-
1Academic Journal
المؤلفون: Piedrahita, Stefani, Bascuñan, Priscila, Urrea-Aguirre, Paula Andrea, Correa, Margarita M.
المصدر: Acta Biológica Colombiana; Vol. 28 No. 3 (2023): Early view ; Acta Biológica Colombiana; Vol. 28 Núm. 3 (2023): Versión anticipada ; 1900-1649 ; 0120-548X
مصطلحات موضوعية: Colombia, Gut bacteria, anopheline mosquitos, malaria, bacterias intestinales, mosquitos anofelinos
وصف الملف: application/pdf
-
2Academic Journal
المؤلفون: Vega, Laura, Herrera, Giovanny, Muñoz, Marina, Patarroyo, Manuel A., Maloney, Jenny G., Santín, Monica, Ramírez, Juan David
المصدر: instname:Universidad del Rosario
مصطلحات موضوعية: Bacterias, Biomarcadores, Blastocistis, Eucariota, Hongos, Tracto gastrointestinal, Bacterias intestinales, Protistas, Enfermedades, Biomarkers, Blastocystis, Eukaryota, Fungi, Gastrointestinal tract, Gut bacteria, Protists
وصف الملف: application/pdf
Relation: https://repository.urosario.edu.co/handle/10336/34831; https://doi.org/10.1371/journal.pone.0248185
-
3Academic Journal
المؤلفون: Aya, Viviana, Flórez, Alberto, Perez, Luis, Ramírez, Juan David
المصدر: instname:Universidad del Rosario
مصطلحات موضوعية: Dieta, Ejercicio, Tracto gastrointestinal, Las bacterias intestinales, Vías metabólicas, Microbioma, Actividad física, Deportes, Ciencias médicas, Medicina, Sports, Physical activity, Microbiome, Pathways, Metabolic, Gut, Gastrointestinal tract, Exercise, Diet
وصف الملف: application/pdf
Relation: https://repository.urosario.edu.co/handle/10336/34828; https://doi.org/10.1371/journal.pone.0247039
-
4Academic Journal
المصدر: Research, Society and Development; Vol. 10 No. 8; e56810817103 ; Research, Society and Development; Vol. 10 Núm. 8; e56810817103 ; Research, Society and Development; v. 10 n. 8; e56810817103 ; 2525-3409
مصطلحات موضوعية: Necrotizing enterocolitis, Photobiomodulation, Intestinal bacteria, Enterocolitis necrotizante, Fotobiomodulación, Bacterias intestinales, Enterocolite necrotizante, Fotobiomodulação, Bactérias intestinais
وصف الملف: application/pdf
Relation: https://rsdjournal.org/index.php/rsd/article/view/17103/15795; https://rsdjournal.org/index.php/rsd/article/view/17103
-
5Academic Journal
المؤلفون: Piovesan, Natiéli, Borges, Mirla Fontes de Araújo, Queiroz, Joyce Moura de, Souza, Rosane Liége Alves de, Oliveira, Emanuel Neto Alves de, Oliveira, Gleison Silva, Machado, Adalva Lopes, Oliveira, Pâmara Virna Carlos de, Oliveira, Palloma Vitória Carlos de
المصدر: Research, Society and Development; Vol. 10 No. 8; e5710817031 ; Research, Society and Development; Vol. 10 Núm. 8; e5710817031 ; Research, Society and Development; v. 10 n. 8; e5710817031 ; 2525-3409
مصطلحات موضوعية: Acceptability, Ice cream, Beneficial intestinal bactéria, Aceptabilidad, Helado, Bacterias intestinales beneficiosas, Aceitabilidade, Sorvete, Bactérias intestinais benéficas
وصف الملف: application/pdf
Relation: https://rsdjournal.org/index.php/rsd/article/view/17031/15202; https://rsdjournal.org/index.php/rsd/article/view/17031
-
6Academic JournalSpecies-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors
المؤلفون: Arias-Giraldo, Luisa M., Muñoz, Marina, Hernández, Carolina, Herrera, Giovanny, Velásquez-Ortiz, Natalia, Cantillo Barraza, Omar, Urbano, Plutarco, Ramírez, Juan David
المصدر: instname:Universidad del Rosario
مصطلحات موضوعية: Actino bacterias, Las bacterias intestinales, Insectos vectores, Insectos, Enfermedades parasitarias, Análisis de componentes principales, Triatoma, Tripanosoma cruzi, Ciencias médicas, Medicina, Enfermedades, Actinobacteria, Gut bacteria, Insect vectors, Insects, Trypanosoma cruzi, Principal component analysis, Parasitic diseases
وصف الملف: application/pdf
Relation: https://repository.urosario.edu.co/handle/10336/34830; https://doi.org/10.1371/journal.pone.0240916
-
7Academic Journal
المؤلفون: Padrón Pereira, Carlos Alberto
المصدر: Science and Technology; Vol. 12 No. 1 (2019): Science and Technology Journal - January - June 2019; 31-42 ; Ciencia y Tecnología; Vol. 12 Núm. 1 (2019): Revista Ciencia y Tecnología Enero - Junio 2019; 31-42 ; 1390-4043 ; 1390-4051 ; 10.18779/cyt.v12i1
مصطلحات موضوعية: alimentos saludables, bacterias intestinales, diversidad microbiana, fibras dietéticas, patrones dietéticos, salud, healthy foods, gut bacteria, microbial diversity, dietary fibers, dietary patterns, health
وصف الملف: application/pdf; text/html
Relation: https://revistas.uteq.edu.ec/index.php/cyt/article/view/315/309; https://revistas.uteq.edu.ec/index.php/cyt/article/view/315/390; https://revistas.uteq.edu.ec/index.php/cyt/article/view/315
-
8Dissertation/ Thesis
المؤلفون: Pineda Galindo, Lina María
المساهمون: Cadavid Restrepo, Gloria Ester, Saldamando Benjumea, Clara Ines, Microbiodiversidad y Bioprospección
مصطلحات موضوعية: 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados, 570 - Biología::579 - Historia natural microorganismos, hongos, algas, Bioremediación, Biodegradación, Insecticidas, Microorganismos intestinales, Insectos útiles y perjudiciales, Bacterias, Spodoptera frugiperda, Bacterias intestinales, Biotipo arroz y maíz, Degradación de insecticidas, Lambda-cialotrina, Metomil, Cromatografía, Gut bacteria, Rice and maize strain, Iinsecticide degradation, Lambda-cyhalothrin, Methomyl, Chromatography
وصف الملف: 126 páginas; application/pdf
