-
1Academic Journal
المؤلفون: Baohang Wang, Wenhong Li, Chaoying Zhao, Qin Zhang, Guangrong Li, Xiaojie Liu, Bojie Yan, Xiaohe Cai, Jianxia Zhang, Shouzhu Zheng
المصدر: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 18926-18938 (2024)
مصطلحات موضوعية: Hong Kong–Zhuhai–Macao bridge, InSAR, $L_2$ -norm quasi 3-D phase unwrapping (PhU), Pingtan straits rail-cum-road bridge, residual phase, Ocean engineering, TC1501-1800, Geophysics. Cosmic physics, QC801-809
وصف الملف: electronic resource
-
2Academic Journal
المؤلفون: Salisu Ibrahim, Abdulnasir Isah
المصدر: Eurasian Journal of Science and Engineering, Vol 8, Iss 1, Pp 119-125 (2022)
مصطلحات موضوعية: differential equation, second-order differential equation, continuous least square method, and l_2 norm, Science
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Salisu Ibrahim
المصدر: Eurasian Journal of Science and Engineering, Vol 6, Iss 2, Pp 157-168 (2020)
مصطلحات موضوعية: the least square method (lsm), ordinary differential equations, l_2 norm, Science
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Usmani, Riaz A.
المصدر: Proceedings of the American Mathematical Society, 1979 Dec 01. 77(3), 329-335.
URL الوصول: https://www.jstor.org/stable/2042181
-
5Academic Journal
المؤلفون: Krajewski, Wiesław, Viaro, Umberto
مصطلحات موضوعية: keyword:model reduction, keyword:$L_2$ norm, keyword:Routh approximation, keyword:steady–state response, msc:93A15, msc:93B11, msc:93C05
وصف الملف: application/pdf
Relation: mr:MR3844832; zbl:Zbl 06987022; reference:[1] Alsmadi, O.M.K., Abo-Hammour, Z.S.: A robust computational technique for model order reduction of two-time-scale discrete systems via genetic algorithms.Computational Intelligence and Neuroscience 2015 (2015), 1-9. 10.1155/2015/615079; reference:[2] Astolfi, A.: Model reduction by moment matching for linear and nonlinear systems.IEEE Trans. Automat. Contr. 55 (2010), 2321-2336. MR 2742223, 10.1109/tac.2010.2046044; reference:[3] Barnett, S., Šiljac, D. D.: Routh's algorithm: a centennial survey.SIAM Review 19 (1977), 472-489. MR 0446660, 10.1137/1019070; reference:[4] Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction.SIAM J. Scientific Computing 33 (2011), 2489-2518. MR 2861634, 10.1137/090776925; reference:[5] Bistritz, Y.: Optimal fraction-free Routh tests for complex and real integer polynomials.IEEE Trans. Circuits Syst. I 60 (2013), 2453-2464. MR 3105256, 10.1109/tcsi.2013.2246232; reference:[6] Beghi, A., Lepschy, A., Viaro, U.: A property of the Routh table and its use.IEEE Trans. Automat. Control 39 (1994), 2494-2496. MR 1337580, 10.1109/9.362839; reference:[7] Benner, P., Grundel, S., Hornung, N.: Parametric model order reduction with a small $H_2$-error using radial basis functions.Adv. Comput. Math. 41 (2015), 5, 1231-1253. MR 3428565, 10.1007/s10444-015-9410-7; reference:[8] Bultheel, A., Moor, B. De: Rational approximation in linear systems and control.J. Comput. Appl. Math. 121 (2000), 355-378. MR 1780055, 10.1016/s0377-0427(00)00339-3; reference:[9] Bultheel, A., Barel, M. Van: Padé techniques for model reduction in linear system theory: a survey.J. Comput. Appl. Math. 14 (1986), 401-438. MR 0831083, 10.1016/0377-0427(86)90076-2; reference:[10] Chahlaoui, Y., Dooren, P. Van: A collection of benchmark examples for model reduction of linear time invariant dynamical systems.SLICOT Working Note 2002-2: http://slicot.org/20-site/126-benchmark-examples-for-model-reduction. (2002).; reference:[11] Desai, S. R., Prasad, R.: A new approach to order reduction using stability equation and big bang big crunch optimization.Systems Science Control Engineering: An Open Access J. 1 (2013), 20-27. 