يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"approximation condition"', وقت الاستعلام: 0.52s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المؤلفون: Brandt, Achi

    المصدر: SIAM Journal on Numerical Analysis, 1994 Dec 01. 31(6), 1695-1730.

  4. 4
    Academic Journal

    المؤلفون: Bukovský, Lev

    وصف الملف: application/pdf

    Relation: mr:MR3708778; zbl:Zbl 06837070; reference:[1] Balcar B.: A theorem on supports in the theory of semisets.Comment. Math. Univ. Carolin. 14 (1973), 1–6. Zbl 0281.02060, MR 0340015; reference:[2] Balcar B., Štěpánek P.: Teorie množin.(Set Theory, Czech), Academia, Prague, 1986, second edition 2003. Zbl 0635.03039, MR 0911270; reference:[3] Bukovský L.: Ensembles génériques d'entiers.C.R. Acad. Sci. Paris 273 (1971), 753–755. Zbl 0231.02086, MR 0286647; reference:[4] Bukovský L.: Characterization of generic extensions of models of set theory.Fund. Math. 83 (1973), 35–46. Zbl 0344.02043, MR 0332477, 10.4064/fm-83-1-35-46; reference:[5] Friedman S.D., Fuchino S., Sakai H.: On the set-generic multiverse.preprint.; reference:[6] Gaifman H.: Concerning measures on Boolean algebras.Pacific J. Math. 14 (1964), 61–73. Zbl 0127.02306, MR 0161952, 10.2140/pjm.1964.14.61; reference:[7] Jech T.: Set Theory.the third millenium edition, revised and expanded, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513; reference:[8] Kunen K.: Set Theory.Studies in Logic 34, College Publications, London, 2013. Zbl 0960.03033, MR 2905394; reference:[9] Laver R.: Certain very large cardinals are not created in small forcing extensions.Ann. Pure Appl. Logic 149 (2007), 1–6. Zbl 1128.03046, MR 2364192, 10.1016/j.apal.2007.07.002; reference:[10] Solovay R.: A model of set theory in which every set of reals is Lebesgue measurable.Ann. of Math. 92 (1970), 1–56. Zbl 0207.00905, MR 0265151, 10.2307/1970696; reference:[11] Vopěnka P.: General theory of $\nabla$-models.Comment. Math. Univ. Carolin. 8 (1967), 145–170. Zbl 0162.01701, MR 0214460; reference:[12] Vopěnka P., Balcar B.: On complete models of the set theory.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 839–841. Zbl 0177.01404, MR 0242659; reference:[13] Vopěnka P., Hájek P.: The Theory of Semisets.Academia, Prague, 1972. Zbl 0332.02064, MR 0444473

  5. 5
  6. 6
    Conference

    المؤلفون: Wu, SJ

    المساهمون: Wu, SJ (reprint author), Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China., Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China.

    المصدر: SCI

    Relation: FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS.214(591-603).; 1062663; http://hdl.handle.net/20.500.11897/315464; WOS:000168477700060