يعرض 1 - 20 نتائج من 84 نتيجة بحث عن '"aceite de cocina usado"', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Brazilian Journal of Production Engineering; Vol. 9 No. 3 (2023): Regular Issue (July - September); 101-113 ; Brazilian Journal of Production Engineering; Vol. 9 Núm. 3 (2023): Edición regular (julio - septiembre); 101-113 ; Brazilian Journal of Production Engineering; v. 9 n. 3 (2023): Número Regular (Julho - Setembro); 101-113 ; 2447-5580 ; 10.47456/bjpe.v9i3

    وصف الملف: application/pdf; image/jpeg; audio/mpeg

  3. 3
  4. 4

    وصف الملف: 3 p.; application/pdf

    Relation: Castro, P.; Coello, J.; Castillo, L. (2007). Opciones para la producción y uso del biodiesel en el Perú. Editorial Soluciones prácticas. Primera edición. ISBN 978-9972-47-139-0. pp43. Lima Perú.; Méndez, Ezequiel. (2014). Biodiesel a partir de aceite vegetal usado. https://books.google.com.co/books?id=caWXBgAAQBAJ&pg=PA29&dq=biodiesel+aceite+usado&hl=es &sa=X&ei=g6oQVazHLKuxsAS7noK4Ag&ved=0CB8Q6AEwAQ#v=onepage&q=biodiesel%20aceite%20 usado&f=false; Ramírez Velasco, C. A. (2024). Guía de aplicación práctica para la Electiva-Gestión tecnológica: proceso de obtención de B100 a partir de ACU en la planta B100 UCC Campus Pasto. [Guía de práctica]. Repositorio Institucional Universidad Cooperativa de Colombia. https://hdl.handle.net/20.500.12494/55622; https://hdl.handle.net/20.500.12494/55622

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المساهمون: Orjuela Londoño, Álvaro, Grupo de Investigación en Procesos Químicos y Bioquímicos

