-
1Academic Journal
المؤلفون: Zarui K. Simavonyan, Timur T. Valiev, Marina I. Savelyeva, Sherzod P. Abdullaev, Svetlana R. Varfolomeeva, З. К. Симавонян, Т. Т. Валиев, М. И. Савельева, Ш. П. Абдуллаев, С. Р. Варфоломеева
المساهمون: Not specified., Отсутствует.
المصدر: Pediatric pharmacology; Том 21, № 5 (2024); 449-454 ; Педиатрическая фармакология; Том 21, № 5 (2024); 449-454 ; 2500-3089 ; 1727-5776
مصطلحات موضوعية: лейкозы, pharmacogenetic testing, toxicity, lymphomas, leukemias, фармакогенетическое тестирование, токсичность, лимфомы
وصف الملف: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2528/1640; Evans WE, Abromowitch M, Crom WR, et al. Clinical pharmacodynamic studies of high-dose methotrexate in acute lymphocytic leukemia. NCI Monogr.1987;(5):81–85.; Giletti A, Esperon P. Genetic markers in methotrexate treatments. Pharmacogenomics J. 2018;18(6):689–703. doi: https://doi.org/10.1038/s41397-018-0047-z; Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(4):612–619. d oi: https://doi.org/10.1002/pbc.23074; Ramsey LB, Balis FM, O’Brien MM, et al. Consensus Guideline for Use of Glucarpidase in Patients with High-Dose Methotrexate Induced Acute Kidney Injury and Delayed Methotrexate Clearance. Oncologist. 2018;23(1):52–61. doi: https://doi.org/10.1634/theoncologist.2017-0243; Диникина Ю.В., Смирнова А.Ю., Голубева К.М. и др. Применение высоких доз метотрексата у детей с онкологическими заболеваниями: особенности сопроводительной терапии, оценка токсичности // Российский журнал детской гематологии и онкологии. — 2018. — Т. 5. — № 2. — С. 11–18. — doi: https://doi.org/10.17650/2311-1267-2018-5-2-11-18; Pannu AK. Methotrexate overdose in clinical practice. Curr Drug Metab. 2019;20(9):714–719. doi: https://doi.org/10.2174/1389200220666190806140844; Tavakolpour S, Darvishi M, Ghasemiadl M. Pharmacogenetics: A strategy for personalized medicine for autoimmune diseases. Clin Genet. 2018;93(3):481–497. doi: https://doi.org/10.1111/cge.13186; Малова М.Д., Михайлова С.Н., Белышева Т.С. Высокодозный метотрексат в детской онкогематологии: вопросы токсичности терапии // Вестник гематологии. — 2023. — Т. 19. — № 3. — С. 22–27.; Meyers PA, Flombaum C. High-dose methotrexate-induced renal dysfunction: is glucarpidase necessary for rescue? J Clin Oncol. 2011;29(7):e180. doi: https://doi.org/10.1200/JCO.2010.32.8245; Treon SP, Chabner BA. Concepts in use of high-dose methotrexate therapy. Clin Chem. 1996;42(8 Pt 2):1322–1329.; Choi YJ, Park H, Lee JS, et al. Methotrexate elimination and toxicity: MTHFR 677C>T polymorphism in patients with primary CNS lymphoma treated with high-dose methotrexate. Hematol Oncol. 2017;35(4):504–509. doi: https://doi.org/10.1002/hon.2363; Park JA, Shin HY. Influence of genetic polymorphisms in the folate pathway on toxicity a fter high-dose methotrexate treatment in pediatric osteosarcoma. Blood Res.2016;51(1):50–57. doi: https://doi.org/10.5045/br.2016.51.1.50; Castaldo P, Magi S, Nasti AA, et al. Clinical pharmacogenetics of methotrexate. Curr Drug Metab. 2011;12(3):278–286. doi: https://doi.org/10.2174/138920011795101840; Леонов Д.В., Устинов Е.М., Деревянная В.О. и др. Генетический полиморфизм. Значение. Методы исследования // Амурский медицинский журнал. — 2017. — № 2. — С. 62–67.; Song Z, Hu Y, Liu S, et al. The Role of Genetic Polymorphisms in High-Dose Methotrexate Toxicity and Response in Hematological Malignancies: A Systematic Review and Meta-Analysis. Front Pharmacol. 2021;12:757464. doi: https://doi.org/10.3389/fphar.2021.757464; Sundbaum JK, Baecklund E, Eriksson N, et al. MTHFR, TYMS and SLCO1B1 polymorphisms and adverse liver effects of methotrexate in rheumatoid arthritis. Pharmacogenomics. 