Relation: LaReferencia; Abdelkader, A. A., Khalil, M. S., & Mohamed, M. S. M. (2022). Simultaneous biodegradation of λ-cyhalothrin pesticide and Vicia faba growth promotion under greenhouse conditions. AMB Express, 12(1). https://doi.org/10.1186/s13568-022-01383-0; Acevedo, F. E., Peiffer, M., Tan, C. W., Stanley, B. A., Stanley, A., Wang, J., Jones, A. G., Hoover, K., Rosa, C., Luthe, D., & Felton, G. (2017). Fall armyworm-associated gut bacteria modulate plant defense responses. Molecular Plant-Microbe Interactions, 30(2), 127–137. https://doi.org/10.1094/MPMI-11-16-0240-R; Álvarez Yepes, D. A. (2019). Controladores de los biotipos de arroz y maíz de Spodoptera frugiperda en especies de Meliaceae. Universidad Nacional de Colombia; Ayres, J. S., & Schneider, D. S. (2012). Tolerance of infections. In Annual Review of Immunology (Vol. 30, pp. 271–294). https://doi.org/10.1146/annurev-immunol-020711-075030; Badii, M. H., & Garza-Almanza, V. (2015). Resistencia en Insectos, Plantas y Microorganismos. Cultura Científica Y Tecnológica, (18). Recuperado a partir de https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/460; Bajkul, M. M., & Mahavidyalaya, M. (2019). Effect of Lambda-cyhalothrin (LCT) and toxicity on human with preventive measure. In Article in International Journal of Scientific and Engineering Research. https://www.researchgate.net/publication/342145139; Berasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. In Applied Microbiology and Biotechnology (Vol. 100, Issue 4, pp. 1567–1577). Springer Verlag. https://doi.org/10.1007/s00253-015-7186-9; Bezerra, A., Gonzales Rodrigues, J., Kanno, R., Amaral, F., Malaquias, J., Silva-Brandão, K., Consoli, F., & Omoto, C. (2021). Susceptibility monitoring and the molecular characterization of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to lambda-cyhalothrin and chlorpyrifos. https://doi.org/10.1101/2021.11.17.469006; Bhatt, P., Bhatt, K., Huang, Y., Lin, Z., & Chen, S. (2020). Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. In Chemosphere (Vol. 244). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2019.125507; Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. In Critical Reviews in Biotechnology (Vol. 41, Issue 3, pp. 317–338). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2020.1853032; Birolli, W. G., Dos Santos, A., Pilau, E., & Rodrigues-Filho, E. (2021). New Role for a Commercially Available Bioinsecticide: Bacillus thuringiensis Berliner Biodegrades the Pyrethroid Cypermethrin. Environmental Science and Technology, 55(8), 4792–4803. https://doi.org/10.1021/acs.est.0c06907; Birolli, W. G., Arai, M. S., Nitschke, M., & Porto, A. L. M. (2019). The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium. Pesticide Biochemistry and Physiology, 156, 129–137. https://doi.org/10.1016/j.pestbp.2019.02.014; Birolli, W. G., Borges, E. M., Nitschke, M., Romão, L. P. C., & Porto, A. L. M. (2016). Biodegradation Pathway of the Pyrethroid Pesticide Esfenvalerate by Bacteria from Different Biomes. Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2968-y; Birolli, W. G., Vacondio, B., Alvarenga, N., Seleghim, M. H. R., & Porto, A. L. M. (2018). Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi. Chemosphere, 197, 651–660. https://doi.org/10.1016/j.chemosphere.2018.01.054; Blanton, A. G., & Peterson, B. F. (2020). Symbiont-Mediated Insecticide Detoxification as an Emerging Problem in Insect Pests. In Frontiers in Microbiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2020.547108; Breckenridge, C. B., Holden, L., Sturgess, N., Weiner, M., Sheets, L., Sargent, D., Soderlund, D. M., Choi, J. S., Symington, S., Clark, J. M., Burr, S., & Ray, D. (2009). Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. NeuroToxicology, 30(SUPPL.). https://doi.org/10.1016/j.neuro.2009.09.002; Calonge, M., Pérez Pertejo, Y., Ordóñez, C., Reguera, R., Balaña Fouce, R., & Ordóñez, D. (2002). Determinación de residuos de siete insecticidas organofosforados en frutas mediante cromatografía de gases con detector de nitrógeno fósforo y confirmación por espectrometría de masas. Revista de Toxicología.; Cano-Calle, D. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.; Cano-Calle, D., R. E. Arango-Isaza, and C. I. Saldamando-Benjumea. (2015). Molecular identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Colombia by using a PCR-RFLP of the mitochondrial gene cytochrome oxydase I (COI) and a PCR of the gene FR (For Rice). Ann. Entomol. Soc. Am. 108: 172-180. https://doi.org/10.1093/aesa/sav001.; Cañas-Hoyos, N., Lobo-Echeverri, T. & Saldamando-Benjumea, C.I. (2017). Chemical composition of female sexual glands of Spodoptera frugiperda corn and rice strains from Tolima, Colombia. Southwestern Entomologist 42: 375–394. https://doi.org/10.3958/059.042.0207.; Castañeda Molina, Y. del P. (2021). Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis.; Castañeda-Molina Y, Marulanda-Moreno SM, Saldamando-Benjumea C, Junca H, Moreno-Herrera CX,Cadavid- Restrepo G. (2023). Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins. PeerJ 11:e15916. https://doi.org/10.7717/peerj.15916; Cavichiolli De Oliveira, N. (2021). Gut microbiota of the rice and corn strains of Spodoptera frugiperda: diversity and function.Escuela superior de agricultura Luiz de Queiroz. https://doi.org/10.11606/T.11.2021.tde-09092021-151537; Chen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., Zhou, J., He, F., Hu, M., & Zhang, L. H. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 5. https://doi.org/10.1038/srep08784; Cheng, D., Chen, S., Huang, Y., Pierce, N. E., Riegler, M., Yang, F., Zeng, L., Lu, Y., Liang, G., & Xu, Y. (2019). Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathogens, 15(7). https://doi.org/10.1371/journal.ppat.1007942; Claus, S. P., Guillou, H., & Ellero-Simatos, S. (2016). The gut microbiota: A major player in the toxicity of environmental pollutants? In npj Biofilms and Microbiomes (Vol. 2). Nature Publishing Group. https://doi.org/10.1038/npjbiofilms.2016.3; Colman, D. R., Toolson, E. C., & Takacs-Vesbach, C. D. (2012). Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology, 21(20), 5124–5137. https://doi.org/10.1111/j.1365-294X.2012.05752.x; da Silva, D. M., Bueno, A. de F., Andrade, K., Stecca, C. dos S., Neves, P. M. O. J., & de Oliveira, M. C. N. (2017). Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola, 74(1), 18–31. https://doi.org/10.1590/1678-992x-2015-0160; Dantán González, E., & Salgado-Morales, R. (2021). El Hologenoma, una herramienta para el estudio de los problemas ambientales ocasionados por xenobióticos. Revista Del Centro de Investigación de La Universidad La Salle, 14(56), 17–36. https://doi.org/10.26457/recein.v14i56.2862; de Almeida, L. G., De Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0174754; Deshmukh, S., Pavithra, H. B., Kalleshwaraswamy, C. M., Shivanna, B. K., & Mota-Sanchez, D. (2020). Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize in India. Floria Entomologist. https://doi.org/10.1653/024.103.0211; Devine, G. J., Eza, D., Ogusuku, E., & Furlong, M. J. (2008). Uso de insecticidas: Contexto y consecuencias ecológicas. In Rev Peru Med Exp Salud Publica (Vol. 25, Issue 1).; Dillon, R. J., & Dillon, V. M. (2004). The Gut Bacteria of Insects: Nonpathogenic Interactions. In Annual Review of Entomology (Vol. 49, pp. 71–92). https://doi.org/10.1146/annurev.ento.49.061802.123416; dos Santos, K. B., Neves, P., Meneguim, A. M., dos Santos, R. B., dos Santos, W. J., Boas, G. V., Dumas, V., Martins, E., Praça, L. B., Queiroz, P., Berry, C., & Monnerat, R. (2009). Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biological Control, 50(2), 157–163. https://doi.org/10.1016/j.biocontrol.2009.03.014; Dowd, P. F., & Shen, S. K. (1990). The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomologia Experimentalis et Applicata, 56(3), 241–248. https://doi.org/10.1111/j.1570-7458.1990.tb01402.x; ElKraly, O. A., Awad, M., El-Saadany, H. M., Hassanein, S. E., Elrahman, T. A., & Elnagdy, S. M. (2023). Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation. Animal Microbiome, 5(1). https://doi.org/10.1186/s42523-023-00264-6; Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. In FEMS Microbiology Reviews (Vol. 37, Issue 5, pp. 699–735). https://doi.org/10.1111/1574-6976.12025; FAO. (2021) Mapa de la propagación mundial del gusano cogollero del maíz desde 2016. https://www.ippc.int/es/news/preparing-countries-to-keep-fall-armyworm-away-from-their-territories/; FAO, & CABI. (n.d.). Community-Based Fall Armyworm (Spodoptera frugiperda) Monitoring, Early Warning and Management. 2019.; Fonseca, I., & Quiñones, M. L. (2005). Resistencia a insecticidas en mosquitos Mecanismos, detección y vigilancia en salud pública. Revista Colombiana de Entomología, 107–115. https://doi.org/10.25100/socolen.v31i2.9429; Frago, E., Dicke, M., & Godfray, H. C. J. (2012). Insect symbionts as hidden players in insect-plant interactions. In Trends in Ecology and Evolution https://doi.org/10.1016/j.tree.2012.08.013; Gao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. Arch Insect Biochem Physiol. (2022) Mar;109(3):E21869. doi:10.1002/arch.21869. Epub 2022 Jan 28. PMID: 35088911.; Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. In Engineering in Life Sciences (Vol. 5, Issue 6, pp. 497–526). Wiley-VCH Verlag. https://doi.org/10.1002/elsc.200520098; Giambó, F., Teodoro, M., Costa, C., & Fenga, C. (2021). Toxicology and microbiota: How do pesticides influence gut microbiota? a review. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 11). MDPI. https://doi.org/10.3390/ijerph18115510; Gichuhi, J., Sevgan, S., Khamis, F., Van Den Berg, J., Du Plessis, H., Ekesi, S., & Herren, J. K. (2020). Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ, 2020(3). https://doi.org/10.7717/peerj.8701; Gimenez, S., Abdelgaffar, H., Goff, G. Le, Hilliou, F., Blanco, C. A., Hänniger, S. Nam, K. (2020). Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Communications Biology, 3, 664.; Gomes, S.I.F., Kielak, A.M., Hannula, S.E. et al. (2020a). Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. anim microbiome 2, 37. https://doi.org/10.1186/s42523-020-00055-3; Gomes, A. F. F., Omoto, C., & Cônsoli, F. L. (2020b). Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. Journal of Pest Science, 93(2), 833–851. https://doi.org/10.1007/s10340-020-01202-0; González Maldonado, M. B., Gurrola Reyes, J. N., & Chaírez Hernández, I. (2015). Productos biológicos para el control de Spodoptera frugiperda. Revista Colombiana de Entomología, 200–204.; Gutiérrez, M. C., Droguet, M., Carmen, M., Bouzán, G., & En Química, D. (2002). La cromatografía de gases y la espectrometría de masas: Identificación de compuestos causantes de mal olor. Universitat Politecnica de Catalunya. Boletín Intexter No 122.; Hafeez, M., Li, X., Zhang, Z., Huang, J., Wang, L., Zhang, J., Shah, S., Khan, M. M., Xu, F., Fernández-Grandon, G. M., Zaluchi, M. P., & Lu, Y. (2021). De novo transcriptomic analyses revealed some detoxification genes and related pathways responsive to Noposion Yihaogong® 5% ec (Lambda-cyhalothrin 5%) exposure in Spodoptera frugiperda third-instar larvae. Insects, 12(2), 1–16. https://doi.org/10.3390/insects12020132; Haine, E. R., Moret, Y., Siva-jothy, M. T., & Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. In Science (Vol. 322, Issue 5905, pp. 1198–1199). https://doi.org/10.1126/science.1166844; Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.; Hammer, T. J., & Bowers, M. D. (2015). Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 179(1), 1–14. https://doi.org/10.1007/s00442-015-3327-1; He, L.-M., Troiano, J., Wang, A., & Goh, K. (2008). Environmental Chemistry, Ecotoxicity, and Fate of Lambda-Cyhalothrin. https://doi.org/10.1007/978-0-387-77030-7_3; Higuita Palacio MF, Montoya OI, Saldamando CI, García-Bonilla E, Junca H, Cadavid- Restrepo GE, Moreno-Herrera CX. (2021). Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. Journal of Insect Science 21:10.111. https://doi.org/10.1093/jisesa/ieab076; Hladik, M. L., Smalling, K. L., & Kuivila, K. M. (2009). Methods of Analysis-Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. https://doi.org/10.1016/j.talanta.2009.11.050; Hou, J., Yu, J., Qin, Z., Liu, X., Zhao, X., Hu, X., Yu, R., Wang, Q., Yang, J., Shi, Y., & Chen, L. (2021). Guadipyr, a new insecticide, induces microbiota dysbiosis and immune disorders in the midgut of silkworms (Bombyx mori). Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117531; Hu, W., Lu, Q., Zhong, G., Hu, M., & Yi, X. (2019). Biodegradation of pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus BCC01. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030477; Huang, Y., Chen, S. F., Chen, W. J., Zhu, X., Mishra, S., Bhatt, P., & Chen, S. (2023). Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chemical Engineering Journal, 469. https://doi.org/10.1016/j.cej.2023.143863; Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. In Molecules (Vol. 23, Issue 9). MDPI AG. https://doi.org/10.3390/molecules23092313; Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., Fitzgerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., … White, O. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234; ICA. (2024). Productos Nacionales de Plaguicidas. Plaguicidas Químicos. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos.aspx; Jaenike, J. (2010). Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science, 329(5988), 210–212. https://doi.org/10.1126/science.1187115; Jaramillo-Barrios, C. I., Varón-Devia, E. H., & Monje-Andrade, B. (2020). Economic injury level and action thresholds for Spodoptera frugiperda (J.e. smith) (Lepidoptera: Noctuidae) in maize crops. Revista Facultad Nacional de Agronomia Medellin, 73(1), 9065–9076. https://doi.org/10.15446/rfnam.v73n1.78824; Jiang, B., Zhang, N., Xing, Y., Lian, L., Chen, Y., Zhang, D., Li, G., Sun, G., & Song, Y. (2019). Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment. Environmental Science and Pollution Research, 26(21), 21668–21681. https://doi.org/10.1007/s11356-019-05135-9; Jilani, S., Khan, M. A., & Altaf Khan, M. (2006). Biodegradation of Cypermethrin by pseudomonas in a batch activated sludge process 1*. J. Environ. Sci. Tech, 3(4), 371–380. https://doi.org/10.1007/bf03325946; Jing, T. Z., Qi, F. H., & Wang, Z. Y. (2020). Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00823-y; Jones, A. G., Mason, C. J., Felton, G. W., & Hoover, K. (2019). Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39163-9; Khan, M. M., Khan, A. H., Ali, M. W., Hafeez, M., Ali, S., Du, C., Fan, Z., Sattar, M., & Hua, H. (2021). Emamectin benzoate induced enzymatic and transcriptional alternation in detoxification mechanism of predatory beetle Paederus fuscipes (Coleoptera: Staphylinidae) at the sublethal concentration. Ecotoxicology, 30(6), 1227–1241. https://doi.org/10.1007/s10646-021-02426-1.; Kim, D. H., Han, S. A., Kim, H. N., Shin, B. C., & Park, Y. (2016). A Case of Methomyl-induced Acute Allergic Tubulointerstitial Nephritis (Vol. 27, Issue 4).; Kong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Wang, J., Wang, J., Wang, F., & Sun, F. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. Journal of Environmental Sciences (China), 25(11), 2257–2264. https://doi.org/10.1016/S1001-0742(12)60288-5; Kulkarni, A. G., & Kaliwal, B. B. (2018). Bioremediation of methomyl by Escherichia coli. In Methods in Pharmacology and Toxicology (Issue 9781493974245, pp. 75–86). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7425-2_4; León García, I., Rodríguez Leyva, E., Ortega Arenas, L. D., & Solís Aguilar, J. F. (2012). Susceptibilidad de Spodoptera frugiperda a insecticidas asociada a césped en quintana roo, Mexico. Red de revistas científicas de América Latina. Agrociencias, vol. 46.; Li, W., Jin, D., Shi, C., & Li, F. (2017). Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02138-9; Liang, W. Q., Wang, Z. Y., Li, H., Wu, P. C., Hu, J. M., Luo, N., Cao, L. X., & Liu, Y. H. (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. Journal of Agricultural and Food Chemistry, 53(19), 7415–7420. https://doi.org/10.1021/jf051460k; Lin, Z., Pang, S., Zhou, Z., Wu, X., Li, J., Huang, Y., Zhang, W., Lei, Q., Bhatt, P., Mishra, S., & Chen, S. (2022). Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. Journal of Hazardous Materials, 426. https://doi.org/10.1016/j.jhazmat.2021.127841; Lin, Z., Zhang, W., Pang, S., Huang, Y., Mishra, S., Bhatt, P., & Chen, S. (2020). Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. In Molecules (Vol. 25, Issue 3). MDPI AG. https://doi.org/10.3390/molecules25030738; Liu, J., Hao, Z., Yang, S., Lin, Y., Zhong, H., & Jin, T. (2022). Insecticide resistance and its underlying synergism in field populations of Spodoptera frugiperda (J. E. Smith) from Hainan Island, China. Phytoparasitica, 50(4), 933–945. https://doi.org/10.1007/s12600-022-01004-3; Liu, S., Yao, K., Jia, D., Zhao, N., Lai, W., & Yuan, H. (2012). A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems. Journal of Chromatographic Science, 50(6), 469–476. https://doi.org/10.1093/chromsci/bms030; M. T. Madigan, J. M. Martinko, J. Parker. Brock. Biología de los Microorganismos. 12a (2009) Ed. Prentice Hall-Pearson Education.; Majchrzak, T., Wojnowski, W., Lubinska-Szczygeł, M., Różańska, A., Namieśnik, J., & Dymerski, T. (2018). PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. In Analytica Chimica Acta (Vol. 1035, pp. 1–13). Elsevier B.V. https://doi.org/10.1016/j.aca.2018.06.056; Marulanda-Moreno, S. M. (2022). Caracterización de la microbiota asociada a los biotipos de Spodoptera frugiperda SMITH (Lepidoptera: Noctuidae). Universidad Nacional de Colombia, Sede Medellín.; Marulanda-Moreno, S. M., Saldamando-Benjumea, C. I., Vivero Gomez, R., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2024). Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ, 12, e17087. https://doi.org/10.7717/peerj.17087; Mason, C. J., St Clair, A., Peiffer, M., Gomez, E., Jones, A. G., Felton, G. W., & Hoover, K. (2020). Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PloS One, 15(3), e0229848. https://doi.org/10.1371/journal.pone.0229848; McCarthy, C. B., Cabrera, N. A., & Virla, E. G. (2015). Metatranscriptomic analysis of larval guts from field-collected and laboratory-reared Spodoptera frugiperda from the South American subtropical region. Genome Announcements, 3(4). https://doi.org/10.1128/genomeA.00777-15; McCoy, M. R., Yang, Z., Fu, X., Ahn, K. C., Gee, S. J., Bom, D. C., Zhong, P., Chang, D., & Hammock, B. D. (2012). Monitoring of total type II pyrethroid pesticides in citrus oils and water by converting to a common product 3-phenoxybenzoic acid. Journal of Agricultural and Food Chemistry, 60(20), 5065–5070. https://doi.org/10.1021/jf2051653; Montllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress.; Moreno-García, M., Condé, R., Bello-Bedoy, R., & Lanz-Mendoza, H. (2014). The damage threshold hypothesis and the immune strategies of insects. In Infection, Genetics and Evolution (Vol. 24, pp. 25–33). https://doi.org/10.1016/j.meegid.2014.02.010; Morgan, J., Salcedo-Sora, J. E., Triana-Chavez, O., & Strode, C. (2022). Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. Journal of Medical Entomology, 59(1), 192–212. https://doi.org/10.1093/jme/tjab179; Morillo, F., & Notz, A. (2001). Resistencia de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) a lambdacihalotrina y metomil. 16(2), 79–87.; Morillo, F., & Notz, A. (2004). Efecto de lambdacihalotrina y metomil sobre la biología de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). 19(1), 7–14.; Muthabathula, P., & Biruduganti, S. (2022). Analysis of Biodegradation of the Synthetic Pyrethroid Cypermethrin by Beauveria bassiana. Current Microbiology, 79(2). https://doi.org/10.1007/s00284-021-02744-x; Muturi, E. J., Dunlap, C., Smartt, C. T., & Shin, D. (2021). Resistance to permethrin alters the gut microbiota of Aedes aegypti. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-93725-4; Nagoshi, R. N., & Meagher, R. (2003). Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. In Insect Molecular Biology (Vol. 12, Issue 5).; Nagoshi, R. N., Meagher, & Robert L. (n.d.). Behavior and distribution of the two fall armyworm host strains in Florida. 2004. https://doi.org/10.1653/0015; Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, NagoshiB Y, Mota-Sanchez D. (2020). Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Science Reports 0:1421 DOI 10.1038/s41598-020-58249-3.; Navarro, S., Barba, A., & Camara, M. A. (1978). Determinación de insecticidas por cromatografía líquida de alta resolución (CLAR).; Nayyar N, Gracy RG, Ashika TR, Mohan G, Swathi RS, Mohan M, Chaudhary M,Bakthavatsalam N, Venkatesan T. (2021). Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India. Scientifc Reports 11:7760; NIST/EPA/NIH Mass Spectral Database, S.R.D., 2011. SRD Program, National Institute of Standards and Technology, Gaithersburg, MD.; Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102; OMS. (2019). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación 2019. http://apps.who.int/bookorders.; Overton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., Ekesi, S., Meagher, R., & Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. In Crop Protection (Vol. 145). Elsevier Ltd. https://doi.org/10.1016/j.cropro.2021.105641; Pais, P., Moyano, E., Puignou, L., & Galceran, M. T. (1997). Liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry as a routine method for the analysis of mutagenic amines in beef extracts. In Journal of Chromatography A (Vol. 778).; Palmer-Brown, W., de Melo Souza, P. L., & Murphy, C. D. (2019). Cyhalothrin biodegradation in Cunninghamella elegans. Environmental Science and Pollution Research, 26(2), 1414–1421. https://doi.org/10.1007/s11356-018-3689-0; Pang, S., Lin, Z., Chen, W. J., Chen, S. F., Huang, Y., Lei, Q., Bhatt, P., Mishra, S., Chen, S., & Wang, H. (2023). High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. Journal of Hazardous Materials, 452. https://doi.org/10.1016/j.jhazmat.2023.131287; Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in control strategies against Spodoptera frugiperda. A review. In Molecules (Vol. 26, Issue 18). MDPI. https://doi.org/10.3390/molecules26185587; Pashley Prowell, D., Mcmichael, M., & Ois Silvain, J. (2004). Multilocus Genetic Analysis of Host Use, Introgression, and Speciation in Host Strains of Fall Armyworm (Lepidoptera: Noctuidae). In Ann. Entomol. Soc. Am (Vol. 97, Issue 5). https://academic.oup.com/aesa/article/97/5/1034/63036; Peña García, Y. (2016). Degradación microbiana de compuestos xenobióticos.; Pinto Carvajal, L. P. (2017). Alternativas para el tratamiento de aguas contaminadas por plaguicidas utilizadas en los cultivos de arroz en Colombia. Universidad Nacional Abierta y a Distancia.; Podlesky, E., & Alfonso, G. (1994). Determinación de plaguicidas en muestras ambientales, biológicas y de alimentos.; Polenogova, O. V., Noskov, Y. A., Yaroslavtseva, O. N., Kryukova, N. A., Alikina, T., Klementeva, T. N., Andrejeva, J., Khodyrev, V. P., Kabilov, M. R., Kryukov, V. Y., & Glupov, V. V. (2021). Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248704; Poveda Arias, J. (2019). The microorganisms associated with insects and their application in agriculture. Revista Digital Universitaria, 20(1). https://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2; Ravula, A. R., & Yenugu, S. (2021). Pyrethroid based pesticides–chemical and biological aspects. In Critical Reviews in Toxicology (Vol. 51, Issue 2, pp. 117–140). Taylor and Francis Ltd. https://doi.org/10.1080/10408444.2021.1879007; Rigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021a). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121; Rigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021b). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121; Rigolin, F., Leite, C., Birolli, W., Porto, A., & Seleghim, M. (2024). Biodegradation of the Pyrethroid Pesticide Gamma-Cyhalothrin by Fungi from a Brazilian Cave. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20240026; Ríos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A study of the genetic basis of resistance. Journal of Economic Entomology, 104(5), 1698–1705. https://doi.org/10.1603/EC11079; Ríos-Díez, J. D., B. Siegfried, and C. I. Saldamando-Benjumea. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from Central Colombia to Cry1Ac and Cry1Ab. Southwest Entomol. 7: 281-293.; Rodríguez Martínez, C. & Zhurbenko, R. (2018). Manual de medios de cultivo. www.biocen.cu; Romo Ibáñez, M. (2017). Actividad fenilvalerato esterasa en la buirilcolinesterasa humana. Universidad Miguel Hernández de Elche.; ROTAM. (2020). Ficha técnica Rotam Lash. https://croper.com/products/4957-insecticida-lash-216-sl-x-20-lt-rotam; Roy, T., & Das, N. (2017). Isolation, characterization, and identification of two methomyl-degrading bacteria from a pesticide-treated crop field in West Bengal, India. Microbiology (Russian Federation), 86(6), 753–764. https://doi.org/10.1134/S0026261717060145; Ruiz Benitez, M. L. (2020). Cromatografía líquida de alto rendimiento (HPLC) y cromatografía de gases (CG).; Rupawate, P. S., Roylawar, P., Khandagale, K., Gawande, S., Ade, A. B., Jaiswal, D. K., & Borgave, S. (2023). Role of gut symbionts of insect pests: A novel target for insect-pest control. In Frontiers in Microbiology (Vol. 14). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2023.1146390; SAAT AG. (2022). Ficha técnica Saat Lambada. https://www.saat-ag.com/wp-content/uploads/2023/03/Ficha_Tecnica_Saat_LAMBADA; Saldamando-Benjumea, C. I., K. Estrada-Piedrahíta, M. I. Velásquez-Vélez, and R. I. Bailey. (2014). Assortative mating and lack of temporality between corn and rice strains of Spodoptera frugiperda (Lepidoptera, Noctuidae) from central Colombia. J. Insect Behav. 27: 555-566.; Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. In Cell Host and Microbe (Vol. 17, Issue 5, pp. 565–576). Cell Press. https://doi.org/10.1016/j.chom.2015.04.011; Santos-Amaya, O., Delgado-Restrepo O, Arguelles J, Aguilera-Garramuño E. (2009). Evaluación del comportamiento del complejo Spodoptera con la introducción de algodón transgénico al Tolima, Colombia. Revista Corpoica Ciencia y Tecnología Agropecuaria 10(1):24-32.; Schneider, D. S., & Ayres, J. S. (2008). Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. https://doi.org/10.1038/nri2432; Shu, B., Zou, Y., Yu, H., Zhang, W., Li, X., Cao, L., & Lin, J. (2021). Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07726-8; Siddiqui, J. A., Fan, R., Naz, H., Bamisile, B. S., Hafeez, M., Ghani, M. I., Wei, Y., Xu, Y., & Chen, X. (2023). Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. In Frontiers in Physiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fphys.2022.1112278; Siddiqui, J. A., Khan, M. M., Bamisile, B. S., Hafeez, M., Qasim, M., Rasheed, M. T., Rasheed, M. A., Ahmad, S., Shahid, M. I., & Xu, Y. (2022). Role of Insect Gut Microbiota in Pesticide Degradation: A Review. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.870462; Siripattanakul-Ratpukdi, S., Vangnai, A. S., Sangthean, P., & Singkibut, S. (2014). Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environmental Science and Pollution Research, 22(1), 320–328. https://doi.org/10.1007/s11356-014-3354-1; Staetz, C. A. (2013). Directrices sobre la Prevención y Manejo de la Resistencia a los Plaguicidas. www.fao.org/publications; Stashenko, E. E., & René Martínez, J. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Industrial University of Santander.; Suarez Ospina, D., & Morales Hernández, Y. (2018). Principios básicos de la cromatografía líquida de alto rendimiento para la separación y análisis de mezclas basic principles of high performance liquid chromatography for the separation and analysis of mixtures. América Revista Semilleros: Formación Investigativa, 4.; Tamimi, M., Qourzal, S., Assabbane, A., Chovelon, J. M., Ferronato, C., & Ait-Ichou, Y. (2006). Photocatalytic degradation of pesticide methomyl: Determination of the reaction pathway and identification of intermediate products. Photochemical and Photobiological Sciences, 5(5), 477–482. https://doi.org/10.1039/b517105a; Tang, X., Freitak, D., Vogel, H., Ping, L., Shao, Y., Cordero, E. A., Andersen, G., Westermann, M., Heckel, D. G., & Boland, W. (2012). Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0036978; Todd, E. L., & Poole, R. W. (1980). Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera guenee from the Western Hemisphere 1. In ABSTRACT Ann. Entomol. Soc. Am (Vol. 73).; Ugwu, J. A., Liu, M., Sun, H., & Asiegbu, F. O. (2020). Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants. Journal of Applied Entomology, 144(9), 764–776. https://doi.org/10.1111/jen.12821; Valbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286. https://doi.org/10.1016/j.jenvman.2021.112141; Van Scoy, A. R., Yue, M., Deng, X., & Tjeerdema, R. S. (2013). Environmental fate and toxicology of methomyl. Reviews of Environmental Contamination and Toxicology, 222, 93–109. https://doi.org/10.1007/978-1-4614-4717-7_3; Velásquez-Vélez, M. I., C. I. Saldamando-Benjumea, and J. D. Ríos- Díez. (2011). Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera, Noctuidae) collected in corn and rice fields from Central Colombia. Ann. Entomol. Soc. Am. 104: 826-833.; Vélez Arango, A. M., Arango I., R. E., Villanueva M., D., Aguilera G., E., & Saldamando B., C. I. (2008). Identificación de biotipos de Spodoptera frugiperda (Lepidoptera: Noctuidae) mediante marcadores mitocondriales y nucleares. Revista Colombiana de Entomología.; Visôtto, L. E., Oliveira, M. G. A., Ribon, A. O. B., Mares-Guia, T. R., & Guedes, R. N. C. (2009). Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environmental Entomology, 38(4), 1078–1085. https://doi.org/10.1603/022.038.0415; Wan, J., Huang, C., Li, C., Zhou, H. Xu, REN, Y. Lin, Li, Z. Yuan, Xing, L. Sheng, Zhang, B., Qiao, X., Liu, B., Liu, C. Hui, Xi, Y., Liu, W. Xue, Wang, W. Kai, Qian, W. Qiang, Mckirdy, S., & Wan, F. Hao. (2021). Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Journal of Integrative Agriculture (Vol. 20, Issue 3, pp. 646–663). Editorial Department of Scientia Agricultura Sinica. https://doi.org/10.1016/S2095-3119(20)63367-6; Wendeborn, S., Godineau, E., Mondière, R., Smejkal, T., & Smits, H. (2012). Chirality in Agrochemicals. In Comprehensive Chirality (Vol. 1, pp. 120–166). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095167-6.00102-6; Worku, M., & Ebabuye, Y. (2019). Evaluation of efficacy of insecticides against the fall armyworm Spodoptera frugiperda. Indian Journal of Entomology, 81(1), 13. https://doi.org/10.5958/0974-8172.2019.00076.2; Xia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H., & You, M. (2017). Metagenomic Sequencing of Diamondback Moth Gut Microbiome Unveils Key Holobiont Adaptations for Herbivory. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00663; Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M. (2018). Gut microbiota mediate insecticide resistance in the Diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 9(JAN). https://doi.org/10.3389/fmicb.2018.00025; Xie, S., Liu, J., Li, L., & Qiao, C. (2009). Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. Journal of Environmental Sciences, 21(1), 76–82. https://doi.org/10.1016/S1001-0742(09)60014-0; Yamamoto, S., & Harayama, S. (1995). PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains. In Applied and environmental microbiology (Vol. 61, Issue 3).; Yingjie, Y., Qianru, C., Naila, I., Ping, Z., Changliang, J., Bin, L., & Yiqiang, L. (2022). Synergism in microbial communities facilitate the biodegradation of pesticides. In Microbial Syntrophy-mediated Eco-enterprising (pp. 259–273). Elsevier. https://doi.org/10.1016/B978-0-323-99900-7.00011-0; Yuning, L., Luyang, L., Xueming, C., Xianmei, Y., Jintian, L., & Benshui, S. (2022). The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-17278-w; Zhang, C., Yang, Z., Jin, W., Wang, X., Zhang, Y., Zhu, S., Yu, X., Hu, G., & Hong, Q. (2017). Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3. Letters in Applied Microbiology, 64(4), 289–296. https://doi.org/10.1111/lam.12715; Zhao, M., Lin, X., & Guo, X. (2022). The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. In Insects (Vol. 13, Issue 7). MDPI. https://doi.org/10.3390/insects13070583; https://repositorio.unal.edu.co/handle/unal/86987; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