    وصف الملف: application/pdf

    Relation: ARPEL, & IICA. (2009). Manual de biocombustibles.; Beyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies: A comprehensive introduction. Natural Computing, 1, 3–52. https://doi.org/10.2146/130117; Alcaldía mayor de Bogotá. (2018). Análisis demográfico y proyecciones poblacionales de Bogotá. http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0.pdf; BioEnergie. (2020). Öli problematik. https://www.bioenergie-aus-der-kueche.eu/sammelsystem/oeli-problematik.html; Biogras. (2020). Recolección de Aceites Vegetales Usados. https://biogras.com.co/servicios/; Bloemhof-Ruwaard, J. M., Van Wassenhove, L. N., Gabel, H. L., & Weaver, P. M. (1996). An environmental life cycle optimization model for the European pulp and paper industry. Omega, 24(6), 615–629. https://doi.org/10.1016/S0305-0483(96)00026-6; Caldeira, C., Queirós, J., & Freire, F. (2015). Biodiesel from Waste Cooking Oils in Portugal: Alternative Collection Systems. Waste and Biomass Valorization, 6(5), 771–779. https://doi.org/10.1007/s12649-015-9386-z; Caldeira, Carla, Queirós, J., Noshadravan, A., & Freire, F. (2016). Incorporating uncertainty in the life cycle assessment of biodiesel from waste cooking oil addressing different collection systems. Resources, Conservation and Recycling, 112, 83–92. https://doi.org/10.1016/j.resconrec.2016.05.005; Chakrabarty, M. . (2003). Chemistry and Technology of Oils and Fats. Allied Publishers PVT. Limited.; Choe, E., & Min, D. B. (2007). Chemistry of deep-fat frying oils. Journal of Food Science, 72(5). https://doi.org/10.1111/j.1750-3841.2007.00352.x; Chua, C. B. H., Lee, H. M., & Low, J. S. C. (2010). Life cycle emissions and energy study of biodiesel derived from waste cooking oil and diesel in Singapore. International Journal of Life Cycle Assessment, 15(4), 417–423. https://doi.org/10.1007/s11367-010-0166-5; Croes, G. A. (1958). A Method for Solving Traveling-Salesman Problems. Operations Research, 6(6), 791–812. https://doi.org/10.1287/opre.6.6.791; DANE. (2018). Censo nacional de población y vivienda 2018. https://sitios.dane.gov.co/cnpv/#!/; Dinero. (2015). El aceite usado puede convertirse en el próximo biocombustible. Dinero.; Echavarría Restrepo, J. (2012). El desarrollo sostenible y el reciclaje del aceite usado de cocina a la luz de la jurisprudencia y el ordenamiento jurídico colombiano. Producción + Limpia, 7(1), 109–122.; El Espectador. (2017). Conozca la velocidad a esta hora en las principales vías de Bogotá. El Espectador. https://www.elespectador.com/noticias/bogota/conozca-la-velocidad-a-esta-hora-en-las-principales-vias-de-bogota/; El Tiempo. (2014). Hasta con cloro revuelven aceites para venta ilegal; prenden alarmas. 14 de Mayo de 2014. https://www.eltiempo.com/archivo/documento/CMS-13989999; Enweremadu, C. C., & Mbarawa, M. M. (2009). Technical aspects of production and analysis of biodiesel from used cooking oil-A review. Renewable and Sustainable Energy Reviews, 13(9), 2205–2224. https://doi.org/10.1016/j.rser.2009.06.007; Fedepalma. (2018). Informe de gestión Fedepalma 2018.; Fengqui, Y., Ling, T., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cullulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. Process Systems Engineering, 58(4), 1157–1180.; Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning (1st ed.). Addison-Wesley Publishing Company.; Gomez, J. (2004). Self adaptation of operator rates in evolutionary algorithms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3102(June 2004), 1162–1173. https://doi.org/10.1007/978-3-540-24854-5_113; Greenea. (2019). Waste