10.1080/21642583.2013.804463; reference:[12] Desai, S. R., Prasad, R.: Generating lower order systems using modified truncation and PSO.Int. J. Computer Appl. 12 (2013), 17-21.; reference:[13] Dorato, P., Lepschy, A., Viaro, U.: Some comments on steady-state and asymptotic responses.IEEE Trans. Education 37 (1994), 264-268. 10.1109/13.312135; reference:[14] Ferrante, A., Krajewski, W., Lepschy, A., Viaro, U.: Convergent algorithm for $L_2$ model reduction.Automatica 35 (1999), 75-79. 10.1016/s0005-1098(98)00142-3; reference:[15] Fortuna, L., Nunnari, G., Gallo, A.: Model Order Reduction Techniques with Applications in Electrical Engineering.Springer-Verlag, London 1992. 10.1007/978-1-4471-3198-4; reference:[16] Fuhrmann, P. A.: A polynomial approach to Hankel norm and balanced approximations.Linear Algebra Appl. 146 (1991), 133-220. MR 1083469, 10.1016/0024-3795(91)90025-r; reference:[17] Gawronski, W. K.: Dynamics and Control of Structures: A Modal Approach.Springer, New York, 1998. MR 1641222, 10.1016/0024-3795(91)90025-r; reference:[18] Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their $L_{\infty}$-error bounds.Int. J. Control 39 (1984), 1115-1193. MR 0748558, 10.1080/00207178408933239; reference:[19] Gu, G.: All optimal Hankel-norm approximations of linear multivariable systems and their $L_{\infty}$-error bounds in discrete time.Int. J. Control 78 (2005), 408-423. MR 2147650, 10.1080/00207170500110988; reference:[20] Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some new results.Int. J. Control 77 (2004), 748-766. MR 2072207, 10.1080/00207170410001713448; reference:[21] Gugercin, S., Antoulas, A., Beattie, C.: A rational Krylov iteration for optimal $H_2$ model reduction.Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 1665-1667.; reference:[22] Gugercin, S., Antoulas, A., Beattie, C.: $H_2$ model reduction for large-scale linear dynamical systems.SIAM J. Matrix Analysis Appl. 30 (2008), 609-638. MR 2421462, 10.1137/060666123; reference:[23] Gugercin, S., Polyuga, R. V., Beattie, C., Schaft, A. van der: Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems.Automatica 48 (2012), 1963-1974. MR 2956873, 10.1016/j.automatica.2012.05.052; reference:[24] Huang, X. X., Yan, W. Y., Teo, K. L.: $H_2$ near-optimal model reduction.IEEE Trans. Automat. Control 46 (2001), 1279-1284. MR 1847334, 10.1109/9.940934; reference:[25] Hutton, M. F., Friedland, B.: Routh approximations for reducing order of linear, time-invariant systems.IEEE Trans. Automat. Control 20 (1975), 329-337. MR 0439332, 10.1109/tac.1975.1100953; reference:[26] Jeltsch, R., Mansour, M., eds: Stability Theory: Hurwitz Centenary Conference 1995.Birkhäuser, Basel, Switzerland, 1996. MR 1416358, 10.1007/978-3-0348-9208-7; reference:[27] King, A. M., Desai, U. B., Skelton, R. E.: A generalized approach to q-Markov covariance equivalent realizations for discrete systems.Automatica 24 (1988), 507-515. MR 0956572, 10.1016/0005-1098(88)90095-7; reference:[28] Krajewski, W., Lepschy, A., Viaro, U.: Compact form of the optimality conditions for multivariable $L_2$ model reduction.Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CL (1991/92) (1992), 119-128. MR 1261290; reference:[29] Krajewski, W., Lepschy, A., Mian, G. A., Viaro, U.: Optimality conditions in multivariable $L_2$ model reduction.J. Franklin Inst. 330 (1993), 431-439. MR 1216978, 10.1016/0016-0032(93)90090-h; reference:[30] Krajewski, W., Lepschy, A., Viaro, U.: Remarks on algorithms for $L_2$ model reduction.Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CLII (1993/1994) (1994), 99-106. MR 1353809; reference:[31] Krajewski, W., Lepschy, A., Viaro, U.: Reduction of linear continuous-time multivariable systems by matching first- and second-order information.IEEE Trans. Automat. Control 39 (1994), 2126-2129. MR 1295743, 10.1109/9.328814; reference:[32] Krajewski, W., Lepschy, A., Viaro, U.: Model reduction by matching Markov parameters, time moments, and impulse-response energies.IEEE Trans. Automat. Contr. 40, 949-953. MR 1328099, 10.1109/9.384238; reference:[33] Krajewski, W., Lepschy, A., Redivo-Zaglia, M., Viaro, U.: A program for solving the L2 reduced-order problem with fixed denominator degree.Numerical Algorithms 9 (1995), 355-377. MR 1339727, 10.1007/bf02141596; reference:[34] Krajewski, W., Viaro, U.: On MIMO model reduction by the weighted equation-error approach.Numerical Algorithms 44 (2007), 83-98. MR 2322146, 10.1007/s11075-007-9086-2; reference:[35] Krajewski, W., Viaro, U.: Iterative-interpolation algorithms for $L_2$ model reduction.Control and Cybernetics 38 (2009), 543-554. MR 2591289; reference:[36] Krishnamurthy, V., Seshadri, V.: Model reduction using the Routh stability criterion.IEEE Trans. Automat. Contr. 23 (1978), 729-731. 10.1109/tac.1978.1101805; reference:[37] Lepschy, A., Mian, G. A., Viaro, U.: A geometrical interpretation of the Routh test.J. Franklin Inst. 325 (1988, 695-703. MR 0971159, 10.1016/0016-0032(88)90003-8; reference:[38] Lepschy, A., Mian, G. A., Viaro, U.: Splitting of some $s$-domain stability test algorithms.Int. J. Control 50 (1989), 2237-2247. 10.1080/00207178908953495; reference:[39] Luenberger, D. G.: Optimization by Vector Space Methods.Wiley, New York 1969. MR 0238472, 10.1137/1012072; reference:[40] Meier, L., Luenberger, D. G.: Approximation of linear constant systems.IEEE Trans. Automat. Contr. 12 (1967), 585-588. 10.1109/tac.1967.1098680; reference:[41] Mi, W., Qian, T., Wan, F.: A fast adaptive model reduction method based on Takenaka-Malmquist systems.Systems Control Lett. 61 (2012), 223-230. MR 2878709, 10.1016/j.sysconle.2011.10.016; reference:[42] Mittal, S. K., Chandra, D., Dwivedi, B.: A computer-aided approach for Routh-Padé approximation of SISO systems based on multi-objective optimization.Int. J. Eng. Technol. 2 (2010), 204-210. MR 2579902; reference:[43] Moore, B. C.: Principal component analysis in linear systems: controllability, observability, and model reduction.IEEE Trans. Automat. Control 26 (1981), 17-32. MR 0609248, 10.1109/tac.1981.1102568; reference:[44] Mukherjee, S., Satakshi, Mittal, R .C.: Model order reduction using response-matching technique.J. Franklin Inst. 342 (2005), 503-519. MR 2150730, 10.1016/j.jfranklin.2005.01.008; reference:[45] Mullis, C. T., Roberts, R. A.: The use of second-order data in the approximation of discrete-time linear systems.IEEE Trans. Acoust. Speech Signal Process. 