9
المؤلفون: Piovesan, Natiéli, Borges, Mirla Fontes de Araújo, Queiroz, Joyce Moura de, Souza, Rosane Liége Alves de, Oliveira, Emanuel Neto Alves de, Oliveira, Gleison Silva, Machado, Adalva Lopes, Oliveira, Pâmara Virna Carlos de, Oliveira, Palloma Vitória Carlos de
المصدر: Research, Society and Development; Vol. 10 No. 8; e5710817031
Research, Society and Development; Vol. 10 Núm. 8; e5710817031
Research, Society and Development; v. 10 n. 8; e5710817031
Research, Society and Development
Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEIمصطلحات موضوعية: Ice cream, Helado, Acceptability, Bactérias intestinais benéficas, Sorvete, Aceitabilidade, Bacterias intestinales beneficiosas, Beneficial intestinal bactéria, Aceptabilidad
وصف الملف: application/pdf
-
10
المؤلفون: Juan David Ramírez, Luis Pérez, Viviana Aya, Alberto Flórez
المصدر: Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
PLoS ONE, Vol 16, Iss 2, p e0247039 (2021)
PLoS ONEمصطلحات موضوعية: Cross-sectional study, medicine.medical_treatment, Las bacterias intestinales, Physiology, Social Sciences, Gut flora, Biochemistry, Ciencias médicas, Medicina, law.invention, Probiotic, Gastrointestinal tract, law, Medicine and Health Sciences, Psychology, Public and Occupational Health, Gut, Multidisciplinary, biology, Microbiota, Gastrointestinal Microbiome, Human microbiome, Genomics, Sports Science, Medical Microbiology, Meta-analysis, Medicine, Dieta, Metabolic Pathways, Anatomy, Research Article, Sports, Science, Microbial Genomics, Microbiology, medicine, Genetics, Humans, Microbiome, Sports and Exercise Medicine, Pathways, Exercise, Nutrition, Tracto gastrointestinal, Deportes, Behavior, Bacteria, Physical activity, Prebiotic, Gut Bacteria, Organisms, Biology and Life Sciences, Physical Activity, biology.organism_classification, Ejercicio, Diet, Gastrointestinal Tract, Cross-Sectional Studies, Metabolism, Physical Fitness, Actividad física, Recreation, Metabolic, Vías metabólicas, Digestive System, Microbioma
وصف الملف: 21 pp; application/pdf
-
11Species-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors
المؤلفون: Juan David Ramírez, Marina Muñoz, Omar Cantillo-Barraza, Luisa M. Arias-Giraldo, Giovanny Herrera, Plutarco Urbano, Natalia Velásquez-Ortiz, Carolina Hernández
المصدر: PLoS ONE
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
PLoS ONE, Vol 15, Iss 11, p e0240916 (2020)مصطلحات موضوعية: Las bacterias intestinales, Disease Vectors, Ciencias médicas, Medicina, Medical Conditions, Mathematical and Statistical Techniques, RNA, Ribosomal, 16S, Insect vectors, Medicine and Health Sciences, Triatoma, Gut bacteria, Bacterial phyla, Protozoans, Principal Component Analysis, Multidisciplinary, biology, Statistics, Eukaryota, Biodiversity, Parasitic diseases, Tripanosoma cruzi, Insects, Actinobacteria, Infectious Diseases, Reduviidae, Physical Sciences, Medicine, Wolbachia, Insectos, Proteobacteria, Triatominae, Research Article, Chagas disease, DNA, Bacterial, Trypanosoma, Arthropoda, Genotype, Firmicutes, Enfermedades parasitarias, Science, Trypanosoma cruzi, Principal component analysis, Colombia, Research and Analysis Methods, Host Specificity, Microbiology, parasitic diseases, medicine, Parasitic Diseases, Actino bacterias, Insectos vectores, Animals, Humans, Chagas Disease, Statistical Methods, Bacteria, Análisis de componentes principales, Gut Bacteria, Organisms, Bacteroidetes, Biology and Life Sciences, DNA, Protozoan, biology.organism_classification, medicine.disease, Enfermedades, Invertebrates, Parasitic Protozoans, Insect Vectors, Gastrointestinal Microbiome, Species Interactions, Multivariate Analysis, Zoology, Entomology, Mathematics
وصف الملف: 16 pp; application/pdf
-
12
المؤلفون: Padrón Pereira, Carlos Alberto
المصدر: Science and Technology; Vol. 12 No. 1 (2019): Science and Technology Journal-January-June 2019; 31-42
Ciencia y Tecnología; Vol. 12 Núm. 1 (2019): Revista Ciencia y Tecnología Enero-Junio 2019; 31-42
Ciência e Tecnologia; v. 12 n. 1 (2019): Revista Ciencia y Tecnología Enero-Junio 2019; 31-42
Revista Ciencia y Tecnología
Universidad Técnica Estatal de Quevedo
instacron:UTEQمصطلحات موضوعية: gut bacteria, diversidad microbiana, patrones dietéticos, salud, healthy foods, microbial diversity, dietary patterns, alimentos saludables, fibras dietéticas, health, dietary fibers, bacterias intestinales
وصف الملف: application/pdf; text/html
-
13Dissertation/ Thesis
المؤلفون: Marcos Fernández, Raquel
المساهمون: Sánchez García, Borja, Margolles Barros, Abelardo, Biología Molecular y Celular, Departamento de
مصطلحات موضوعية: Microbiota intestinal, Citometría de flujo, Bacterias intestinales
Relation: http://hdl.handle.net/10651/63321
الاتاحة: http://hdl.handle.net/10651/63321