based market performance. https://www.greenea.com/en/market-analysis/; Greenfuel. (2020). Greenfuel. https://www.greenfuel.com.co/; GSI, & IISD. (2013). The EU Biofuel Policy and Palm Oil: Cutting subsidies or cutting rainforest? https://www.iisd.org/gsi/sites/default/files/bf_eupalmoil.pdf; Gunstone, F. D., & Hamilton, R. J. (2001). Oleochemical Manufacture and Applications. CRC Press.; Howard, G., & Bartram, J. (2003). La cantidad de agua domiciliaria, el nivel del servicio y la salud. https://www.who.int/water_sanitation_health/diseases/wsh0302/es/; Hu, Y., Scarborough, M., Aguirre-Villegas, H., Larson, R. A., Noguera, D. R., & Zavala, V. M. (2018). A Supply Chain Framework for the Analysis of the Recovery of Biogas and Fatty Acids from Organic Waste. ACS Sustainable Chemistry and Engineering, 6(5), 6211–6222. https://doi.org/10.1021/acssuschemeng.7b04932; Index Mundi. (2020a). Colombia Palm Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=palm-oil&graph=domestic-consumption; Index Mundi. (2020b). Colombia Soybean Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=soybean-oil&graph=domestic-consumption; Index Mundi. (2020c). Colombia Sunflowerseed Oil Domestic Consumption by Year. https://www.indexmundi.com/agriculture/?country=co&commodity=sunflowerseed-oil&graph=domestic-consumption; Jalving, J., & Zavala, V. M. (2018). An Optimization-Based State Estimation Framework for Large-Scale Natural Gas Networks. Industrial and Engineering Chemistry Research, 57(17), 5966–5979. https://doi.org/10.1021/acs.iecr.7b04124; Knothe, G., & Steidley, K. R. (2009). A comparison of used cooking oils: A very heterogeneous feedstock for biodiesel. Bioresource Technology, 100(23), 5796–5801. https://doi.org/10.1016/j.biortech.2008.11.064; Krikke, H. R. (1998). Recovery strategies and reverse logistic network design. Tilburg University.; Lammel, G., & Graßl, H. (1995). Greenhouse effect of NOX. Environmental Science and Pollution Research, 2(1), 40–45. https://doi.org/10.1007/BF02987512; Mamajek, E. E., Prsa, A., Torres, G., Harmanec, P., Asplund, M., Bennett, P. D., Capitaine, N., Christensen-Dalsgaard, J., Depagne, E., Folkner, W. M., Haberreiter, M., Hekker, S., Hilton, J. L., Kostov, V., Kurtz, D. W., Laskar, J., Mason, B. D., Milone, E. F., Montgomery, M. M., … Stewart, S. G. (2015). IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties. 1–6. http://arxiv.org/abs/1510.07674; Mandolesi De Araújo, C. D., De Andrade, C. C., De Souza E Silva, E., & Dupas, F. A. (2013). Biodiesel production from used cooking oil: A review. Renewable and Sustainable Energy Reviews, 27, 445–452. https://doi.org/10.1016/j.rser.2013.06.014; Markets and Markets. (2019). Oleochemicals market. https://www.marketsandmarkets.com/Market-Reports/oleochemicals-market-235516809.html?gclid=CjwKCAjwte71BRBCEiwAU_V9h6JlNjeXqa1wkC1zdLtkk8D1rQPvi7o6t5_nTYFunoiANEiMogG1BxoC0xkQAvD_BwE; Mincomercio Industria y Turismo, & Bancoldex. (2017). INTELLIGENT DIVERSIFICATION: Possibilities for the sophistication and diversification of the Oil Palm industry in Colombia. https://www.bancoldex.com/sites/default/files/documentos/intelligent_diversification_palm_oil.pdf; Moazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 216, 117–128. https://doi.org/10.1016/j.jclepro.2019.01.181; Mordor Ingelligence. (2020). SURFACTANTS MARKET - GROWTH, TRENDS, AND FORECAST (2020 - 2025).; Munguía-López, A. del C., Zavala, V. M., Santibañez-Aguilar, J. E., & Ponce-Ortega, J. M. (2020). Optimization of municipal solid waste management using a coordinated framework. Waste Management, 115, 