24 (1976), 226-238. MR 0497017, 10.1109/tassp.1976.1162795; reference:[46] Pan, V.Y.: Solving a polynomial equation: some history and recent progress.SIAM Rev. 39 (1997), 187-220. MR 1453318, 10.1137/s0036144595288554; reference:[47] Panda, S., Tomar, S. K., Prasad, R., Ardil, C.: Reduction of linear time-invariant systems using Routh-approximation and PSO.Int. J. Electrical Computer Electronics and Communication Eng. 3 (2009), 20-27. MR 2482061; reference:[48] Parmar, G., Mukherjee, S., Prasad, R.: System reduction using factor division algorithm and eigen spectrum analysis.Appl. Math. Modelling 31 (2007), 2542-2552. Zbl 1118.93028, 10.1016/j.apm.2006.10.004; reference:[49] Petersson, D., Löfberg, J.: Model reduction using a frequency-limited $H_2$ cost.Systems Control Lett. 67 (2012), 32-39. MR 3183378, 10.1016/j.sysconle.2014.02.004; reference:[50] Qiu, L.: What can Routh table offer in addition to stability?.J. Contr. Theory Appl. 1 (2003), 9-16. MR 2093619, 10.1007/s11768-003-0003-5; reference:[51] Ramawat, K., Kumar, A.: Improved Padé-pole clustering approach using genetic algorithm for model order reduction.Int. J. Computer Appl. 114 (2015), 24-285. 10.5120/19943-1737; reference:[52] Rana, J. S., Prasad, R., Singh, R.: Order reduction using modified pole clustering and factor division method.Int. J. Innovative Tech. Exploring Eng. 3 (2014), 134-136.; reference:[53] Ryaben'kii, V. S., Tsynkov, S. V.: A Theoretical Introduction to Numerical Analysis.Chapman and Hall/CRC (Taylor and Francis Group), Boca Raton 2006.; reference:[54] Rydel, M., Stanisławski, W.: Selection of fitness functions for evolutionary algorithms and their influence on the properties of a reduced mathematical MIMO model.In: Proc. IEEE Int. Conf. Methods and Models in Automation and Robotics, Miedzyzdroje 2015. 10.1109/mmar.2015.7283941; reference:[55] Saini, D. K., Prasad, R.: Order reduction of linear interval systems using genetic algorithm.Int. J. Eng. Technol. 2 (2010), 316-319.; reference:[56] Sikander, A., Prasad, R.: A novel order reduction method using cuckoo search algorithm.IETE J. Research 61 (2015), 83-90. 10.1080/03772063.2015.1009396; reference:[57] Sikander, A., Prasad, R.: Linear time invariant system reduction using mixed method approach.Appl. Math. Modelling 39 (2015), 4848-4858. MR 3354872, 10.1016/j.apm.2015.04.014; reference:[58] Soh, C. B.: Generalization of the Hermite-Biehler theorem and applications.IEEE Trans. Automat. Control 35 (1990), 222-225. MR 1038425, 10.1109/9.45186; reference:[59] Soloklo, H. N., Farsangi, M. M.: Order reduction by minimizing integral square error and $H_{\infty}$ norm of error.J. Adv. Computer Res. 5 (2014), 29-42.; reference:[60] Sreeram, V., Agathoklis, P.: Model reduction of linear discrete systems via weighted impulse response Gramians.Int. J. Control 53 (1991), 129-144. MR 1085103, 10.1080/00207179108953613; reference:[61] Tanguy, N., Iassamen, N., Telescu, M., Cloastre, P.: Parameter optimization of orthonormal basis functions for efficient rational approximations.Appl. Math. Modelling 39 (2015), 4963-4970. MR 3354880, 10.1016/j.apm.2015.04.017; reference:[62] Dooren, P. Van, Gallivan, K. A., Absil, P. A.: $H_2$-optimal model reduction of MIMO systems.Appl. Math. Lett. 21 (2008), 