A, 392(17):3654–3665, 09 2013. doi: https://doi.org/10.1016/j.physa.2013.04.005.; A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: I. Empirical facts. Quant. Finance, 11(7):991–1012, 06 2011. doi: https://doi.org/10.1080/14697688.2010.539248.; J. M. Courtault, Y. Kabanov, B. Bru, P. Crepel, I. Lebon, and A. Marchand. Louis Bachelier on the Centenary of Theorie de la Speculation. Math. Financ., 10(3):339–353, 07 2000. doi: https://doi.org/10.1111/1467-9965.00098.; A. Einstein. über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys., 322(8):549–560, 07 1905. doi: https://doi.org/10.1002/andp.19053220806.; N. G. van Kampen. Itô versus Stratonovich. J. Stat. Phys., 24(1):175–187, 01 1981. doi: https://doi.org/10.1007/bf01007642.; M. F. M. Osborne. Brownian Motion in the Stock Market. Oper. Res., 7(2):145–173, 04 1959. doi: https://doi.org/10.1287/opre.7.2.145.; F. Black and M. Scholes. The pricing of options and corporate liabilities. In World Scientific Reference on Contingent Claims Analysis in Corporate Finance, pages 3–21. World Scientific Publishing Company, 03 2019. doi: https://doi.org/10.1142/9789814759588_0001.; H. Föllmer and A. Schied. Stochastic Finance. De Gruyter, 12 2004. doi: https://doi.org/10.1515/9783110212075.; B. Mandelbrot. The Pareto–Levy law and the distribution of income. Intl. Econ. Rev., 1(2):79–106, 05 1960. doi: https://doi.org/10.2307/2525289.; B. Mandelbrot. The variation of certain speculative prices. J. Bus., 36(4):394–419, 10 1963. https://www.jstor.org/stable/2351623.; S. L. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Financ. Stud., 6(2):327–343, 04 1993. https://doi.org/10.1093/rfs/6.2.327.; P. Tankov and R. Cont. Financial modelling beyond Brownian motion 1. In Financial Modelling with Jump Processes. Chapman and Hall/CRC, 12 2003.; B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, 10(4):422–437, 10 1968. doi: https://doi.org/10.1137/1010093.; Z. Jiang, W. Xie, W. Zhou, and D. Sornette. Multifractal analysis of financial markets: a review. Rep. Prog. Phys., 82(12), 11 125901. doi: https://doi.org/10.1088/1361-6633/ab42fb.; J. Rosiński. Tempering stable processes. Stoch. Process. Their Appl., 117(6):677–707, 06 2007. doi: https://doi.org/10.1016/j.spa.2006.10.003.; M. A. Sánchez-Granero, J. E. Trinidad-Segovia, and J. García-Pérez. Some comments on Hurst exponent and the long memory processes on capital markets. Physica A, 387(22):5543–5551, 09 2008. doi: https://doi.org/10.1016/j.physa.2008.05.053.; M. Fernández-Martínez, M. A. Sánchez-Granero, and J. E. Trinidad-Segovia. Measuring the self-similarity exponent in Lévy stable processes of financial time series. Physica A, 392(21):5330 – 5345, 11 2013. doi: https://doi.org/10.1016/j.physa.2013.06.026.; M. Fernández-Martínez, M. A. Sánchez-Granero, J. E. Trinidad-Segovia, and I. M. Román-Sánchez. An accurate algorithm to calculate the Hurst exponent of self-similar processes. Phys. Lett. A, 378(32-33):2355–2362, 06 2014. doi: https://doi.org/10.1016/j.physleta.2014.06.018.; H. Lotfalinezhad and A. Maleki. TTA, a new approach to estimate Hurst exponent with less estimation error and computational time. Physica A, 553:124093, 09 2020. doi: https://doi.org/10.1016/j.physa.2019.124093.; A. Gómez-Águila, J. E. Trinidad-Segovia, and M. A. Sánchez-Granero. Improvement in Hurst exponent estimation and its application to financial markets. Financial Innov., 8(1), 09 2022. doi: https://doi.org/10.1186/s40854-022-00394-x.; H. E. Hurst. Long-Term Storage Capacity of Reservoirs. ASCE Trans., 116(1):770–799, 01 1951. doi: https://doi.org/10.1061/taceat.0006518.; L. A. Martín-Montoya, N. M. Aranda-Camacho, and C. J. Quimbay. Long-range correlations and trends in Colombian seismic time series. Physica A, 421:124–133, 03 2015. doi: https://doi.org/10.1016/j.physa.2014.10.073.; M. Tokeshi. On the mathematical basis of the variance-mean power relationship. Popul. Ecol., 37(1):43–48, 06 1995. doi: https://doi.org/10.1007/BF02515760.; J. W. Kirchner, X. Feng, and C. Neal. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature, 403(6769):524–527, 02 2000. doi: https://doi.org/10.1038/35000537.; J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316(1-4):87–114, 12 2002. doi: https://doi.org/10.1016/S0378-4371(02)01383-3.; K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva, and R. J. Ilmoniemi. LongRange Temporal Correlations and Scaling Behavior in Human Brain Oscillations. J. Neurosci., 21(4):1370–1377, 02 2001. doi: https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001.; G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66(4):1125–1388, 10 1994. doi: https://doi.org/10.1103/RevModPhys.66.1125.; G. Paladin and A. Vulpiani. Anomalous scaling laws in multifractal objects. Phys. Rep., 156(4):147–225, 12 1987. doi: https://doi.org/10.1016/0370-1573(87)90110-4.; P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley. Scaling of the distribution of fluctuations of financial market indices. Phys. Rev. E, 60(5):5305–5316, 11 1999. doi: https://doi.org/10.1103/PhysRevE.60.5305.; V. Plerou and H. E. Stanley. Tests of scaling and universality of the distributions of trade size and share volume: Evidence from three distinct markets. Phys. Rev. E, 76(4), 10 2007. doi: https://doi.org/10.1103/PhysRevE.76.046109.; M. A. Sánchez-Granero, J. E. Trinidad-Segovia, J. García, and M. Fernández. The Effect of the Underlying Distribution in Hurst Exponent Estimation. PLoS One, 10(5):e0127824, 05 2015. doi: https://doi.org/10.1371/journal.pone.0127824.; J. Barunik and L. Kristoufek. On Hurst exponent estimation under heavy-tailed distributions. Physica A, 389(18):3844–3855, 09 2010. doi: https://doi.org/10.1016/j.physa.2010.05.025.; Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi. Financial market models with Lévy processes and time-varying volatility. J. Bank. Financ., 32(7):1363–1378, 07 2008. doi: https://doi.org/10.1016/j.jbankfin.2007.11.004.; P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 9(1-2):189–208, 10 1983. doi: https://doi.org/10.1016/0167-2789(83)90298-1.; A. Carbone, G. Castelli, and H. E. Stanley. Time-dependent Hurst exponent in financial time series. Physica A, 344(1-2):267–271, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.130.; M. A. de Menezes and A. L. Barabási. Fluctuations in Network Dynamics. Phys. Rev. Lett., 92(2), 01 2004. doi: https://doi.org/10.1103/PhysRevLett.92.028701.; Z. Eisler and J. Kertész. Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks. Phys. Rev. E, 73(4), 04 2006. doi: https://doi.org/10.1103/PhysRevE.73.046109.; Z. Eisler, I. Bartos, and J. Kertész. Fluctuation scaling in complex systems: Taylor's law and beyond. Adv. Phys., 57(1):89–142, 01 2008. doi: https://doi.org/10.1080/00018730801893043.; A. Fronczak and P. Fronczak. Origins of Taylor’s power law for fluctuation scaling in complex systems. Phys. Rev. E, 81(6), 06 2010. doi: https://doi.org/10.1103/PhysRevE.81.066112.; J. E. Cohen and M. Xu. Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling. Proc. Natl. Acad. Sci., 112(25):7749–7754, 04 2015. doi: https://doi.org/10.1073/pnas.1503824112.; Z. Eisler, J. Kertész, S. H. Yook, and A. L. Barabási. Multiscaling and nonuniversality in fluctuations of driven complex systems. Europhys. Lett., 69(4):664–670, 02 2005. doi: https://doi.org/10.1209/epl/i2004-10384-1.; L. Blanco, V. Arunachalam, and S. Dharmaraja. Introduction to probability and stochastic processes with applications. John Wiley & Sons, Nashville, TN, 06 2012.; N. Scafetta and P. Grigolini. Scaling detection in time series: Diffusion entropy analysis. Phys. Rev. E, 66(3), 09 2002. doi: https://doi.org/10.1103/PhysRevE.66.036130.; G. Trefán, E. Floriani, B. J. West, and P. Grigolini. Dynamical approach to anomalous diffusion: Response of Lévy processes to a perturbation. Phys. Rev. E, 50(4):2564–2579, 11 1994. doi: https://doi.org/10.1103/PhysRevE.50.2564.; J. Qi and H. Yang. Hurst exponents for short time series. Phys. Rev. E, 84(6), 12 2011. doi: https://doi.org/10.1103/PhysRevE.84.066114.; I. F. Spellerberg and P. J. Fedor. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ShannonWiener Index. Glob. Ecol. Biogeogr., 12(3):177–179, 04 2003. doi: https://doi.org/10.1046/j.1466-822x.2003.00015.x.; J. Johnston and H. Theil. Economics and information theory. Econ. J., 79(315):601, 09 1969. doi: https://doi.org/10.2307/2230396.; J. M. Sarabia, V. Jordá, and L. Remuzgo. The Theil Indices in Parametric Families of Income Distributions—A Short Review. Rev. Income Wealth, 63(4):867–880, 11 2016. doi: https://doi.org/10.1111/roiw.12260.; F. Cowell. Theil, Inequality and the Structure of Income Distribution. Theil, Inequality and the Structure of Income Distribution, 2003.; D. Schertzer, M. Larchev, J. Duan, V. V. Yanovsky, and S. Lovejoy. Fractional Fokker–Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises. arXiv, 09 2004. doi: https://doi.org/10.48550/arXiv.math/0409486.; I. Calvo, R. Sánchez, and B. A. Carreras. Fractional Lévy motion through path integrals. J. Phys. A Math. Theor., 42(5):055003, 01 2009. doi: https://doi.org/10.1088/1751-8113/42/5/055003.; C. Ma, Q. Ma, H. Yao, and T. Hou. An accurate european option pricing model under fractional stable process based on Feynman path integral. Physica A, 494:87–117, 03 2018. doi: https://doi.org/10.1016/j.physa.2017.11.120.; R. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys., 20(2):367–387, 04 1948. doi: https://doi.org/10.1103/RevModPhys.20.367.; L. C. Fai. Feynman path integrals in quantum mechanics and statistical physics. CRC Press, London, England, 04 2021.; H. S. Wio. Path Integrals for Stochastic Processes. World Scientific Publishing Company, 11 2012. doi: https://doi.org/10.1142/8695.; N. Laskin. Fractional Nonlinear Quantum Mechanics. In Fractional Quantum Mechanics, pages 184–185. World Scientific Publishing Company, 03 2018. doi: https://doi.org/10.1142/10541.; M. G. Tsionas. Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility. Physica A, 567:125647, 04 2021. doi: https://doi.org/10.1016/j.physa.2020.125647.; M. Kac. On distributions of certain Wiener functionals. Trans. Am. Math. Soc., 65(1):1–13, 01 1949. doi: https://doi.org/10.1090/s0002-9947-1949-0027960-x.; X. Wu, W. Deng, and E. Barkai. Tempered fractional Feynman-Kac equation: Theory and examples. Phys. Rev. E, 93(3), 03 2016. doi: https://doi.org/10.1103/physreve.93.032151.; H. F. Smith. An empirical law describing heterogeneity in the yields of agricultural crops. J. Agri. Sci., 28(1):1–23, 01 1938. doi: https://doi.org/10.1017/S0021859600050516.; L. R. Taylor. Aggregation, Variance and the Mean. Nature, 189(4766):732–735, 03 1961. doi: https://doi.org/10.1038/189732a0.; A. G. Zawadowski, J. Kertész, and G. Andor. Large price changes on small scales. Physica A, 344(4):221–226, 12 2004. doi: https://doi.org/10.1016/j.physa.2004.06.121.; P. C. Ivanov, A. Yuen, and P. Perakakis. Impact of Stock Market Structure on Intertrade Time and Price Dynamics. PLoS ONE, 9(4), 04 2014. doi: https://doi.org/10.1371/journal.pone.0092885.; A. L. Barabasi and T. Vicsek. Multifractality of self-affine fractals. Phys. Rev. A, 44(4):2730–2733, 08 1991. doi: https://doi.org/10.1103/PhysRevA.44.2730.; J. Kwapień, P. Oświęcimka, and S. Drożdż. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E, 92(5), 11 2015. doi: https://doi.org/10.1103/PhysRevE.92.052815.; F. Benassi, A. Naccarato, and M. Xu. Taylor's law detects and interprets temporal trends of the spatial distribution of Covid-19 daily infection density across Italian provinces. Research Square, 14, 07 2021. doi: https://doi.org/10.21203/rs.3.rs-626505/v1.; Z. S. Ma. Coupling power laws offers a powerful method for problems such as biodiversity and COVID-19 fatality predictions. Front. Appl. Math. Stat., 8, 03 2022. doi: https://doi.org/10.3389/fams.2022.801830.; J. Choloniewski. Modelling dynamics of news media, 10 2022.; D. Valenti, B. Spagnolo, and G. Bonanno. Hitting time distributions in financial markets. Physica A, 382(1):311–320, 08 2007. doi: https://doi.org/10.1016/j.physa.2007.03.044.; B. Spagnolo and D. Valenti. Volatility Effects on the Escape Time in Financial Market Models. Int. J. Bifurc. Chaos Appl. Sci. Eng., 18(9):2775 – 2786, 09 2008. doi: https://doi.org/10.1142/S0218127408022007.; D. Valenti, G. Fazio, and B. Spagnolo. Stabilizing effect of volatility in financial markets. Phys. Rev. E, 97(6), 06 2018. doi: https://doi.org/10.1103/PhysRevE.97.062307.; A. Giuffrida, D. Valenti, G. Ziino, B. Spagnolo, and A. Panebianco. A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. Eur. Food. Res. Technol., 228(5):767–775, 12 2008. doi: https://doi.org/10.1007/s00217-008-0988-6.; N. Pizzolato, A. Fiasconaro, D. P. Adorno, and B. Spagnolo. Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field. Phys. Biol., 7(3):034001, 08 2010. doi: https://doi.org/10. 1088/1478-3975/7/3/034001.; G. Denaro, D. Valenti, A. La Cognata, B. Spagnolo, A. Bonanno, G. Basilone, S. Mazzola, S. W. Zgozi, S. Aronica, and C. Brunet. Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics. Ecol. Complex., 13:21–34, 03 2013. doi: https://doi.org/10.1016/j.ecocom.2012.10.002.; G. Falci, A. La Cognata, M. Berritta, A. D’Arrigo, E. Paladino, and B. Spagnolo. Design of a Lambda system for population transfer in superconducting nanocircuits. Phys. Rev. B, 87(21), 06 2013. doi: https://doi.org/10.1103/PhysRevB.87.214515.; B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random variables. Mathematical Association, 08 2021. https://www.jstor.org/stable/i285536.; H. Kleinert. Path Integrals and Financial Markets. In Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, chapter 20, pages 1440–1535. World Scientific Publishing Company, 05 2009. doi: https://doi.org/10.1142/7305.; K. Taufemback, R. Giglio, and S. Da Silva. Algorithmic complexity theory detects decreases in the relative efficiency of stock markets in the aftermath of the 2008 financial crisis. Econ. Bull., 31(2):1631 – 1647, 6 2011.; G. Parisi and N. Sourlas. Random Magnetic Fields, Supersymmetry, and Negative Dimensions. Phys. Rev. Lett., 43(11):744–745, 09 1979. doi: https://doi.org/10.1103/physrevlett.43.744.; I. V. Ovchinnikov. Introduction to Supersymmetric Theory of Stochastics. Entropy, 18(4):108, 03 2016. doi: https://doi.org/10.48550/arxiv.1511.03393.; A. Stuart. Kendall’s advanced theory of statistics. Wiley-Blackwell, Hoboken, NJ, 6 edition, 06 1994.; E. T. Bell. Partition Polynomials. Ann. Math., 29(1-4):38–46, 07 1927. doi: https://doi.org/10.2307/1967979.; T. Kim and D. S. Kim. A Note on Central Bell Numbers and Polynomials. Russ. J. Math. Phys., 27(1):76–81, 01 2020. doi: https://doi.org/10.1134/s1061920820010070.; S. Roman. The Formula of Faa Di Bruno. Am. Math. Mon., 87(10):805–809, 12 1980. doi: https://doi.org/10.1080/00029890.1980.11995156.; H. Kleinert and X. J. Chen. Boltzmann distribution and market temperature. Physica A, 383(2):513–518, 09 2007. doi: https://doi.org/10.1016/S0378-4371(02)00803-8.; H. Kleinert and S. V. Shabanov. Supersymmetry in stochastic processes with higherorder time derivatives. Phys. Lett. A, 235(2):105–112, 10 1997. doi: https://doi.org/10.1016/s0375-9601(97)00660-9.; J. J. Sakurai and J. J. Napolitano. Modern Quantum Mechanics. Pearson Education, Philadelphia, PA, 2 edition, 07 2010.; R. K. P. Zia, E. F. Redish, and S. R. McKay. Making sense of the Legendre transform. Am. J. Phys., 77(7):614–622, 07 2009. doi: https://doi.org/10.1119/1.3119512.; E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev., 28(6):1049–1070, 12 1926. doi: https://doi.org/10.1103/physrev.28.1049.; L. C. Evans. Nonlinear first-order PDE. In Graduate Studies in Mathematics, Graduate studies in mathematics, pages 91–166. American Mathematical Society, Providence, Rhode Island, 2 edition, 03 2010.; R. Courant and D. Hilbert. Methods of mathematical physics. Wiley Classics Library. John Wiley & Sons, Nashville, TN, 04 1989.; V. N. Popov. Functional integrals in quantum field theory and statistical physics. Mathematical Physics and Applied Mathematics. Springer, New York, NY, 11 2001.; P. J. Daniell. Integrals in An Infinite Number of Dimensions. Ann. Math., 20(4):281, 07 1919. doi: https://doi.org/10.2307/1967122.; R. Friedrich, J. Peinke, M. Sahimi, and M. R. R. Tabar. Approaching complexity by stochastic methods: From biological systems to turbulence. Phys. Rep., 506(5):87–162, 09 2011. doi: https://doi.org/10.1016/j.physrep.2011.05.003.; J. E. Cohen, S. Friedland, T. Kato, and F. P. Kelly. Eigenvalue inequalities for products of matrix exponentials. Linear Algebra Appl., 45:55–95, 06 1982. doi: https://doi.org/10.1016/0024-3795(82)90211-7.; A. Issaka and I. SenGupta. Feynman path integrals and asymptotic expansions for transition probability densities of some Lévy driven financial markets. J. Appl. Math. Comput., 54(1-2):159–182, 03 2016. doi: https://doi.org/10.1007/s12190-016-1002-2.; R. LePage, K. Podgórski, and M. Ryznar. Strong and conditional invariance principles for samples attracted to stable laws. Probab. Theory Relat. Fields, 108(2):281–298, 06 1997. doi: https://doi.org/10.1007/s004400050110.; A. Piryatinska. Inference for the Lévy models and their applications in medicine and statistical physics, 10 2005.; J. P. Bouchaud and M. Mézard. Wealth condensation in a simple model of economy. Physica A, 282(3-4):536–545, 07 2000. doi: https://doi.org/10.1016/S0378-4371(00)00205-3.; D. S. Quevedo and C. Quimbay. Non-conservative kinetic model of wealth exchange with saving of production. Eur. Phys. J. B, 93(10), 10 2020. doi: https://doi.org/10.1140/epjb/e2020-10193-3.; R. Aroussi. Download market data from Yahoo! Finance API. Python, 2023.; A. A. Dragulescu and V. M. Yakovenko. Probability distribution of returns in the Heston model with stochastic volatility. arXiv, 03 2004. doi: https://doi.org/10.48550/arXiv.cond-mat/0203046.; F. Abril. Temporal_Fluctuation_Scaling. GitHub repository, 2023. https://github.com/fsabrilb/Temporal_Fluctuation_Scaling.; H. E. Stanley, L. A. N. Amaral, P. Gopikrishnan, P. C. Ivanov, T. H. Keitt, and V. Plerou. Scale invariance and universality: organizing principles in complex systems. Physica A, 281(1-4):64–68, 06 2000. doi: https://doi.org/10.1016/s0378-4371(00)00195-3.; B. Mandelbrot. The fractal geometry of nature. W. H. Freeman, New York, NY, 11 1982.; C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger. Mosaic organization of DNA nucleotides. Phys. Rev. E, 49(2):1685–1689, 02 1994. doi: https://doi.org/10.1103/physreve.49.1685.; F. Bourguignon. Decomposable Income Inequality Measures. Econometrica, 47(4):901, 07 1979. doi: https://doi.org/10.2307/1914138.; F. Bourguignon and C. Morrison. Inequality among World Citizens: 1820-1992. Am. Econ. Rev., 92(4):727–744, 08 2002. doi: http://dx.doi.org/10.1257/00028280260344443.; J. Miśkiewicz. Analysis of Time Series Correlation. The Choice of Distance Metrics and Network Structure. Acta Phys. Pol. A, 121(2B):B–89–B–94, 02 2012. doi: https://doi.org/10.12693/APHYSPOLA.121.B-89.; J. Iglesias and R. M. C. de Almeida. Entropy and equilibrium state of free market models. Eur. Phys. J. B, 85(3), 03 2012. doi: https://doi.org/10.1140/epjb/e2012-21036-1.; M. J. Salois. Regional changes in the distribution of foreign aid: An entropy approach. Physica A, 392(13):2893–2902, 07 2013. doi: https://doi.org/10.1016/j.physa.2013.02.007.; T. Andrei, B. Oancea, P. Richmond, G. Dhesi, and C. Herteliu. Decomposition of the Inequality of Income Distribution by Income Types—Application for Romania. Entropy, 19(9):430, 09 2017. doi: https://doi.org/10.3390/e19090430.; A. F. Shorrocks. The Class of Additively Decomposable Inequality Measures. Econometrica, 48(3):613, 04 1980. doi: https://doi.org/10.2307/1913126.; L. I. Kuncheva and C. J. Whitaker. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Mach. Learn., 51(2):181–207, 2003. doi: https://doi.org/10.1023/A:1022859003006.; J. V. T. de Lima, S. L. E. F. da Silva, J. M. de Araújo, G. Corso, and G. Z. Lima. Nonextensive statistical mechanics for robust physical parameter estimation: the role of entropic index. Eur. Phys J. Plus, 136(3), 03 2021. doi: https://doi.org/10.1140/epjp/s13360-021-01274-6.; C. Chatterjee, A. Ghosh, J. Inoue, and B. K. Chakrabarti. Social inequality: from data to statistical physics modeling. J. Phys. Conf. Ser., 638:012014, 09 2015. doi: https://doi.org/10.1088/1742-6596/638/1/012014.; I. Eliazar and I. M. Sokolov. Maximization of statistical heterogeneity: From Shannon’s entropy to Gini’s index. Physica A, 389(16):3023–3038, 08 2010. doi: https://doi.org/10.1016/j.physa.2010.03.045.; L. Landau. The Theory of Phase Transitions. Nature, 138(3498):840 – 841, 11 1936. doi: https://doi.org/10.1038/138840a0.; L. Landau. On the theory of superconductivity. In Collected Papers of L.D. Landau, pages 217–225. Elsevier, 1965. doi: https://doi.org/10.1016/b978-0-08-010586-4.50035-3.; T. Lancaster and S. J. Blundell. Quantum field theory for the gifted amateur. Oxford University Press, London, England, 04 2014. Chapter 26 and 35.; M. V. Milošević and R. Geurts. The Ginzburg–Landau theory in application. Physica C, 470:791–795, 10 2010. doi: https://doi.org/10.1016/j.physc.2010.02.056.; J. Als-Nielsen. Neutron Scattering and Spatial Correlation near the Critical Point. In Phase Transition and Critical Phenomena, volume 5a, pages 87–163. Academic Press, San Diego, CA, 04 1976.; J. S. Rowlinson. Liquids and liquid mixtures. Butterworth-Heinemann, Oxford, England, 3 edition, 01 1982.; M. E. Lines and A. M. Glass. Principles and applications of ferroelectrics and related materials. Oxford University Press, London, England, 02 2001. doi: https://doi.org/10.1093/acprof:oso/9780198507789.001.0001.; R. K. Pathria and P. D. Beale. Statistical mechanics. Elsevier, 3 edition, 2011.; J. Chakravarty and D. Jain. Critical exponents for higher order phase transitions: Landau theory and RG flow. J. Stat. Mech., 2021(9):093204, 09 2021. doi: https://doi.org/10.1088/1742-5468/ac1f11.; C. E. Ekuma, G. C. Asomba, and C. M. I. Okoye. Ginzburg–Landau theory for higher order phase transition. Physica C, 472(1):1–4, 01 2012. doi: https://doi.org/10.1016/j.physc.2011.09.015.; C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., 27(3):379–423, 07 1948. doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.; E. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106(4):620–630, 05 1957. doi: https://doi.org/10.1103/PhysRev.106.620.; N. Laskin. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 268(4-6):298–305, 04 2000. doi: https://doi.org/10.1016/S0375-9601(00)00201-2.; J. Goldstone. Field theories with Superconductor solutions. Il Nuovo Cimento, 19(1):154–164, 01 1961. doi: https://doi.org/10.1007/bf02812722.; V. E. Tarasov and G. M. Zaslavsky. Fractional Ginzburg-Landau equation for fractal media. Physica A, 354:249–261, 08 2005. doi: https://doi.org/10.1016/j.physa.2005.02.047.; Y. Qiu, B. A. Malomed, D. Mihalache, X. Zhu, L. Zhang, and Y. He. Soliton dynamics in a fractional complex Ginzburg-Landau model. Chaos Solitons Fractals, 131(109471), 02 2020. doi: https://doi.org/10.1016/j.chaos.2019.109471.; E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento, 20(3):454–477, 05 1961. doi: https://doi.org/10.1007/BF02731494.; D. A. Tayurskii and Y. V. Lysogorskiys. Superfluid hydrodynamic in fractal dimension space. J. Phys. Conf. Ser., 394:012004, 11 2012. doi: https://doi.org/10.1088/1742-6596/394/1/012004.; National Office of Oceanic and Atmospheric Administration. Daily Summaries. NOAA, 2023.; F. Abril. Temporal_Theil_Scaling. GitHub repository, 2023. https://github.com/fsabrilb/Temporal_Theil_Scaling.; B. B. Mandelbrot. Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., 131(1-2):5–42, 05 1989. doi: https://doi.org/10.1007/bf00874478.; E. A. Novikov. Intermittency and scale similarity in the structure of a turbulent flow. Journal of Applied Mathematics and Mechanics, 35(2):231–241, 01 1971. doi: https://doi.org/10.1016/0021-8928(71)90029-3.; T. Di Matteo. Multi-scaling in finance. Quant. Finance, 7(1):21–36, 02 2007. doi: https://doi.org/10.1080/14697680600969727.; B. Mandelbrot. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156(3775):636–638, 05 1967. doi: https://doi.org/10.1126/science.156.3775.636.; A. Rényi. On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hungaricae, 10(1-2):193–215, 03 1959. doi: https://doi.org/10.1007/bf02063299.; T. Vicsek. Fractal Growth Phenomena. World Scientific Publishing Company, 06 1992. doi: https://doi.org/10.1142/1407.; P. Grassberger and I. Procaccia. The liapunov dimension of strange attractors. J. Differ. Equ., 49(2):185–207, 08 1983. doi: https://doi.org/10.1016/0022-0396(83)90011-6.; T. Higuchi. Approach to an irregular time series on the basis of the fractal theory. Physica D, 31(2):277–283, 06 1988. doi: https://doi.org/10.1016/0167-2789(88)90081-4.; T. Gneiting, H. Ševčíková, and D. B. Percival. Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data. Stat. Sci., 27(2), 05 2012. doi: https://doi.org/10.1214/11-sts370.; W. S. Kendal and B. Jørgensen. Tweedie convergence: A mathematical basis for Taylor's power law, 1/f noise, and multifractality. Phys. Rev. E, 84(6), 12 2011. doi: https://doi.org/10.1103/physreve.84.066120.; B. Jørgensen and C. C. Kokonendji. Dispersion models for geometric sums. Braz. J. Probab. Stat., 25(3), 11 2011. doi: https://doi.org/10.1214/10-bjps136.; H. Xu, G. Gu, and W. Zhou. Direct determination approach for the multifractal detrending moving average analysis. Phys. Rev. E, 96(5), 11 2017. doi: https://doi.org/10.1103/physreve.96.052201.; M. S. Taqqu. Benoît Mandelbrot and Fractional Brownian Motion. Stat. Sci., 28(1), 02 2013. doi: https://doi.org/10.1214/12-sts389.; A. N. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Acad. Sci. URSS, 26:115–118, 01 1940.; G. A. Hunt. Random Fourier transforms. Trans. Amer. Math. Soc., 71:38–69, 01 1951.; A. M. Yaglom. Correlation theory of processes with random stationary nth increments. Mat. Sb. N.S., 79(37), 01 1955.; H. Grad. The many faces of entropy. Commun. Pure Appl. Math., 14(3):323–354, 08 1961. doi: https://doi.org/10.1002/cpa.3160140312.; R. Schumacher. The Generalization of Faulhaber’s Formula to Sums of Arbitrary Complex Powers. arXiv, 03 2021. doi: https://doi.org/10.48550/arxiv.2103.08027.; L. Rydin-Gorjão, G. Hassan, J. Kurths, and D. Witthaut. MFDFA: Efficient multifractal detrended fluctuation analysis in python. Comput. Phys. Commun., 273:108254, 04 2022. doi: https://doi.org/10.1016/j.cpc.2021.108254.; F. Abril. Generalized_Shannon_Index. GitHub repository, 2023. https://github.com/fsabrilb/Generalized_Shannon_Index.; R. Adamczak, J. Prochno, M. Strzelecka, and M. Strzelecki. Norms of structured random matrices. Math. Ann., 04 2023. doi: https://doi.org/10.1007/s00208-023-02599-6.; A. D. Fokker. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. der Physik, 348(5):810–820, 01 1914. doi: https://doi.org/10.1002/andp.19143480507.; N. Laskin. Fractional Schrödinger equation. Phys. Rev. E, 66(5), 11 2002. doi: https://doi.org/10.1103/physreve.66.056108.; H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284–304, 04 1940. doi: https://doi.org/10.1016/s0031-8914(40)90098-2.; J. E. Moyal. Stochastic Processes and Statistical Physics. J. R. Stat. Soc. Ser. B Meth., 11(2):150–210, 01 1949. https://www.jstor.org/stable/2984076.; P. Jung and P. Hänggi. Dynamical systems: A unified colored-noise approximation. Phys. Rev. A, 35(10):4464–4466, 05 1987. doi: https://doi.org/10.1103/physreva.35.4464.; P. Hänggi and P. Jung. Colored Noise in Dynamical Systems. In Advances in Chemical Physics, pages 239–326. John Wiley & Sons, 03 2007. doi: https://doi.org/10.1002/9780470141489.ch4.; C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52(1-2):479–487, 07 1988. doi: https://doi.org/10.1007/bf01016429.; E. M. F. Curado and C. Tsallis. Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Theor., 24(2):L69–L72, 01 1991. doi: https://doi.org/10.1088/0305-4470/24/2/004.; E. M. F. Curado and C. Tsallis. Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Theor., 25(4):1019–1019, 02 1992. doi: https://doi.org/10.1088/0305-4470/25/4/038.; L. Borland. Ito-Langevin equations within generalized thermostatistics. Phys. Lett. A, 245(1-2):67–72, 08 1998. doi: https://doi.org/10.1016/s0375-9601(98)00467-8.; M. Gell-Mann and C. Tsallis. Nonextensive Entropy. Oxford University Press, New York, NY, 03 2004.; C. H. Eab and S. C. Lim. Path integral representation of fractional harmonic oscillator. Physica A, 371(2):303–316, 11 2006. doi: https://doi.org/10.1016/j.physa.2006.03.029.; A. H. Bhrawy and M. A. Zaky. An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math., 111:197–218, 01 2017. doi: https://doi.org/10.1016/j.apnum.2016.09.009.; P. Capuozzo, E. Panella, T. Schettini-Gherardini, and D. D. Vvedensky. Path integral Monte Carlo method for option pricing. Physica A, 581:126231, 11 2021. doi: https://doi.org/10.1016/j.physa.2021.126231.; V. E. Tarasov and G. M. Zaslavsky. Fractional generalization of Kac integral. Commun. Nonlinear. Sci. Numer. Simul., 13(2):248–258, 03 2008. doi: https://doi.org/10.1016/j.cnsns.2007.04.020.; A. V. Chechkin, R. Metzler, J. Klafter, and V. Y. Gonchar. Introduction to the Theory of Lévy Flights. In Anomalous Transport, pages 129–162. Wiley-VCH Verlag GmbH and Co. KGaA, 07 2008. doi: https://doi.org/10.1002/9783527622979.ch5.; R. Hilfer. Applications of fractional calculus in physics. World Scientific Publishing Company, 03 2000. doi: https://doi.org/10.1142/3779.; P. D. Lax. Change of Variables in Multiple Integrals. Am. Math. Mon., 106(6):497–501, 06 1999. doi: https://doi.org/10.1080/00029890.1999.12005078.; J. Munkhammar. Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series, 06 2004.; M. D. Ortigueira. Riesz potential operators and inverses via fractional centered derivatives. Int. J. Math. Math. Sci., 2006:1–12, 06 2006. doi: https://doi.org/10.1155/ijmms/2006/48391.; C. Çelik and M. Duman. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys., 231(4):1743–1750, 02 2012.doi: https://doi.org/10.1016/j.jcp.2011.11.008.; R. A. Aljethi and A. Kılıçman. Derivation of the Fractional Fokker-Planck Equation for Stable Lévy with Financial Applications. Mathematics, 11(5):1102, 02 2023. doi: https://doi.org/10.3390/math11051102.; R. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1):1–77, 12 2000. doi: https://doi.org/10.1016/S0370-1573(00)00070-3.; F. Mainardi, Y. Luchko, and G. Pagnini. The fundamental solution of the space-time fractional diffusion equation. arXiv, 02 2007. doi: https://doi.org/10.48550/arXiv.cond-mat/0702419.; K. M. Kolwankar. Local Fractional Calculus: a Review. arXiv, 07 2013. doi: https://doi.org/10.48550/arxiv.1307.0739.; F. Olivar-Romero and O. Rosas-Ortiz. Fractional Driven Damped Oscillator. J. Phys. Conf. Ser., 839:012010, 05 2017. doi: https://doi.org/10.1088/1742-6596/839/1/012010.; Podcast UNAL. Physics Sounds: Episodio 4: Econo-física. http://podcastradio.unal.edu.co/detalle/episodio-4-econo-fisica, 03 2022.; G. B. Folland. Advanced Calculus. Pearson, Upper Saddle River, NJ, 12 2001. p. 193.; K. B. Oldham and P. Howlett. The fractional calculus. Elsevier Science & Technology, 05 2014.; J. Klafter, A. Blumen, and M. F. Shlesinger. Stochastic pathway to anomalous diffusion. Phys. Rev. A, 35(7):3081–3085, 04 1987. doi: https://doi.org/10.1103/physreva.35.3081.; J. Klafter, S. C. Lim, and R. Metzler. Fractional Dynamics. World Scientific Publishing Company, 10 2011. doi: https://doi.org/10.1142/8087.; M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter. Strange kinetics. Nature, 363(6424):31–37, 05 1993. doi: https://doi.org/10.1038/363031a0.; I. S. Gradshteyn and I. M. Ryzhik. Definite Integrals of Elementary Functions. In Table of Integrals, Series, and Products. Elsevier Science & Technology, San Diego, California, 7 edition, 01 2007. Formula 3.944.5 and 3.944.6.; H. Bateman. Higher Transcendental Functions, volume 1. McGraw-Hill Book Company, New York, NY, 1953. Sec. 1.11, formula (14).; J. E. Robinson. Note on the Bose-Einstein Integral Functions. Phys. Rev., 83(3):678–679, 08 1951. doi: https://doi.org/10.1103/PhysRev.83.678.; https://repositorio.unal.edu.co/handle/unal/85513; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
9
المؤلفون: Tavares, Dina dos Santos
مصطلحات موضوعية: Matemática e aplicações, Cálculo fraccionário, Cálculo de variações
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10773/22184
-
10Academic Journal
المصدر: TecnoLógicas; Vol. 24 No. 51 (2021); e1866 ; TecnoLógicas; Vol. 24 Núm. 51 (2021); e1866 ; 2256-5337 ; 0123-7799
مصطلحات موضوعية: SARS-CoV-2 modeling, fractional calculus, SIR model (Susceptible-Infected-Recovered), biological system modeling, Modelamiento del SARS-CoV-2, cálculo fraccionario, modelo SIR (susceptible, infectada, recuperada), modelamiento de sistemas biológicos