15–24. https://doi.org/10.1016/j.wasman.2020.07.006; Neiro, S. M. S., & Pinto, J. M. (2004). A general modeling framework for the operational planning of petroleum supply chains. Computers and Chemical Engineering, 28(6–7), 871–896. https://doi.org/10.1016/j.compchemeng.2003.09.018; OEC. (2020). Palm Oil. https://oec.world/en/profile/hs92/31511#trade; Orjuela, Á. (2020). Industrial Oleochemicals from Used Cooking Oils (UCOs) - Sustainability Benefits and Challenges. In S. Sidkar & F. Princiotta (Eds.), Advances in Carbon Management Technologies (pp. 74–96). CRC Press.; Ortner, M. E., Müller, W., Schneider, I., & Bockreis, A. (2016). Environmental assessment of three different utilization paths of waste cooking oil from households. Resources, Conservation and Recycling, 106, 59–67. https://doi.org/10.1016/j.resconrec.2015.11.007; Papageorgiou, L. G., Rotstein, G. E., & Shah, N. (2001). Strategic supply chain optimization for the pharmaceutical industries. Industrial and Engineering Chemistry Research, 40(1), 275–286. https://doi.org/10.1021/ie990870t; Rincón, L. A., Cadavid, J. G., & Orjuela, A. (2019). Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia. Waste Management, 88, 200–210. https://doi.org/10.1016/j.wasman.2019.03.042; Rincón Vija, L. Á. (2018). Reutilización de aceites de cocina usados en la producción de aceites epoxidados. Universidad Nacional de Colombia.; Semana. (2017). ¿Cómo y por qué deshacerse del aceite de cocina usado? https://sostenibilidad.semana.com/impacto/articulo/aceite-de-cocina-usado-como-botarlo-y-reciclarlo-en-colombia/38474; Sigra. (2014). El Cartel del Aceite Pirata. https://www.youtube.com/watch?v=jZ1UUUQnaWI; Singhabhandhu, A., & Tezuka, T. (2010). The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics. Energy, 35(6), 2544–2551. https://doi.org/10.1016/j.energy.2010.03.001; Sipser, M. (2013). Introduction to the theory of computation (3rd ed.). Cengage Learning.; Srivastava, S. K. (2007). Green supply-chain management: A state-of-the-art literature review. International Journal of Management Reviews, 9(1), 53–80. https://doi.org/10.1111/j.1468-2370.2007.00202.x; STATISTA. (2019). Consumption of vegetable oils worldwide from 2013/14 to 2018/2019, by oil type (in million metric tons). https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/; STIN UCO. (2019). China exported more than 730000 tons of UCO in 2019,increased 26.7% than previous year. http://www.chinausedcookingoil.com/news/54.html; Suaterna Hurtado, A. C. (2009). La fritura de los alimentos: el aceite de fritura. Perspectivas En Nutrición Humana, Vol. 11(No. 1).; USDA. (2019). Oilseeds: World Markets and Trade. https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/n296xd515/w0892s45d/oilseeds.pdf; Vandermeersch, T., Alvarenga, R. A. F., Ragaert, P., & Dewulf, J. (2014). Environmental sustainability assessment of food waste valorization options. Resources, Conservation and Recycling, 87, 57–64. https://doi.org/10.1016/j.resconrec.2014.03.008; Weisstein, E. W. (2020). Graph. Wolfram Math World. https://mathworld.wolfram.com/Graph.html; Wilkerson, T. (2005). Can one green deliver another? Harvard Business Review.; Xin-She, Y. (2014). Nature-Inspired Optimization Algorithms. In Studies in Systems, Decision and Control (First Edit, Vol. 118). Elsevier.; Zhou, Z., Cheng, S., & Hua, B. (2000). Supply chain optimization of continuous process industries with sustainability considerations. Computers and Chemical Engineering, 24(2–7), 1151–1158. https://doi.org/10.1016/S0098-1354(00)00496-8; https://repositorio.unal.edu.co/handle/unal/78607