2020;21(5):337–346. doi: https://doi.org/10.2217/pgs-2019-0186; Sramek M, Neradil J, Veselska R. Much more than you expected: The non-DHFR-mediated effects of methotrexate. Biochim Biophys Acta Gen Subj. 2017;1861(3):499–503. doi: https://doi.org/10.1016/j.bbagen.2016.12.014; Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat. 2006;9(4-5):227–246. doi: https://doi.org/10.1016/j.drup.2006.09.001; Lopez-Lopez E, Gutierrez-Camino A, Bilbao-Aldaiturriaga N, et al. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014;15(10):1383–1398. doi: https://doi.org/10.2217/pgs.14.106; Umerez M, Gutierrez-Camino Á, Muñoz-Maldonado C, et al. MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med. 2017;10:69–78. doi: https://doi.org/10.2147/PGPM.S107047; Lambrecht L, Sleurs C, Labarque V, et al. The role of the MTHFR C677T polymorphism in methotrexate-induced toxicity in pediatric osteosarcoma patients. Pharmacogenomics. 2017;18(8):787–795. doi: https://doi.org/10.2217/pgs-2017-0013; Генокарта: генетическая энциклопедия. Доступно по: https://www.genokarta.ru. Ссылка активна на 31.01.2024.; Mahmuda NA, Yokoyama S, Huang JJ, et al. Study of Single Nucleotide Polymorphisms of the SLC19A1/RFC1 Gene in Subjects with Autism Spectrum Disorder. Int J Mol Sci. 2016;17(5):772. doi: https://doi.org/10.3390/ijms17050772; Leyva-Vázquez MA, Organista-Nava J, Gómez-Gómez Y, et al. Polymorphism G80A in the reduced folate carrier gene and its relationship to survival and risk of relapse in acute lymphoblastic leukemia. J Investig Med. 2012;60(7):1064–1067. doi: https://doi.org/10.2310/JIM.0b013e31826803c1; de Jonge R, Tissing WJ, Hooijberg JH, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood. 2009;113(10):2284–2289. doi: https://doi.org/10.1182/blood-2008-07-165928; Gregers J, Christensen IJ, Dalhoff K, et al. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood. 2010;115(23):4671–4677. doi: https://doi.org/10.1182/blood-2010-01-256958; Han JM, Choi KH, Lee HH, et al. Association between SLCO1B1 polymorphism and methotrexate-induced hepatotoxicity: a systematic review and meta-analysis. Anticancer Drugs. 2022;33(1):75–79. doi: https://doi.org/10.1097/CAD.0000000000001125; Ebid AIM, Hossam A, El Gammal MM, et al. High dose methotrexate in adult Egyptian patients with hematological malignancies: impact of ABCB1 3435C > T rs1045642 and MTHFR 677C > T rs1801133 polymorphisms on toxicities and delayed elimination. J Chemother. 2022;34(6):381–390. doi: https://doi.org/10.1080/1120009X.2021.2009723; Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem. 2021;28(5):910–939. doi: https://doi.org/10.2174/0929867326666191016151018; Kotur N, Lazic J, Ristivojevic B, et al. Pharmacogenomic Markers of Methotrexate Response in the Consolidation Phase of Pediatric Acute Lymphoblastic Leukemia Treatment. Genes. 2020;11(4):468. doi: https://doi.org/10.3390/genes11040468; Erčulj N, Kotnik BF, Debeljak M, et al. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(6):1096–1104. doi: https://doi.org/10.3109/10428194.2011.639880; Aminkeng F, Ross CJ, Rassekh SR, et al. CPNDS Clinical Practice Recommendations Group. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–695. doi: https://doi.org/10.1111/bcp.13008; Pratt VM, Cavallari LH, Fulmer ML, et al. TPMT and NUDT15 Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase. J Mol Diagn. 2022;24(10):1051–1063. doi: https://doi.org/10.1016/j.jmoldx.2022.06.007; Rocha V, Porcher R, Fernandes JF, et al. Association of drug metabolism gene polymorphisms with toxicities, graft-versus-host disease and survival after HLA-identical sibling hematopoietic stem cell transplantation for patients with leukemia. Leukemia. 2009;23(3):545–556. doi: https://doi.org/10.1038/leu.2008.323; Gagné V, St-Onge P, Beaulieu P, et al. HLA alleles associated with asparaginase hypersensitivity in childhood ALL: a report from the DFCI Consortium. Pharmacogenomics. 2020;21(8):541–547. doi: https://doi.org/10.2217/pgs-2019-0195; https://www.pedpharma.ru/jour/article/view/2528