وصف الملف: application/pdf; application/zip; text/xml; text/html
Relation: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866/2081; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866/2086; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866/2087; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866/2088; World Health Organization, “WHO Coronavirus Disease (COVID-19) Dashboard”, 2020. https://covid19.who.int/; Q. Li et al., “Early transmission dynamics in Wuhan, China, of novel coronavirus– infected pneumonia”. N. Engl. J. Med, vol. 382, no. 13, Mar. 2020. https://doi.org/10.1056/NEJMoa2001316; World Health Organization, “Novel Coronavirus (2019-nCoV): situation report, 3”, Jan. 2020. https://apps.who.int/iris/bitstream/handle/10665/330762/nCoVsitrep23Jan2020-eng.pdf; R. Lu et al., “Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding”, The Lancet, vol. 395, no. 10224, pp. 565-574, Feb. 2020. https://doi.org/10.1016/S0140-6736(20)30251-8; M. Nicola et al., “The socio-economic implications of the coronavirus pandemic (COVID-19): A review”, International journal of surgery, vol. 78, pp. 185-193, Jun, 2020. https://doi.org/10.1016/j.ijsu.2020.04.018; UNESCO, “UNESCO’s support: Educational response to COVID-19”, 2020. https://en.unesco.org/covid19/educationresponse/support; H. Ritchie et al., “Mortality Risk of COVID-19”, Our World In Data, 2020. https://ourworldindata.org/mortality-risk-covid; A. J. Christopher; N. Magesh; G. Tamil Preethi, “Dynamical Analysis of Corona-virus (COVID- 19) Epidemic Model by Differential Transform Method”, Research Square preprint, (2020). https://www.researchsquare.com/article/rs-25819/v1; S. Ahmad; A. Ullah; Q. M. Al-Mdallal; H. Khan; K. Shaha; A. Khand, “Fractional order mathematical modeling of COVID-19 transmission”, Chaos, Solitons & Fractals, vol. 139, Oct. 2020. https://doi.org/10.1016/j.chaos.2020.110256; J. L. Romeu, “A Markov Chain Model for Covid-19 Survival Analysis”, Jul. 2020. https://web.cortland.edu/matresearch/MarkovChainCovid2020.pdf; R. Takele, “Stochastic modelling for predicting COVID-19 prevalence in East Africa Countries”, Infectious Disease Modelling, vol. 5, pp. 598–607, 2020. https://doi.org/10.1016/j.idm.2020.08.005; A. Zeb; E. Alzahrani; V. S. Erturk; G. Zaman, “Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class”, BioMed research international, 2020. https://doi.org/10.1155/2020/3452402; F. Ndaïrou; I. Area; J. J. Nieto; D. F. M. Torres, “Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan”, Chaos, Solitons & Fractals, vol. 135, Jun 2020. https://doi.org/10.1016/j.chaos.2020.109846; E. B. Postnikov, “Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?”, Chaos, Solitons & Fractals, vol. 135, Jun. 2020. https://doi.org/10.1016/j.chaos.2020.109841; F. A. Rihan, “Numerical modeling of fractional-order biological systems”, Abstract and Applied Analysis, vol. 2013, Aug. 2013. https://doi.org/10.1155/2013/816803; A. Loverro, “Fractional calculus: history, definitions and applications for the engineer”, 2004. https://www.researchgate.net/publication/266882369_Fractional_Calculus_History_Definitions_and_Applications_for_the_Engineer; J. A. Tenreiro Machado et al., “Some applications of fractional calculus in engineering”, Mathematical problems in engineering, vol. 2010, Article ID. 639801, Nov. 2010. https://doi.org/10.1155/2010/639801; Md. Rafiul Islam; A. Peace; D. Medina; T. Oraby, “Integer versus fractional order seir deterministic and stochastic models of measles”, Int. J. Environ. Res. Public Health, vol. 17, no. 6, Mar. 2020. https://doi.org/10.3390/ijerph17062014; M. W. Hirsch; S. Smale; R. L Devaney, Differential equations, dynamical systems, and an introduction to chaos. Academic press, 2013.; W. C. Roda; M. B.Varughese; D. Han; M. Y. Li, “Why is it difficult to accurately predict the COVID-19 epidemic?”, Infectious Disease Modelling, vol 5, pp. 271- 281, 2020. https://doi.org/10.1016/j.idm.2020.03.001; Worldometer, "Covid-19 Coronavirus Pandemic", 2020. https://www.worldometers.info/coronavirus/; S. A. Lauer; K. H. Grantz; Q. Bi; F. K. Jones; Q. Zheng, “The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application”, Annals of internal medicine, vol. 172, no. 9, pp. 577–582, May. 2020. https://doi.org/10.7326/M20-0504; E. C. De Oliveira; J. A. Tenreiro Machado, "A review of definitions for fractional derivatives and integral”, Mathematical Problems in Engineering, vol. 2014, Jun. 2014 . https://doi.org/10.1155/2014/238459; I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198, Elsevier, 1998.; Z. M. Odibat, “Computing eigenelements of boundary value problems with fractional derivatives”, Applied Mathematics and Computation, vol 215, no. 8, pp. 3017–3028, Dec. 2009. https://doi.org/10.1016/j.amc.2009.09.049; A. Arikoglu; I. Ozkol, “Solution of fractional differential equations by using differential transform method”, Chaos, Solitons & Fractals, vol. 34, no. 5, pp. 1473–1481, Dec. 2007. https://doi.org/10.1016/j.chaos.2006.09.004; V. S. Erturk; S. Momani, “Solving systems of fractional differential equations using differential transform method”, Journal of Computational and Applied Mathematics, vol. 215, no. 1, pp. 142–151, May. 2008. https://doi.org/10.1016/j.cam.2007.03.029; C. Jacques Kat; P. S. Els, “Validation metric based on relative error”, Mathematical and Computer Modelling of Dynamical Systems, vol. 18, no. 5, pp. 487–520, Mar. 