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis
  10. 10
    Academic Journal
  11. 11
  12. 12
  13. 13

    المؤلفون: Salazar López, Bryan Antonio

    المساهمون: Lozano-Moreno, Jairo Alexander

    المصدر: RED: Repositorio Educativo Digital UAO
    Universidad Autónoma de Occidente
    instacron:Universidad Autónoma de Occidente

    وصف الملف: 258 páginas; application/pdf

  14. 14
    Dissertation/ Thesis
  15. 15
  16. 16
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
  20. 20
    Dissertation/ Thesis

    المساهمون: Malagon Romero, Dionisio Humberto, orcid:0000-0003-2890-2180, https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061, Universidad Santo Tomás

    جغرافية الموضوع: CRAI-USTA Bogotá

    وصف الملف: application/pdf

    Relation: Alarcón, R., Malagón-Romero, D., & Ladino, A. (2017). Biodiesel production from waste frying oil and palm oil mixtures. Chemical Engineering Transactions, 57, 571–576. https://doi.org/10.3303/CET1757096; Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., & Belayouni, H. (2014). Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Management, 34(1), 210–218. https://doi.org/10.1016/j.wasman.2013.09.019; Ben Hassen Trabelsi, A., Zaafouri, K., Baghdadi, W., Naoui, S., & Ouerghi, A. (2018). Second generation biofuels production from waste cooking oil via pyrolysis process. Renewable Energy, 126, 888–896. https://doi.org/10.1016/j.renene.2018.04.002; Bridgwater, A. V., & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73. https://doi.org/10.1016/S1364-0321(99)00007-6; Chang, J.-S., Cheng, J.-C., Ling, T.-R., Chern, J.-M., Wang, G.-B., Chou, T.-C., & Kuo, C.-T. (2016). Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. Journal of the Taiwan Institute of Chemical Engineers, 73, 1–11. https://doi.org/10.1016/j.jtice.2016.04.014; Chen, D., Yin, L., Wang, H., & He, P. (2015). Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Management, 37, 116–136. https://doi.org/10.1016/j.wasman.2015.01.022; Chen, G., Liu, C., Ma, W., Zhang, X., Li, Y., Yan, B., & Zhou, W. (2014). Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource Technology, 166, 500–507. https://doi.org/10.1016/j.biortech.2014.05.090; Chhetri, A., Watts, K., & Islam, M. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies, 1(1), 3–18. https://doi.org/10.3390/en1010003; Czajczyńska, D., Nannou, T., Anguilano, L., Krzyzyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387–394. https://doi.org/10.1016/j.egypro.2017.07.275; De Almeida, V. F., García-Moreno, P. J., Guadix, A., & Guadix, E. M. (2015). Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 133, 152–160. https://doi.org/10.1016/j.fuproc.2015.01.041; Gashaw, A., & Teshita, A. (2014). Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International Journal of Renewable and Sustainable Energy, 3(5), 92–98. https://doi.org/10.11648/j.ijrse.20140305.12; Guedes, R. E., Luna, A. S., & Torres, A. R. (2018). Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, 129(July 2017), 134–149. https://doi.org/10.1016/j.jaap.2017.11.019; Inguanzo, M., Domínguez, A., Menéndez, J. A., Blanco, C. G., & Pis, J. J. (2002). On the pyrolysis of sewage sludge: The influence of pyrolysis conditions on solid, liquid and gas fractions. Journal of Analytical and Applied Pyrolysis, 63(1), 209–222. https://doi.org/10.1016/S0165-2370(01)00155-3; International Energy Agency. (2020). Global Energy Review 2019. https://www.iea.org/reports/global-energy-review-2019; Kraiem, T., Hassen-Trabelsi, A. Ben, Naoui, S., Belayouni, H., & Jeguirim, M. (2015). Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Processing Technology, 138, 404–412. https://doi.org/10.1016/j.fuproc.2015.05.007; Kraiem, T., Hassen, A. Ben, Belayouni, H., & Jeguirim, M. (2017). Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environmental Science and Pollution Research, 24(11), 9951–9961. https://doi.org/10.1007/s11356-016-7704-z; Lam, S. S., Wan Mahari, W. A., Anuar, T. N. S. T., Chong, C. T., Ma, N. L., Lam, W. H., & Ibrahim, M. D. (2018). Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Conversion and Management, 171(April), 1292–1301. https://doi.org/10.1016/j.enconman.2018.06.073; López, L., Bocanegra, J., & Malagón-Romero, D. (2015). Obtención de biodiesel por transesterificación de aceite de cocina usado. Ingenieria y Universidad. https://doi.org/10.11144/Javeriana.iyu19-1.sprq; Maddikeri, G. L., Gogate, P. R., & Pandit, A. B. (2014). Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel, 137, 285–292. https://doi.org/10.1016/j.fuel.2014.08.013; Mannu, A., Garroni, S., Ibanez Porras, J., & Mele, A. (2020). Available Technologies and Materials for Waste Cooking Oil Recycling. Processes, 8(3), 366. https://doi.org/10.3390/pr8030366; Moreno, D., Velasco, M., & Malagón-Romero, D. (2020). Production of polyurethanes from used vegetable oil-based polyols. Chemical Engineering Transactions, 79(March), 337–342. https://doi.org/10.3303/CET2079057; Naima, K., & Liazid, A. (2013). Waste oils as alternative fuel for diesel engine : A review. Journal of Petroleum Technology and Alternative Fuels, 4(March), 30–43. https://doi.org/10.5897/JPTAF12.026; NOAA National Centers for Environmental Information. (2019). Global Climate Report - Annual 2019. https://www.ncdc.noaa.gov/sotc/global/201913; Petroleum, B. (2020). Statistical Review of World Energy 2020 %7C 69th Edition (Vol. 69). https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf; Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008; Ranzi, E., Costa, M., Casallas, I. D., Carvajal, E., Mahecha, E., Castrillón, C., Gómez, H., López, C., & Malagón-Romero, D. (2018). Pre-treatment of Waste Cooking Oils for Biodiesel Production. CHEMICAL ENGINEERING TRANSACTIONS, 65.; Riesco, J., Flores, E., Elizalde, F., MArtinez, S., & Malagon, D. (2017). Evaluación del proceso de obtención de biodiesel a partir de aceites vegetales usados. Memorias Del XXIII Congreso Internacional Anual de La SOMIM, 144–151. http://revistasomim.net/congreso2017/articulos/A4_212.pd77; Rodríguez, D., Riesco, J., & Malagon-Romero, D. (2017). Production of Biodiesel from Waste Cooking Oil and Castor Oil Blends. Chemical Engineering Transactions, 57, 679–684. https://doi.org/10.3303/CET1757114; Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710. https://doi.org/10.1016/j.apenergy.2012.11.061; Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122; Wisniewski, A., Wiggers, V. R., Simionatto, E. L., Meier, H. F., Barros, A. A. C., & Madureira, L. A. S. (2010). Biofuels from waste fish oil pyrolysis: Chemical composition. Fuel, 89(3), 563–568. https://doi.org/10.1016/j.fuel.2009.07.017; Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel, 156, 40–46. https://doi.org/10.1016/j.fuel.2015.04.033; Londoño Feria, J. M., Nausa Galeano, G. A., & Malagon Romero, D. H. (2021). Production of bio-oil from waste cooking oil by pyrolysis. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.; http://hdl.handle.net/11634/33537; reponame:Repositorio Institucional Universidad Santo Tomás; instname:Universidad Santo Tomás; repourl:https://repository.usta.edu.co