1267-1273. MR 2464378, 10.1016/j.aml.2007.09.015; reference:[63] Varga, A., Anderson, B. D. O.: Accuracy-enhancing methods for balancing-related frequency-weighted model and controller reduction.Automatica 39 (2003), 919-927. MR 2138365, 10.1016/s0005-1098(03)00030-x; reference:[64] Viaro, U.: Stability tests revisited.In: A Tribute to Antonio Lepschy (G. Picci and M. E. Valcher, eds.), Edizioni Libreria Progetto, Padova 2007, pp. 189-199.; reference:[65] Vishwakarma, C.B., Prasad, R.: Order reduction using the advantages of differentiation method and factor division algorithm.Indian J. Engineering & Materials Sciences 15 (2008), 447-451.; reference:[66] Xu, Y., Zeng, T.: Optimal $H_2$ model reduction for large scale MIMO systems via tangential interpolation.Int. J. Numerical Analysis and Modeling 8 (2011), 174-188. MR 2740486; reference:[67] Wang, Y., Bernstein, D. S., Watson, L. T.: Probability-one homotopy algorithms for solving the coupled Lyapunov equations arising in reduced-order $H _2/H_{\infty}$ modeling, estimation, and control.Appl. Math Comput. 123 (2001), 155-185. MR 1847909, 10.1016/s0096-3003(00)00059-x; reference:[68] Yan, W. Y., Lam, J.: An approximate approach to $H^2$ optimal model reduction.IEEE Trans. Automat. Control 44 (1999), 1341-1358. MR 1697424, 10.1109/9.774107; reference:[69] Zeng, C., Chen, Y. Q.: Global Padé approximations of the generalized Mittag-Leffler function and its inverse.Fractional Calculus and Applied Analysis (arXiv:1310.5592) 18 (2015), 1-15. MR 3433025, 10.1515/fca-2015-0086; reference:[70] Zeng, T., Lu, C.: Two-sided Grassmann manifold algorithm for optimal $H_2$ model reduction.Int. J. Numerical Methods Engrg. 104 (2015), 10, 928-943. MR 3416241, 10.1515/fca-2015-0086; reference:[71] Ziegler, J. G., Nichols, N. B.: Optimum settings for automatic controllers.Trans. ASME 64 (1942), 759-765. 10.1109/tit.1972.1054906; reference:[72] Žigić, D., Watson, L. T., Collins, E. G., Jr., Bernstein, D. S.: Homotopy methods for solving the optimal projection equations for the $H_2$ reduced order model problem.Int. J. Control 56 (1992), 173-191. MR 1170891, 10.1080/00207179208934308
-
6Academic Journal
المؤلفون: KRAJEWSKI W., LEPSCHY A., VIARO U., REDIVO ZAGLIA, MICHELA
المساهمون: Krajewski, W., Lepschy, A., REDIVO ZAGLIA, Michela, Viaro, U.
مصطلحات موضوعية: Linear dynamic system, Rational approximation, L_2 norm
وصف الملف: STAMPA
Relation: volume:9; firstpage:355; lastpage:377; numberofpages:23; journal:NUMERICAL ALGORITHMS; http://hdl.handle.net/11577/104897; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0003792437; http://dx.doi.org/10.1007/BF02141596; http://www.springerlink.com/content/x064355143u5jq82/
-
7
المؤلفون: T. Marošević
المصدر: Mathematical Communications
Volume 1
Issue 2مصطلحات موضوعية: discrete approximation, l_1 norm, l_2 norm, l_ ∞norm, total least squares, total least l_p norm, error criteria, l_šinftyć norm, total least $l_p$ norm
وصف الملف: application/pdf
-
8
مصطلحات موضوعية: Mathematical optimization, Degree (graph theory), Basis (linear algebra), Computer program, Model reduction, Applied Mathematics, Numerical analysis, L_2 norm, Transfer matrix, Interpolation, Set (abstract data type), Rational approximation, Linear dynamic systems, Theory of computation, L2 norm, MATLAB, computer, Mathematics, computer.programming_language