2012. https://doi.org/10.1080/13873954.2012.663392; W. L. Oberkampf; M. F. Barone, “Measures of agreement between computation and experiment: validation metrics”, Journal of Computational Physics, vol. 217, no. 1, pp. 5–36, Sep. 2006. https://doi.org/10.1016/j.jcp.2006.03.037; M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives”, Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 2009. https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf; C. Cartis; L. Roberts; O. Sheridan-Methven, “Escaping local minima with derivative-free methods: a numerical investigation”, arXiv preprint arXiv:1812.11343. Oct. 2019. https://arxiv.org/pdf/1812.11343.pdf; C. Cartis; J. Fiala; B. Marteau; L. Roberts, “Improving the flexibility and robustness of model-based derivative-free optimization solvers”, ACM Transactions on Mathematical Software, vol. 45, no. 3, pp. 1–41, Aug. 2019. https://doi.org/10.1145/3338517; https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1866
-
11
المؤلفون: Barbosa, Ramiro de Sousa
مصطلحات موضوعية: Análise dinâmica, Controlo de sistemas, Cálculo fraccionário
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10216/11251
-
12
المؤلفون: Duarte, Fernando Baltazar Moreira
مصطلحات موضوعية: Robots redundantes, Manipuladores robóticos, Modelização cinemática, Modelização dinâmica, Cálculo fraccionário, Universidade do Porto. Faculdade de Engenharia da Universidade do Porto
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10216/12043
-
13
المؤلفون: Barbosa, Ricardo Jorge Costa
المساهمون: Barbosa, Ramiro S., Ferreira, Maria Isabel de Castro Lopes Martins Pinto, Repositório Científico do Instituto Politécnico do Porto
مصطلحات موضوعية: Filtro digital, Processamento digital de sinal, Cálculo fraccionário, MatLab, GUIDE, ADSP-2181, Digital Filter, Digital Signal Processing, Fractional Calculus
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10400.22/6382
-
14
المؤلفون: Lopes, Anabela Maria Azevedo Oliveira
المساهمون: Machado, J. A. Tenreiro, Repositório Científico do Instituto Politécnico do Porto
مصطلحات موضوعية: Algoritmos evolutivos, Inteligência dos enxames, Algoritmos genéticos, Optimização, Cálculo fraccionário, Derivadas fraccionárias
وصف الملف: application/pdf
الاتاحة: http://hdl.handle.net/10400.22/2333
-
15Dissertation/ Thesis
المؤلفون: Candelario Villalona, Giro Guillermo
المساهمون: Cordero Barbero, Alicia, Penkova Vassileva, María, Torregrosa Sánchez, Juan Ramón, Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
مصطلحات موضوعية: Fractional calculus, Non-linear problems, Fractional derivatives, Fractional iterative methods, Stability, Problemas no lineales, Derivadas fraccionarias, Métodos iterativos fraccionarios, Estabilidad, Cálculo fraccionario, MATEMATICA APLICADA
Relation: http://hdl.handle.net/10251/194270
-
16Dissertation/ Thesis
المؤلفون: Zuleyma Lorena Espana Ruiz
المساهمون: Jose Francisco Gomez Aguilar
مصطلحات موضوعية: info:eu-repo/classification/cti/7, Espectroscopia de impedancia eléctrica, bioimpedancia, cálculo fraccionario, modelado de circuitos equivalentes de orden fraccionario, diagramas de Nyquist, calidad de los alimentos
وصف الملف: application/pdf
-
17Academic Journal
المؤلفون: Sánchez A., Raúl, Torres L., Cesar
المصدر: Selecciones Matemáticas; Vol. 5 No. 02 (2018): August - December; 154-163 ; Selecciones Matemáticas; Vol. 5 Núm. 02 (2018): Agosto - Diciembre; 154-163 ; Selecciones Matemáticas; v. 5 n. 02 (2018): Agosto - Diciembre; 154-163 ; 2411-1783
مصطلحات موضوعية: Cálculo fraccionario, Variedad de Nehari, Fibering Maps, Fractional Calculus, Nehari Manifold
وصف الملف: application/pdf; text/html
-
18Academic Journal
المساهمون: Universidad de Extremadura. Departamento de Ingeniería Eléctrica, Electrónica y Automática, Universidade de Lisboa. Portugal
مصطلحات موضوعية: Crecimiento económico, Europa, Cálculo fraccionario, Economic growth, Europe, Fractional calculus, 5307.03 Modelos y Teorías del desarrollo Económico
وصف الملف: 11 p.; application/pdf
Relation: https://doi.org/10.24425/124262; http://journals.pan.pl/dlibra/publication/124262/edition/108418/content/economic-growth-in-the-european-union-modelled-with-fractional-derivatives-first-results-valerio-d-tejado-i-perez-e?language=en; http://hdl.handle.net/10662/9978; Tejado Balsera, I.; Pérez Hernández, E. y Valério, D. (2018). Economic growth in the European Union modelled with fractional derivatives: first results. Bulletin of the Polish Academy of Sciences-Technical Sciences, 66, 4, 455-465. eISSN 2300-1927; Bulletin of the Polish Academy of Sciences-Technical Sciences; 455; 465; 66
-
19Academic Journal
المؤلفون: Torres Ledesma, César, Pichardo Diestra, Oliverio
المصدر: Selecciones Matemáticas; Vol. 4 No. 01 (2017): January - July; 51-58 ; Selecciones Matemáticas; Vol. 4 Núm. 01 (2017): Enero - Julio; 51-58 ; Selecciones Matemáticas; v. 4 n. 01 (2017): Enero - Julio; 51-58 ; 2411-1783
مصطلحات موضوعية: Fractional calculus, fractional derivatives, fractional Hamiltonian system, boundary value problem, Cálculo fraccionario, derivada fraccionaria, sistema Hamiltoniano fraccionario, problema de valor de contorno
وصف الملف: application/pdf; text/html
-
20Academic Journal
المؤلفون: Stojiljkovic, Vuk
المصدر: Selecciones Matemáticas, ISSN 2411-1783, Vol. 9, Nº. 2, 2022 (Ejemplar dedicado a: August - December), pags. 370-380
مصطلحات موضوعية: Fractional derivatives, Fractional calculus, Derivadas fraccionarias, cálculo fraccionario
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=8914947; (Revista) ISSN 2411-1783