يعرض 1 - 11 نتائج من 11 نتيجة بحث عن '"attractive ellipsoid"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: mr:MR3182648; zbl:Zbl 1284.93242; reference:[1] Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: High gain observer design for some networked control systems.IEEE Trans. Automat. Control 57 (2012), 4, 995-1000. MR 2952330, 10.1109/TAC.2011.2168049; reference:[2] Blanchini, F.: Set invariance in control, a survey.Automatica 35 (1999), 11, 1747-1767. MR 1831764, 10.1016/S0005-1098(99)00113-2; reference:[3] Blanchini, F., Miani, F.: Set-Theoretic Methods in Control.Birkhauser, Boston 2008. Zbl 1140.93001, MR 2359816; reference:[4] Bortoff, S. A., Lynch, A. F.: Synthesis of Optimal Nonlinear Observersr.34th IEEE Conference on Decision and Control 1 (1995), 95-100.; reference:[5] Dahleh, M. A., Pearson, J. B.: Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization.IEEE Trans. on Automat. Control 33 (1988), 8, 722-731. Zbl 0657.93019, MR 0950793, 10.1109/9.1288; reference:[6] Davila, J., Poznyak, A.: Sliding mode parameter adjustment for perturbed linear systems with actuators via invariant ellipsoid method.Internat. J. Robust and Nonlinear Control 21 (2011), 473-487. Zbl 1214.93026, MR 2808892, 10.1002/rnc.1599; reference:[7] Duncan, G. J., Schweppe, F. C.: Control of linear dynamic systems with set constrained disturbances.IEEE Trans. Automat. Control 16 (1971), 5, 411-423. MR 0287947, 10.1109/TAC.1971.1099781; reference:[8] Gonzalez, S., Polyakov, A., Poznyak, A.: Using the method of invariant ellipsoids for linear robust output stabilization of spacecraft.Automat. Remote Control 72 (2011), 3, 540-555. Zbl 1229.93138, MR 2828448, 10.1134/S0005117911030064; reference:[9] Ioannou, P., Sun, J.: Robust Adaptive Control.Prentice Hall, Inc, 1996. Zbl 0839.93002; reference:[10] Jong, M. L., Jay, H. L.: Approximate dynamic programming-based approaches for input-output data-driven control of nonlinear processes.Automatica 41 (2005), 1281-1288. Zbl 1092.93011, MR 2160128, 10.1016/j.automatica.2005.02.006; reference:[11] Kabamba, P. T., Hara, S.: Worst-case analysis and design of sampled-data control systems.IEEE Trans. Automat. Control 38 (1993), 9, 1337-1358. Zbl 0787.93068, MR 1240826, 10.1109/9.237646; reference:[12] Kurzhanski, A. B., Veliov, V. M.: Modeling Techniques and Uncertain Systems.Birkhauser, New York 1994. MR 1287643; reference:[13] Kou, S. R., Elliott, D. L., Tarn, T. J.: Exponential observers for non-linear dynamic systems.Inform. Control 29 (1975), 393-428. MR 0384227; reference:[14] Min, W., Zhou, Z. Lan, Jinhua, S.: Design of observer-based $H_{\infty }$ robust repetitive-control system.IEEE Trans. Automat. Control 56 (2011), 6, 1452-1457. MR 2839242, 10.1109/TAC.2011.2112473; reference:[15] Narendra, K. S., Annaswamy, A. M.: Stable Adaptive Systems.Dover Publications Inc., 2005. Zbl 1217.93081; reference:[16] Nazin, A., Polyak, B., Topunov, M.: Rejection of bounded exogenous disturbances by the method of invariant ellipsoids.Automat. Remote Control 68 (2007), 3, 467-486. Zbl 1125.93370, MR 2304813, 10.1134/S0005117907030083; reference:[17] O'Reilly, J.: Observers for Linear Systems.Academic Press, 1983. Zbl 0513.93001; reference:[18] Ordaz, P., Poznyak, A.: Stabilizaton of furuta's pendulum with out model: Attractive ellipsoid method.In: 51th IEEE Conference of Decision and Control, Hawaii 2012, pp. 7285-7290.; reference:[19] Poliakov, A., Poznyak, A.: Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control.Automatica 47 (2011), 1450-1454. MR 2889242, 10.1016/j.automatica.2011.02.013; reference:[20] Poznyak, A.: Advanced Mathematical Tools for Automatic Control Engineers: Deterministic techniques. Vol. 1.Elsevier 2008. MR 2374025; reference:[21] Poznyak, A., Azhmyakov, V., Mera, M.: Practical output feedback stabilization for a class of continuous-time dynamic systems under sample-data outputs.Internat. J. Control 8 (2011), 4, 1408-1416. MR 2830870, 10.1080/00207179.2011.603097; reference:[22] Proychev, T. P., Mishkov, R. L.: Transformation of nonlinear systems in observer canonical from with reduced dependency on derivatives of the input.Automatica 29 (1993), 2, 495-498. MR 1211308, 10.1016/0005-1098(93)90145-J; reference:[23] Rudin, W.: Functional Analysis. Second edition.MacGraw-Hill, Inc. 1991. MR 1157815; reference:[24] Sussmann, H. J., Sontag, E. D., Yang, Y.: A general result on the stabilization of linear systems using bounded controls.IEEE Trans. Automat. Control 39 (1994), 12, 2411-2425. Zbl 0811.93046, MR 1337566, 10.1109/9.362853; reference:[25] Tingshu, H., Zongli, L.: Control Systems with Actuator Saturation: Analyze and Design.Birkhauser, Boston 2001.; reference:[26] Teel, A. R.: A nonlinear small gain theorem for the analysis of control systems with saturation.IEEE Trans. Automat. Control 41 (1996), 9, 1256-1270. Zbl 0863.93073, MR 1409471, 10.1109/9.536496; reference:[27] Utkin, V.: Sliding mode control design principles and applications to electric drives.IEEE Trans. on Industrial Electronics 40 (1993), 1, 23-36. 10.1109/41.184818; reference:[28] Walcott, B., Corless, M., Zak, S.: Comparative study of non-linear state-observation techniques.Internat. J. Control 45 (1987), 6, 2109-2132. Zbl 0627.93012, MR 0891800, 10.1080/00207178708933870; reference:[29] Zeitz, M.: The extended Luenberger observer for nonlinear systems.Systems Control Lett. 9 (1987), 149-156. Zbl 0624.93012, MR 0906234, 10.1016/0167-6911(87)90021-1

  7. 7
    Academic Journal
  8. 8
    Periodical
  9. 9
  10. 10
    Electronic Resource
  11. 11